Toronto Jnibrsity 3 iturary.

$$
\begin{aligned}
& \text { The University of Cambridge } \\
& \text { through the Committer formed in } \\
& \text { the Old Country }
\end{aligned}
$$

to aid in replacing the loss caused by the Disastrous Fire of Peloruary the 14 th, $18: 01$.

In .

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation
http://www.archive.org/detailsilevgeolucuoumeredbashuoft

RESISTANCE OF THE AIR

TO THE

MOTION OF PROJECTILES.

Zlondon: C. J. CLAY AND SONS, CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, Ave Maria Lave.

Cambrivge: DEIGHTON, BELL AND CO.
Leipzig: F. A. BROCKHAUS.
A REVISED ACCOUNTof
THE EXPERIMENTS MADE WITH
THE BASHFORTH CHRONOGRAPH,
to FIND
THE RESISTANCE OF THE AIR
TO THE
MOTION OF PROJECTILES,witil the
APPLICATION OF THE RESULTS TO THECALCULATION OF TRAJECTORIESACCORDING TO
J. BERNOULLI'S METHOD.
FRANCIS BASHFORTH, B.D.LATE PROFESSOR OF APPLIED MATHEMATICS TO THE ADVANCED CLASS OF R.A. OFFICERS,WOOLWICH; AND FORMERLY FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE.

CAMBRIDGE:
AT THE UNIVERSITY PRESS.
1890

Cambrioge:
printed by c. J. CLAY, M.A. AND sons, at the university press.

$$
\begin{aligned}
& 6 \xi-56 \\
& 21110190
\end{aligned}
$$

PREFACE.

WHEN my previous work on the Motion of Projectiles was published in 1873 the correct law of resistance of the air had been determined only for velocities between 900 and 1700 feet per second. The extensive experiments made at Shoeburyness in 1878, 1879 and 1880 with ogival-headed projectiles completed the law of resistance for velocities between 100 and 2800 feet per second, but it was not found possible to assign any simple expression for the law of resistance in terms of the velocity. The Newtonian and cubic laws may however be used, excepting perhaps a brief interval just below the velocity of sound.

The generous recognition of the practical value of my labours by the Marquis of Hartington, when Secretary of State for War in 1885, induced me to attempt to complete my labours by the calculation of tables of integrals for a resistance varying as the square of the velocity. So far as seemed necessary similar tables for the cubic law of resistance have been reprinted from my former work on the same subject.

The results of my experiments have been extensively used in government treatises on Ballistics since 1877 (114). Also Captain Ingalls has given an extended and careful explanation of my results and method of experimenting in his Text-Book on Exterior Ballistics prepared for the use of officers under instruction at the United States Artillery School, 1886. And в.

Major Wuich, Professor der Artillerielehre am k. k. hüheren Artilleriekurse, Wien, has abridged my tables and presented them in a new form in his Aeussere Ballistik, 1886.

In order to furnish the reader with full information respecting the foundation on which my work rests, I have carefully revised all my original observations and given full particulars of the results finally adopted. This re-examination of every round has introduced trifling changes in the coefficients of resistance for both spherical and ogival-headed projectiles. I have therefore taken the trouble to recalculate my General Tables for both forms of projectile, in order to render my work consistent throughout. The whole has been adapted to the use of French as well as English measures.

The close agreement between calculated and experimental ranges and times of flight for high muzzle velocities and low elevations shows that my coefficients are well adapted for the best guns of the present day. But when projectiles are fired with high muzzle velocities at high elevations, the calculated ranges and times of flight are both generally less than those given in the range tables. This discrepancy, I have no doubt, is caused in a great measure by the vertical drift of the elongated projectile, which causes an increase of range and time of flight. In fact the explanation of lateral drift given by Magnus and others also accounts for a vertical drift which is really the origin of all drift.

Recently some rounds have been fired from a wire gun at high elevations with a very high muzzle velocity, commonly spoken of as the Jubilee Rounds. But it unfortunately happened that the wind was more or less favourable to a long range in these experiments. And a moderate steady wind at the surface of the earth would become a very violent wind at a height of two or three miles, which would produce a marked effect on the motion of an elongated projectile exposed to its action for 50 or 60 seconds. I have calculated a complete range table for the case where there is no wind to disturb the motion of the projectile.

The statements and proceedings of some foreign writers on ballistics have rendered it incumbent on me to enter at some length into the history and progress of my work during the last twenty-six years. But I have confined these remarks chiefly to the conclusion of my work, so that the reader need not trouble himself unless he feels an interest in the matter.

In calculating trajectories it has of late become a common practice to reduce my coefficients, either arbitrarily, or so as to bring them into accord with those of Krupp. But I have not been able to find any satisfactory experimental authority for Krupp's tables issued in 1881. Certainly in the following year an "Annexe" (177), consisting of 37 rounds, was put forward to support a foregone conclusion, but these experiments from their nature were not to be depended upon (177), and in no single case was the time of flight recorded. The specimen of the experiments made to determine the resistance of the air for velocities higher than 700 m.s. (181) ought to establish the character of Meppen for ballistic experiments. In all cases the Krupp party were careful to follow and not to lead. An inspection of diagram (178) will show how carefully they followed my law of resistance, merely reducing my coefficients, as is shown by line 3 compared with line 1 or 2 .

In 1872 Mayevski combined my results published in 1868 with a few of his own experiments, from which he professed to have obtained "résultats russes et anglais," which however coincided with my previously published results (169). Consequently, so far as Mayevski's experiments had any value, they entirely supported my previous conclusions.

The method of calculating trajectories published by Siacci requires all the three tables previously used by Niven for that purpose. Ingalls (173) has pointed out a grave defect in that Siacci has not found an analytical expression for a most important quantity, α or sec $\bar{\phi}$, but has merely given the empirical rule $\sec \bar{\phi}=(\sec \phi)^{\frac{n-2}{n-1}}$. Turning to Niven's paper it will be found that the two values of this quantity required for distance and for time have been carefully determined, and still more so in a paper

On certain Approximate Formulae for calculating the Trajectories of Shot, by Professor Adams (Nature, Jan. 16, 1890). It must be plain that arbitrary coefficients of resistance, and empirical quantities are quite inadmissible in any calculations made to test the results of careful experiment. Krupp, Mayevski and Siacci use tables of the same kind as mine (108) and (110).

The reader will find in the following work a very full account of every round from which coefficients of resistance have been obtained by me for both spherical and ogival-headed projectiles. In consequence of the Krupp scare, special experiments were made in 1887 to test my coefficients on a long range, when they were found to be quite satisfactory. Still no notice seems to have been taken of this fact, or of Captain May's remarks (151), by calculators of trajectories.

My coefficients of resistance for low velocities have been tested (122) by calculating a Range Table for the $6 \cdot 3$-inch Howitzer for elevations 5° to 35° with satisfactory results.

For high velocities I have used the Range Table for the 4-inch B.L. gun. The calculated ranges and times of flight for velocities 1900 to 960 f.s., and for elevations 1° to 4° (125), are quite satisfactory; and this conclusion is confirmed by the use of the General Tables (126) and (188). In the same manner the Range Table of Captain May, R.N., has been used (123), (124) and (189) to show the accuracy of my coefficients of resistance when the projectile moves nearly in the direction of its axis.

I therefore claim to have accomplished in a satisfactory manner all I undertook to do, namely, to find by experiment the law of resistance to spherical projectilcs and also to elongated projectiles when they move approximately in the direction of their axes.

The tables and coefficients already given are sufficient for the calculation of trajectories of spherical projectiles and of elongated projectiles where there is no sensible drift. But
in attempting to calculate the trajectories of elongated projectiles fired from rifled guns with high muzzle velocities and at considerable elevations, it will be well to recognise the truth of the statement of St-Robert-that the problem taken in all its generality presents great difficulties. I have endeavoured to explain the nature of the movement of such an elongated projectile, which is supposed to be projectell with perfect steadiness from a rifled gun, according to the conclusions of St-Robert. Referring to (141) it is evident that shortly after the elongated projectile leaves the gun it must be raised up bodily by the resistance of the air, so as to cause it to move as if it had been fired at a somewhat higher elevation than it really was. I have given the calculated ranges and times of flight for elevations of 1° to 15° for the 4 -inch B.L. gun (148). As the elevation increases above 4° it appears that the calculated ranges and times of flight fall short more and more of those quantities respectively given by experiment. Suppose we reduced the coefficients of resistance so as to obtain a calculated range equal to the experimental range for an elevation of 10°, we should find, as Captain May did (151), that these coefficients would not give a correct time of flight-and they would destroy the agreement actually obtained for low elevations. The reduction of the coefficients of resistance therefore cannot be the solution of the difficulty, as is commonly supposed. Some correction is required which will increase both the calculated range and time of flight.

In (149) the calculated ranges of (148) are arranged in a different manner. I have found from the Range Table the elevation and time of flight corresponding to each calculated range. It is evident that the corrections for elevation at once give the correct ranges and very approximate corrections for the times of flight. These latter corrections would have been still more satisfactory if the decrease in density of the air corresponding to the height of the shot had been taken into account in the calculation of the trajectories (148). For the reason stated (146) this mode of correction will be only an approxima-
tion to the truth-but it will perhaps be found to be satisfactory. The law of the correction can only be obtained by the calculation of numerous trustworthy Range Tables, or by theoretical considerations.

I fear that the reader will meet with some repetitions in the following work, but it was impossible to avoid them entirely on account of the complicated nature of the various questions to be dealt with. Although it will not surprise me to find that what has been said produces little immediate effect, it will always be a satisfaction to me to have stated my case carefully and supported it by reference to, and specimens of, my early results and tables, in none of which have I found it necessary to introduce any important change.

The English Range Tables I have made use of appear to me surprising from their minute accuracy. I have derived much assistance from Captain Ingalls's excellent work on Exterior Ballistics, and the numerous references to that work will explain in what respect I am indebted to his labours.

Minting Vicarage, March, 1890.

CONTENTS.

PAGF
Chapter I. (1) to (18). Introduction 1
Chapter II. (19) to (38). Description of the Chronograph, with all account of Experiments and their reduction 14
Chapter III. (39) to (81). Experiments with the Chronograph 27
Chapter IV. (82) to (115). Description of the General Tables S_{v} and T_{0} 68
Chapter V. (116) to (135). Calculation of Trajectories of Pro- jectiles 87
Chapter VI. (136) to (153). The Movement of Elongated Projectiles 124
Chapter VII. (154) to (165). Proposed Laws of the Resistance of the Air to Elongated Projectiles 135
Chapter VIII. (166) to (192). Concluding Remarks 140
Table I. Coefficients for the Newtonian Law of the Resistance of the Air to Spherical Projectiles 157
Table II. Approximate Law of the Resistance of the Air to the Motion of Spherical Projectiles 158
Table III. Coefficients for the Newtonian Law of Resistance of the
Air to Ogival-headed Projectiles ib.
Table IV. Approximate Law of the Resistance of the Air to the Motion of Ogival-headed Projectiles 159
Table V. Coefficients for the Newtonian Law of Resistance of the Air to Hemispherical-headed Projectiles 160
Table VI. Coefficients for the Newtonian Law of Resistance of the Air to Flat-headed Projectiles $i b$.
Table VII. Values of $Q_{\phi}=\sec \phi \tan \phi+\log _{\theta} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)$ 161
Table VIII. Values of $\log Q_{\phi}$ 163
Table IX. Values of $(x),(y),(t)$, and (v) for Newtonian Law 164
Table X. Values of $\{1000 \div v\}^{2}$ 228
PAGE
Table XI. Coefficients for the Cubic Law of the Resistance of the Air to Spherical Projectiles 235
Table XII. Coefficients for the Cubic Law of the Resistance of the Air to Ogival-headed Projectiles $2: 36$
Table XIII. Coefficients for the Cubic Law of the Resistance of the Air to IIemispherical-headed Projectiles 238
Table XIV. Coefficients for the Cubic Law of the Resistance of the Air to Flat-headed Projectiles ib.
Table XV. Values of $P_{\phi}=3 \tan \phi+\tan ^{3} \phi$, and of $\log P_{\phi}$ 239
Table XVI. Values of (x), (y), (t), and (v) for the Cubic Law of Resistance $2 \div 0$
Table XVII. Values of $(1000 \div v)^{3}$ 280
Table XVIII. Values of W_{ϕ} and $\log W_{\phi}$ 283
Table XIX. Values of $(1000 \div v)^{6}$ 284
Table XX. Log \boldsymbol{y} corresponding to temperatures and pressures of the Air, when the Air is $\frac{2}{3}$ rds saturated with moisture 286
Table XXI. Log τ for various heights, gravity and temperature being considered constant 288
Table XXII. Resistance of the Air to Spherical and to Ogival-headed Projectiles 289
Table XXIII. S_{v} for Spherical Projectiles 290
Table XXIV. T_{v} for Spherical Projectiles 294
Table XXV. $\quad S_{v}$ for Ogival-headed Projectiles 298
Table XXVI. T, for Ogival-headed Projectiles 304
French Measures.
Table XXVII. Coefficients of the Resistance of the Air for the Newtonian and Cubic Laws of Resistance to Spherical and Ogival- headed Projectiles 310
Table XXVIII. Approximate Laws of the Resistance of the Air to the Motion of Spherical Projectiles 311
Table XXIX. Approximate Laws of the Resistance of the Air to the Motion of Ogival-headed Projectiles ib.
Table XXX. Sy for Spherical Projectiles 312
Table XXXI. © τ_{6} for Spherical Projectiles. 313
Table XXXII. S_{b} for Ogival-headed Projectiles 314
Table XXXIII. © ${ }_{\mathrm{b}}$ for Ogival-headed Projectiles 316

CHAPTER I.

INTRODUCTION.

1. The leading mathematicians of the last two centuries gave much attention to the subject of Ballistics. They seem to have accomplished all that was possible in such a case, in the absence of reliable experiments by which they could test their theories. Galileo made the first attempt to determine the theoretical path of a projectile acted on by gravity, but unresisted by the air, in his Scienze Nuove, 1638, and found it to be a parabola. Newton investigated the theoretical path of a projectile, supposing the air to offer a resistance varying as the velocity. In 1718 Keill proposed his famous challenge to Continental mathematicians, "Invenire curvam, quam projectile de"scribit in aëre, pro simplicissima suppositione gravitatis, atque " medii densitatis uniforms, resistentiæ vero in duplicata ratione "velocitatis ${ }^{1}$." J. Bernoulli soon solved the problem, supposing the resistance to vary as any power of the velocity, but before publishing his solution, he called upon Kill to produce his own, telling him that if he did not do as he was requested, he should accept his silence "pro tacita confessions suæ imbecilitatis." As the required solution was not produced Bernoulli triumphed not over Keill only, but also over all his English friends, who might have been expected to help him if they had known how to do so. Bernoulli refers ${ }^{2}$ to a solution received from Brook Taylor on the 6th of November, "styli veteris," under the form $\left(r^{4}-1+4 n r r+4 u r^{2}\right)$. Hermann had also given a construction in his Phoronomia, p. 354, similar to his own.

[^0]B.
2. Le Seur and Jacquier remark in their edition of Newton's Principia (Book 1I., Prop. X., Prob. IIr.), that although Newton had omitted to consider the case of a medium resisting as the square of the velocity, they were unwilling that the solution of such an elegant problem should be absent from their commentaries. Having given Bernoulli's solution for any power of the velocity, they remark "ex quibus manifestum sit veræ trajectoriæ "descriptionem adeò perplexam esse, ut ex illa vix quidquam ad "usus philosophicos aut mechanicos accommodatum possit deduci." That is, it was impossible to integrate the expressions arrived at. But this solution is the one employed in this as well as in my former work. Euler also adopted Bernoulli's solution, and applied it to the case where the resistance varied as the square of the velocity. In this particular case the length of the arc of the trajectory can be found by integration. Euler divided the trajectory into small arcs, and, supposing the chord to be equal to the are in length, by summation he found the coordinates of the path. This method of calculation was pursued by Grevenitz ${ }^{1}$ (1764), Hugh Brown ${ }^{2}$ (1777), and Otto ${ }^{3}$. But Legendre introduced a muchneeded correction by treating the arc of the trajectory as the arc of a circle, and projecting its chord upon the axes of x and y. Another method of correction proposed by Didion was to use the arc of a parabola instead of the arc of a circle ${ }^{4}$. Didion has given comparative examples of the use of these methods. Lambert, Tempelhof, Francois, Otto and others have made use of long series too complicated for practical use, although Otto has provided numerous auxiliary tables ${ }^{5}$. His other ballistic tables were only adapted for calculating the trajectories of shot fired at high elevations.
3. But there were no trustworthy means of comparing the results of theory and experiment until Robins, by the use of his ballistic pendulum and his whirling machine, made valuable attempts to discover the law of resistance of the air to the motion of small-arm bullets. He describes his ballistic pendulum as follows:-" $A B C D$ represents the body of the machine "composed of the three poles B, C, D, spreading at bottom, and

[^1]"joining together at the top $A . .$. On two of these poles towards "their tops are screwed on the sockets $R S$; and on these sockets

"the pendulum $E F G H I K$ is hung by means of its cross piece " $E F$, which becomes its axis of suspension and on which it must "be made to vibrate with great freedom. The body of this pen"dulum is made of iron, having a broad part at bottom which "cannot be seen in this scheme....The lower part of the pendulum " is covered with a thick piece of wood GKIH, which is fastened "to the iron by screws. Something lower than the bottom of "the pendulum there is a brace $O P$, joining the two poles to
"which the pendulum is suspended; and to this brace there is "fasten'd a contrivance $M N U$, made with two edges of steel "bearing on each other in the line $U N$, sonething in the manner " of a drawing-pen....There is fasten'd to the bottom of the "pendulum a narrow ribbon $L N^{1 "}$ which is used to measure the recoil of the pendulum. Robins published his New Principles of Gunnery in 1742, in which he adopted a law of resistance varying approximately as the square of the velocity, but he insisted that there was a decided change in this law at or about the velocity of sound. This position was doubted till it was confirmed by recent experiments. In reply to some adverse criticisms on his work, several papers were read and illustrative experiments were exhibited by Robins before the Royal Society. He remarked, "But as I have, for some time past, made many experiments " myself on the ranges of bullets, and have collected all that I "could meet with made by other persons; it was necessary, in "order to examine the several hypotheses of resistance, which "some of these experiments suggested, that I should be enabled "to compute the motions of resisted bodies, not only when they " were resisted in the duplicate proportion of their velocity; but " likewise when the law of resistance was varied by other rules " not hitherto supposed by any writer. And, in these investi" gations, I had the good fortune to discover some compendious "approximations, which were as accurate, as the nature of the "subject required, and were as easy in their application, as I " could well hope for in so perplexed and intricate a matter.... But " first it is necessary to examine what is the real law of resistance " of bodies moving through the air.
"I have already mentioned, that in very great changes of "velocity, the resistance does not uccurately follow the duplicate "proportion of the velocity. But how much this variation "amounts to, and how it is adapted to the different velocities of " the resisted body; it is not easy nicely to ascertain. However, "by comparing together a great number of experiments; I am " of opinion, that till, a more accurate theory of these changes " is compleated, the two following positions may be assumed "without any remarkable error ${ }^{2}$."

[^2]4. "First, that till the velocity of the projectile surpasses "that of 1100 feet in a second, the resistance may be esteemed "to be in the duplicate proportion of the velocity; and its mean "quantity may be taken to be nearly the same with that, I have "assigned in the former paper ${ }^{1}$.
"Second, That if the velocity be greater than that of 11 or " 1200 feet in a second, then the absolute quantity of that re"sistance in these greater velocities will be near three times "as great, as it should be by a comparison with the smaller "velocities.-For instance, the resistance of a 12 pound shot, " moving with a velocity of 1700 feet in a second, instead of " 144 lb . $\frac{1}{2}$, which I have assigned it in a former paper, will be "now three times that quantity, or $433 \mathrm{lb} . \frac{1}{2}^{2} . "$ And in a note Robins remarks, that " the velocity, at which the moving body "shifts its resistance, is nearly the same, with which sound is "propagated through the air."
5. On presenting to Robins the Copley Medal in recognition of the value of his work, Mr Folkes, President of the Royal Society, observed that, "It is from these experiments, and from "those others which Mr Robins is still preparing to exhibit, that "we may expect to see compleated the whole, and the true theory " of projectiles. What Galileo and Torricelli, who first demon"strated the motions of these bodies in vacuo, knew to be still "wanting in their theories, will hereby be supplied: and these " particulars will at last become known, which they wished that "future observers would make diligent and careful experiment "about"." Previously, "writers, even those of the first class" have been of opinion "that in large shot of metal, whose weight " many thousand times surpasses that of the air, and whose force "is very great, in proportion to the surface wherewith they press "thereon, this opposition is scarce discernable, and as such may, " in all computations, concerning the ranges of great and weighty " bombs be very safely neglected 4."

The choice of "two very considerable employments" having been offered to Robins, as a reward for his labours, he accepted the office of Engineer-General to the East-India Company "as "it was suitable to his genius, and where, he believed, he should

[^3]"be able to do real service, as not being liable to be hindererd "through the suggestions of design or ignorance, which by their "boasting and importunity, often insinuating themselves into the "direction of publick affairs, frequently render abortive the best "concerted schemes"." The Company settled upon him £500 a year during life, on condition that he continued in their service five years. He left England for India in 1749 and died at work 1751.
6. Euler at once published a translation of Robins's New Principles, and illustrated the work with a lengthy commentary (1745). He also contributed a paper on the same subject to the Memoires de l'Acad. de Berlin, 1753, in which he showed how theoretical trajectories might be calculated according to the solution of the problem by J. Bernoulli, but only for a resistance varying as the square of the velocity. Both Euler's paper and his commentaries on Robins's New Principles were translated and published in 1777 by Hugh Brown, who also carried out the calculation of seventeen species of trajectories according to Euler's example and instructions. The like had been done previously by Grævenitz in 1764, as already stated, but the calculations appear to have been made independently. The weight of the ballistic pendulum used by Robins was only 56 lbs .3 oz .
7. At Woolwich, in the year 1775 , in conjunction with some able officers of the Royal Regiment of Artillery and other ingenious gentlemen, was first instituted a course of experiments on fired gunpowder and cannon-balls, similar to the course carried on afterwards during the years $1783-5,1787-9,1791$, \&c. Hutton's account of the earlier experiments was printed in the Philosophical Transactions for 1778 , and was honoured with the annual medal of the Royal Society. Hutton ${ }^{2}$ remarks, "That part of Mr Robins's "book has always been much admired, which relates to the experi"mental method of ascertaining the actual velocities of shot, and "in imitation of which, but on a large scale, those experiments "were made which were described in my paper. Experiments in "the manner of Mr Robins were generally repeated by his com"mentators, and others, with universal satisfaction; the method "being so just in theory, so simple in practice, and altogether so "ingenious that it immediately gave the fullest conviction of its

[^4]"excellence, and the eminent abilities of the inventor. The use "which our author made of his invention, was to obtain the real "velocities of bullets experimentally, that he might compare them "with those which he had computed a priori from a new theory " of gunnery, which he had invented, in order to verify the prin"ciples on which it was founded. The success was fully answerable "to his expectations, and left no doubt of the truth of his theory, "at least when applied to such pieces and bullets as he had used. "These however were but small, being only musket balls of about "an ounce weight."
8. Hutton endeavoured to supply the want of results of experiments with larger balls by using shot from 1 lb . to near 3 lbs., and finally 6 lbs. in weight. He employed the ballistic pendulum of Robins, as that was at that time the only practical method of ascertaining the velocities of military projectiles, except that practised by Count Rumford, who suspended the gun and measured its recoil. Hutton commenced his experiments with a pendulum weighing between 500 and 600 lbs . in 1783; it was increased to 1014 lbs . in 1788; in the following year to 1655 lbs . and at last to 2099 lbs . Full particulars of the rounds fired have been carefully given. For the determination of resistances at low velocities Hutton used Robins's whirling machine.
9. Hutton states that his experiments of $1787,88,80$ and 91 "were chiefly instituted to obtain the effects of the air's resistance "to balls in their rapid flight through it. To determine the "resistance to the very high velocities, were employed balls of "three several sizes, viz. of 2 inches, $2 \cdot 78$ inches, and $3 \cdot 55$ inches "in diameter. These were discharged with various degrees of "velocity, from 300 feet to 2000 feet in a second of time; and they "were also made to strike the pendulum block at several different "distances from the guns, in order to obtain the quantity of velo"city lost, in passing through those spaces of air; whence the "degrees of resistance were obtained, appropriate to the different "velocities. These series of resistances for the three sizes of "balls above-mentioned, have been obtained in a state remarkably "regular, not only each series in itself, but also in comparison "with each other; the terms in every one of them following a "certain uniform law, in respect of the velocity, being indeed "nearly as the $2 \frac{1}{10}$ power of the velocity; and the terms of any "one series also, as compared with the corresponding terms of
"another, with the same velocity, these being in a constant pro" portion to one another," viz. as the surfaces of the balls moved "nearly, or as the squares of their diameters, with about $\frac{1}{20}$ part " more in counting from the less ball to the greater, or $\frac{1}{20}$ part less "when comparing the greater ball to the less ${ }^{1}$." Finally, Hutton expresses the resistance of the air in pounds to a spherical shot d incl:es in diameter, moving with a velocity r rf.s. ${ }^{2}$, by
$$
\left(\cdot 000,007,565 v^{2}-\cdot 00175 v\right) d^{2} .
$$
10. The proposal to introduce some changes into the English Artillery in 1815 determined the director of the Royal Academy and Dr Gregory, professor in the same establishment, to cause a ballistic pendulum to be constructed three times greater than that of Hutton, with which to experiment with shot of 24 lbs . The weight of the pendulum was 7408 lbs . Shot of $6,9,12$ and 24 lbs . were fired into the wooden block of this ballistic pendulum, from guns of different lengths with various charges ${ }^{3}$. Other experiments ${ }^{4}$ were made in 1817, 18, at Woolwich to determine the influence of windage on the initial velocities of shot. The results obtained do not appear to have any permanent value.
11. General Piobert ${ }^{3}$ recalculated the experiments of Hutton and obtained a formula of resistance
$$
\rho=\pi R^{2} \times 0.030586(1+0.0023 V) V^{2} .
$$
12. General Didion has remarked that the experiments made by Hutton in England on small projectiles "incomplétenent "formulées par ce savant observateur" had for a long time formed the sole base of ballistic applications. Piobert had succeeded in representing Hutton's results by a formula of two terms. The experiments made at Metz in 1839 and 1840, on projectiles of service calibres, had enabled him to obtain coefficients of resistance applicable to guns in actual use. The cocfficients deduced from the experiments of Hutton and from those obtained at Metz did not agree. But recalculating Hutton's experiments by a perfectly suitable method, and introducing the same corrections, he found there was no sensible difference between them. Shot of 8,12 , and 24 , weighing respectively $8.86 \mathrm{lbs} ., 13: 38 \mathrm{lbs}$, and 26.47 lbs ., and also a shell of 8.66 inches, weighing 50.71 lbs . were used

[^5]at Metz. The ballistic pendulum when filled with sand weighed about 6000 kilogrammes, or $13,228 \mathrm{lbs}$. All particulars of the experiments will be found in "Lois de la Résistance de l'Air sur les Projectiles." Par Is. Didion, Paris, 18557. The consideration of all the experiments made with the ballistic pendulum led to the adoption of the formula $\rho=0.027 \pi R^{2} V^{2}(1+0.0023 V)^{1}$ in French measures, or to $r=0.0000028 d^{2} v^{2}(1+0.0007 v)$ in English ineasures. Didion observes that the pendulum of Robins, formed of a simple plank of wood, suspended by a single bar, was the most susceptible of all to torsion and disturbances, and gave the highest result; that the pendulum of Hutton better constructed and suspended by two bars, gave results higher with the 3 lb . and 6 lb . balls than with the 1 lb . ball ; and that these were higher than those of the experiments made at Metz with a very massive pendulum suspended by four bars, and very rigid.

From these considerations Didion concludes that the divergences observed proceeded from the imperfection of the apparatus, and that the lower results obtained with the apparatus

Velocity	Hutton$179 \text { I }$		Didion I 840		Bashforth
f.s.	lbs.		lbs.		lbs.
100	0.2	契	$0 \cdot 1$	品	
200	0.7	O	0.5	¢	
300	$\stackrel{1}{ } \cdot 6$	5	$1 \cdot 2$	5	
400	$2 \cdot 9$	\#	$2 \cdot 3$	\%	
500	47	تٍ تِ	$3 \cdot 8$	\%	
600	6.9	\bigcirc	57	\bigcirc	
700	$9 \cdot 8$		$8 \cdot 2$		
800	13.3	lbs.	11.2	lbs.	
900	17.5	-47	14.8	-2.0	12.8
$10>0$	$22 \cdot 6$	$-5^{\circ} \mathrm{O}$	19°	-14	17.6
1100	$28 \cdot 6$	-3.1	24°	+1.5	$25^{\circ} 5$
1200	$35^{\circ} 3$	-1.9	$29^{\circ} 7$	$+3.7$	33.4
1300	$42^{\prime} 7$	$-2 \cdot 1$	36.2	+4.4	$40 \cdot 6$
1400	50\%7	-2.2	43.5	$+5^{\circ}$	48.5
1500	59.2	-2.5	51.7	$+5^{\circ}$	$56 \cdot 7$
1600	67.9	-2.6	$60 \cdot 8$	$+4.5$	$65 \cdot 3$
1700	$76 \cdot 8$	-2.7	$70 \cdot 9$	$+3.2$	$74^{\circ} \mathrm{I}$
1800	85.5	-2.6	82.0	+0.9	
1900	94.1	- $1 \cdot 3$	94°	-1.4	92.8
2000	102*4	+199	1075	-3.2	$104 \% 3$

[^6]the most recent and most improved, and which are moreover the most numerous and obtained with service projectiles, ouglit to be regarded as the most exact.
13. The foregoing Table shows the resistance of the air to the motion of a spherical ball 2 inches in diameter, (1) as given by Hutton; (2) as calculated by Didion's formula; and (3) as calculated by the help of my own coefficients, 1868.

From the above table it appears that Didion was quite right when he declared that Hutton's results were too high. But he over-corrected them, and gave a formula which produced results that were too low. In fact for velocities 1200 to 1700 feet per second, Hutton's results were nearer the truth than Didion's.
14. Hutton expressly denied that there was any "shifting of "the resistance of the air" at or about the velocity of sound, such as Robins had pointed out ${ }^{1}$; while Didion gave a formula for the resistance of the air of the furm

$$
A V^{2}(1+B V)=A V^{3}\left(\frac{1}{V}+B\right)
$$

so that the coefficient of V^{3} increases as V decreases; but my experiments show that there is a sudden decrease in the value of this coefficient in the neighbourhood of the velocity of sound.

It gives me great pleasure to exhibit the valuable work done by these early experimenters, who worked together in the best possible spirit-each ready to recognise the value of his predecessor's work. Hutton brought out a new edition of Robins's New Principles, \&e., while Didion recalculated Hutton's experiments.
15. Finally a monster ballistic pendulum was constructed for the English Government in 1855 by Messrs Armstrong and Co. It was first set up at Shoeburyness, afterwards removed to Woolwich, and finally dismantled without ever having been used in any course of experiments. It therefore gave no results. But still an elaborate model of this useless instrument was made for the Great Exhibition of 1862, which was reported to have cost £800. I do not know what was the weight of the pendulumblock in this case. The figure represents this ballistic pendulum, which was about twenty feet in height.
16. It was perhaps natural that each succeeding experimenter should be anxious to use shot of increased weight which involved

[^7]the employment of heavier pendulum blocks. But on reviewing the work that has been done, it appears probable that the ex-

perimenters who followed Robins would have succeeded better if they had expended all their care and ingenuity upon experiments on a small scale. For Robins noticed a change in the law of resistance which was disputed or passed over in silence by succeeding experimenters with the ballistic pendulum. Now it is impossible to experiment satisfactorily with small-arm bullets by the help of galvanic chronographs, because they would generally pass between the strings of the screens without cutting them, or they would be rendered unsteady if they touched the threads of the screen. But with the great precision of the small arms now made there would be no difficulty in carrying out experiments with a light ballistic pendulum. I find that care was taken by the old experimenters to screen the block of the ballistic pendulum from the blast of the gun, but I have not noticed that any attempt was made to prevent the blast of air, which accompanies a shot, from acting upon the pendulum. It would be well therefore to place a thin paper screen just in front of the block of the pendulum, the bull's eye being marked on the paper in front of the point to be hit.
17. When I commenced experimenting in $186 \pm$ with a view to determine the resistance of the air to the motion of projectiles, the best results previously obtained were those derived from the use of the ballistic pendulum. The electro-ballistic instruments of Vignotti, Navez, Leurs, and others of the same type, were liable to frequent errors, and so were not adapted for use in determining the resistance of the air to projectiles. The want of an instrument capable of measuring the times occupied by a shot in passing over a succession of equal spaces was felt long ago, for in 1843 Col. Konstantinoff employed M. Bréguet, of Paris, to construct for him a chronograph. "Le problème était celui-ci: Disposer "un instrument qui pùt indiquer et conserver trente ou quarante "observations successives, faites dans des espaces de temps tres "rapprochés, d'un phénomène se passant plus ou moins loin de " l'endroit où se trouve placé l'instrument d'observation ${ }^{1}$." The construction of the instrument was commenced in June, 1843, and completed on the 29th of May, 1844. This instrument is described and figured by Du Moncel ${ }^{3}$. Hence arose a warm discussion between Wheatstone and Bréguet ${ }^{4}$ of which Moigno ${ }^{5}$ has given a long account. It is difficult to say what the dispute was all about, as it does not appear that results of any value were ever obtained by either party, for in 1856 Morin remarked that the problem had not even then been resolved in a way completely satisfactory. Du Moncel remarks, "Ce chronographe "fut, en 1845, l'object d'une discussion assez animée entre MM. "Wheatstone et Bréguet, de laquelle il est résulté que la première "idée des clironoscopes et chronographes électriques appartenait "bien à M. Wheatstone, mais que c'était au capitaine Konstanti" noff que revenait l'idée d'enrigistrer la vitesse des projectiles aux "différents points de leur trajectoire, et à M. Bréguet que devait "être attribuée la disposition de l'instrument pour résoudre le "problème posé par M. Konstantinoffe".
18. Another chronograph, the invention of Captain Schultz, was exhibited at Paris in 1867, which was intended to register several records for each round. We were informed that "Captain "Schultz, in fact, finds that he can observe and register time to

[^8]" $\frac{1}{10000000}$ of a second ${ }^{1}!$ " Either the Ordnance Select Committee or the Committee on Explosives were not slow in securing such a promising instrument. But when they had got it they could not make it work, for although I inquired frequently, I could not learn that they had obtained any results fit to produce. The most elementary knowledge of the subject ought to have warned them that there were three objections to the satisfactory working of this chronoscope, any one of which would prove fatal :-(1) the badly contrived system of screens, (2) the use of the tuning-fork to divide the second of time, and (3) the use of the spark as the recording agent. The Schultz chronoscope was early used in the United States, but from Lt.-Col. Benet's ${ }^{2}$ account, it appears to have only been applied to measure initial velocities. In this respect he speaks favourably of the instrument. But Captain Ingalls ${ }^{3}$ has explained how the case stands now. He remarks, "the only " chronograph which can successfully compete with Bashforth's as " a means for studying the resistance of the air was invented by "Captain Schultz of the French Artillery, in 1864, the year in "which Professor Bashforth constructed his first instrument. "Since that time it has been much improved by M. Marcel-Deprez, "Lt.-Colonel Sébert of the French Marine Artillery, and Lieu"tenant A. H. Russell of the U. S. Ordnance; and all the objec"tionable features mentioned by the Bashforth committee have "been obviated. As thus modified it is strikingly like Professor "Bashforth's chronograph, and the same screens, batteries, arrange" ments of circuits, and methods of reduction of observations can "be used in both." Still we have no results obtained by the use of this "modified" instrument, which was brought forward at Woolwich in its crude state in opposition to mine 20 years ago with little credit to its patrons.

[^9]
CHAPTER II.

DESCRIPTION OF THE CHRONOGRAPH, WITH AN ACCOUNT OF EXPERIMENTS AND THEIR REDUCTION.

19. On the institution of the Advanced Class of Royal Artillery Officers at Woolwich in 1864 the Professorship of Applied Mathematics was offered to me by the Council of Military Education. I the more readily accepted that office because I saw my way to the satisfactory solution of the problem of the resistance of the air to the motion of projectiles. It was also a part of my duty to act as referee to the Ordnance Select Committee, at that time the scientific advisers of the Government. The Committee were possessors of the monster ballistic pendulum of 1855 , which was useless, and electro-ballistic instruments of the type of Navez, which were unreliable, because they afforded no means of testing the accuracy of their results. I therefore submitted to the committee my plans for the construction of a chronograph adapted to record the times occupied by any shot in passing over a succession of equal spaces, for, if these records were found consistent with each other, or capable of being made so by allowable corrections, then the results must be trustworthy, supposing the law of resistance of the air not to be subject to any sudden change. This supposition has been found to be correct, except perlaps for velocities $1000-1100 \mathrm{f}$. s., where there is a rapid change in the law of resistance. But the Ordnance Select Committee did not require any new chronograph for their purposes, as they were at that time quite satisfied with the Navez chronoscope they possessed. It was perhaps fortunate that, for this reason, I was obliged to keep the construction of the new instrument in my own hands, for thus I was able to introduce improvements in any part which was found to be defective in the original design.
20. After a due consideration of all circumstances of the case, it appeared that the following conditions must be satisfied by a chronograph to be worthy of perfect confidence:-
(1) The time to be measured by a clock going uniformly.
(2) The instrument to be capable of measuring the times occupied by a cannon-ball in passing over at least nine successive equal spaces.
(3) The instrument to be capable of measuring the longest known time of flight of a shot or shell.
(4) Every beat of the clock to be recorded by the interruption of the same galvanic current, and under precisely the same conditions.
(5) The time of passing each screen to be recorded by the momentary interruption of a second galvanic current, and under precisely the same conditions.
(6) Provision to be made for keeping the strings or wires of the screens in a uniform state of tension, notwithstanding the force of the wind and the blast accompanying the ball.
21. The following is a description of the chronograph as constructed, and of various useful appendages. Fig. 3 gives a general view of the chronograph. A is a fly-wheel capable of revolving about a vertical axis, and carrying with it the cylinder K, which is covered with prepared paper for the reception of the clock and screen records. The length of the cylinder is 12 or 14 inches, and the diameter 4 inches. B is a toothed-wheel which gears with the wheelwork M so as to allow the string $C D$ to be slowly unwrapped from its drum. The other end of $C D$ being attached to the platform S allows it to descend slowly along the slide L, about $\frac{1}{4}$ inch for each revolution of the cylinder. E, E^{\prime} are electro-magnets; d, d^{\prime} are frames supporting the keepers; and f, f^{\prime} are the ends of the springs which act against the attraction of the electro-magnets. When the current is interrupted in one circuit, as E, the magnetism of the electro-magnet is destroyed, the spring f pulls back the keeper, which turns about a hinge at d, and by means of the arm a, gives a blow to the lever b. Thus the marker m is made to depart suddenly from the uniform spiral it was describing. When the current is restored the keeper is attracted, and thus the marker m is brought back, which con-
tinnes to trace its spiral as if nothing had happened. $E^{\prime \prime}$ is connected with the clock, and its marker m^{\prime} records the seconds.

Fig. 3.

E is connected with the screens, and records the passage of the shot through the screens. By measuring up the marks made by m, m^{\prime} the exact velocity of the shot can be calculated at all points of its course. The slide L is fixed parallel to F and the cylinder K by the brackets G, H. Y is a screw for drawing back the wheelwork M, and J a stop to regulate the distance between M and B. The depression of the lever h raises the two springs s, which act as levers, and bring the diamond points m, m^{\prime} down upon the paper. When an experiment is to be made, care is taken to see that the two currents are complete. The fly-wheel A is set in motion by hand, so as to make about three revolutions in two seconds. The markers m, m^{\prime} are brought down upon the paper, and after one or two beats of the clock the signal to fire is given, so that in about five seconds the experiment is completed, and the instrument is ready for another.
22. Fig. 4 gives a view of one of the markers, showing the way in which it is moved. The depression of the lever h (Fig. 3), raises p, and thus the lever s, which is formed of watch-spring wire, brings down m^{\prime} to the paper, and keeps it gently in contact. This motion takes place within the circle k, about an axis $C D$. a^{\prime} is an arm connected with the electro-magnet. When the magnetism in E^{\prime} is destroyed, a^{\prime} begins to move away, and when it has noved a short distance it strikes the lever b^{\prime} a sudden blow which carries it as far as the hole in the stop c^{\prime} will allow it to move. The lever b^{\prime} is rigidly connected with the circle k, which is capable of moving about an axis $A B$. This motion is communicated to m^{\prime}, which describes a very short arc of a circle about a point in $A B$. The arrangement is so made that when either of the markers m, m^{\prime} is making a record, it has a motion which may be resolved partly in direction of the motion of the paper under it, and partly in a direction perpendicular to this. When these adjustments are properly made the records to be read off will be nearly at right angles to the spirals.

Fig. 4.

The pendulum of a half-seconds clock strikes once each doublebeat a very light spring, and so interrupts the galvanic current in E^{\prime} once a second.

The following diagram, Fig. 5, shows four screen records in the upper line, and one second record in the lower line, when the markers are properly adjusted.

Fig. 5.
23. Figs. 6 and 7 give the details of the screens. Fig. 6 represents a piece of board 1 inch thick and 6 or 7 inches wide,
B.
and rather longer than the width of the screen to be formed. Transverse grooves are cut at equal distances, something less than the diameter of the shot, as shown in the diagram. Staples

Fig. 6.

of hard brass spring-wire (No. 14 or 15), are fixed with their prongs in the continuation of the grooves. Pieces of sheet copper A are provided, having two elliptical holes, the distance of whose centres equals the distance of the grooves. The pieces of copper A are used to connect each wire staple, as C, with its neighbour on each side. Thus, Fig. $7 a, c, e, g$, \&c., represent these copper connections put in their places and holding down the wire springs, which, when free, are in contact with the tops of the holes; but, when properly weighted, they rest on the lower edge of the holes. Thus the copper c forms a connexion between the staples b and d; the copper e joins d and f, and so on. A galvanic current will therefore take the following course, whether the springs be weighted or unweighted: copper a, brass b, copper c, brass d, copper e, brass f, copper g, \&c. The current will only be interrupted when one or more threads have been cut and the corresponding spring is flying from the bottom to the top of its hole. About $\frac{1}{30}$ th of a second is required for the complete registration of such an interruption, the spring traversing about
half an inch. The shelf B is placed for the weights to rest against, partly to prevent them from being carried forward by the shot, but chiefly to prevent the untwisting of the threads which support the weights. The weights used were about 2 lbs . each, and the strength of the sewing cotton for supporting them was equal to a stress of about 3 lbs ., which was sufficient to withstand a tolerably strong wind. As the weights were equal the threads were kept equally stretched.
24. The arrangement of the screens for an experiment is shown in Fig. 8. The wires for conveying the galvanic current

Fig. 8.

are, like the common telegraph wire, carried on posts. $a b c$ is a continuous piece of wire; but there are interruptions between e and h, between i and l, between m and p, \&c., in order to make the galvanic current circulate through the screens. The course of the galvanic current is $a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q$, r, s, t. The ends a, t, are connected with the instrument and battery. The shot, being fired through the screens, in passing cuts one or more threads at each screen, so that corresponding to the instant at which the shot passes each screen there is an interruption of the galvanic current, and a simultaneous record on the paper cylinder.
25. When the cylinder is filled with spirals, that is after five or six rounds, it is transferred to the instrument, Fig. 9, where a is a circle divided into 300 equal parts, and the division is carried to 3000 by the help of a vernier. A small T-square, having a fine edge at b, moves along a brass straight-edge L, adjusted so as to be parallel to the axis of the cylinder. The mark b is carefully placed opposite each record on the paper by means of a tangent screw (not shown in the figure), and the
vernier is read. It would have been more convenient if the circle had been divided into 500 rather than 300 equal parts.

Fig. 9.

The clock goes on breaking the galvanic circuit every swing of the pendulum, whether the marker m^{\prime} be in contact with the paper or not-consequently, whatever be the loss of time in the action of the marker, we may fairly suppose it to be constant. But if the current had been circulating through the screens for several minutes, or even seconds, without interruption before the shot was fired, the records at the first and the following screens would not have been made under the same conditions.
26. To guard against any error from this source, an ordinary self-acting spring contact breaker was introduced into the screen circuit. The raising of a spring lever interrupts the main current of galvanism through the screens. The insertion of a pin to keep up the lever, re-opens a passage for the screen galvanic current throngh the contact breaker; this may be made also to ring a bell in the instrument room, to give notice that all things are ready for the experiment. The fly-wheel is then put in motion, the signal to fire is given; the pulling of the lanyard withdraws the pin and so restores the main current, and then fires the gim.
27. The construction of the chronograph was commenced in August, 1864; it was ready for trial in June, 1865. It received its first partial trial before the Committee on Gun Cotton in July 1865, in conjunction with Major Navez's Electro Ballistic Pendulnm. The instruments gave a nearly constant difference of 20 f.s. in velocities of about 1500 f .s. The chronograph remained at the proof butts from July to November, 1865, when it was taken down to Plumstead Marslees and placed in a splinter-
proof, where it remained about a fortnight. Its powers to withstand damp and dust were well tested in this manner.
28. In carrying out a series of experiments it is advisable to provide convenient means for interrupting the cloclo galvanic current when the markers are raised. It is also desirable to have the means of diverting the screen galvanic current from its electromagnet to another adapted to ring a small bell in the instrument room, for then it is known what is going on on the range, if the circuit be not broken. These three operations of raising the markers, breaking the clock current and diverting the screen current might be effected by one motion, if the stage $e^{\prime} d^{\prime} d e$ (Fig. 3) between the fixed electro-magnets E, E^{\prime} was made to rotate about its back edge $d d^{\prime}$. Then, when preparing to fire a round it would only be necessary to press down the platform $d^{\prime} e$ to make everything ready for a new experiment.
29. As it is quite impossible to drive the cylinder which receives the records with a sufficiently uniform and known angular velocity, it was decided to place the axis in a vertical position in the manner shown in Fig. 3, and spin the instrument by hand. When the records of a successful experiment are read off, they show slight irregularities, which must be corrected so as to make the readings yield regular differences. The scale of time found in this way is a decreasing scale. By interpolation the places are found where the records for every tenth of a second would fall. On comparing the screen records, it is now possible to read off the time each screen was passed to the tenth of a second by the scale of time, and any remaining fraction of one-tenth of a second is found by proportional parts, on the supposition that the angular velocity of the cylinder is uniform for each tenth of a second. At first the time of passing each screen was expressed to four places of decimals of a second, which seemed quite sufficient for all practical purposes, but to secure satisfactory results it was found necessary to go to five places of decimals of a second. When this had been done, further extremely small corrections were required to make the calculated times of passing the screens difference properly. I will give round 148; hollow ogival headed shot, $d=4.02 \mathrm{in}$.; $w=23.84 \mathrm{lbs}$. as it was printed in the Report, Feb. 1860^{1}; carried to four places of decimals, and also in the form in which it appears after the recent revision. The following

[^10]statement gives the original readings and the corrections appliel to them.

Clock

Screens

30. By interpolation the clock readings were found for every tenth of a second. By the help of proportional parts the screen readings were converted into seconds, as follows

31. We must now show how the velocity v and the retarding force f of the air upon the shot may be deduced from the results of experiments so expressed.

By Finite differences we have

Or

$$
\begin{gathered}
\Delta t_{s}=t_{s+l}-t_{s} \\
t_{s+l}=t_{s}+\Delta t_{s} \\
t_{s+2 l}=t_{s+l}+\Delta t_{s+l}=t_{s}+2 \Delta t_{s}+\Delta^{2} t_{s}, \\
t_{s+3}=t_{s}+3 \Delta t_{s}+3 \Delta^{2} t_{s}+\Delta^{3} t_{s} \\
\& \mathrm{cc} . \quad \& \mathrm{cc} .
\end{gathered}
$$

[^11]And generally

$$
\begin{aligned}
t_{s+n l}= & t_{s}+n \Delta t_{s}+\frac{n \cdot \overline{n-1}}{1 \cdot 2} \Delta^{2} t_{s}+\frac{n \cdot \overline{n-1} \cdot \overline{n-2}}{1 \cdot 2 \cdot 3} \Delta^{3} t_{s}+\& c . \\
& =t_{s}+n\left\{\Delta t_{s}-\frac{1}{2} \Delta^{2} t_{s}+\frac{1}{3} \Delta^{s} t_{s}-\frac{1}{4} \Delta^{4} t_{s}+\& \mathrm{cc} .\right\} \\
& +n^{2}\left\{\frac{1}{2} \Delta^{2} t_{s}-\frac{1}{2} \Delta^{3} t_{s}+\frac{1}{2} \frac{1}{4} \Delta^{4} t_{s}-\frac{1}{2} \frac{9}{4} \Delta^{5} t_{s}+\frac{13}{3} 7 \Delta^{6} t_{s}+\& \mathrm{c}\right\}+\& c .
\end{aligned}
$$

Expanding $t_{a+n l}$ by Taylor's Theorem, we have

$$
t_{s+n t}=t_{e}+\frac{d t_{e}}{d s} \frac{n l}{1}+\frac{d^{2} t_{s}}{d s^{2}} \frac{n^{2} l^{2}}{1.2}+\frac{d^{3} t_{s}}{d s^{3}} \frac{n^{3} l^{3}}{1.2 .3}+\& c \cdot
$$

and equating the two coefficients of n and of n^{2} in the two expansions of $t_{t+n k}$, we have

$$
l \frac{d t_{s}}{d s}=\Delta t_{e}-\frac{1}{2} \Delta^{2} t_{e}+\frac{1}{3} \Delta^{s} t_{s}-\frac{1}{4} \Delta^{4} t_{e}+\frac{1}{5} \Delta^{5} t_{e}-\& c .
$$

and

$$
\begin{aligned}
l^{2} \frac{d^{2} t_{s}}{d s^{2}} & =\Delta^{2} t_{s}-\Delta^{3} t_{s}+\frac{11}{12} \Delta^{4} t_{s}-\frac{10}{12} \Delta^{5} t_{s}+\frac{13}{180} \Delta^{6} t_{s}+\& c . \\
& =\left(\Delta^{2} t_{t-l}+\Delta^{3} t_{s-l}\right)-\left(\Delta^{3} t_{s-l}+\Delta^{4} t_{t-2}\right)+\frac{11}{12}\left(\Delta^{4} t_{t-2}+\Delta^{5} t_{s-l}\right) \\
& -\frac{10}{12}\left(\Delta^{5} t_{s-l}+\Delta^{6} t_{t-2}\right)+\frac{137}{180}\left(\Delta^{6} t_{s-l}+\Delta^{7} t_{t-l}\right)-\& c . \\
& =\Delta^{8} t_{t-2}-\frac{1}{12} \Delta^{4} t_{t-2}+\frac{1}{12} \Delta^{5} t_{t-l}-\frac{13}{180} \Delta^{6} t_{t-2}-\& c . \\
& =\Delta^{2} t_{t-l}-\frac{1}{12} \Delta^{4} t_{t-2}+\frac{1}{90} \Delta^{6} t_{t-3}-\& c .
\end{aligned}
$$

32. Also by expanding $t_{t-n l}$ in the same way by Finite Differences and by Taylor's Theorem, it may be shown that
and

$$
\begin{gathered}
l \frac{d t_{s}}{d s}=\Delta t_{t-l}+\frac{1}{2} \Delta^{2} t_{t-22}+\frac{1}{3} \Delta^{3} t_{t-32}+\frac{1}{4} \Delta^{4} t_{t-4}+\& c . \\
l^{2} \frac{d^{2} t_{s}}{d s^{2}}=\Delta^{2} t_{t-2 l}+\Delta^{3} t_{t-3 t}+\frac{11}{12} \Delta^{4} t_{s-42}+\frac{5}{6} \Delta^{5} t_{t-5 l}+\& \mathrm{c} .
\end{gathered}
$$

33. Let s denote the distance from some fixed point to a screen, l the distance between successive screens, and $t_{s-2 l}, t_{s-l}, t_{d}$, $t_{s+2,} t_{t+2 l} \ldots$ the observed times of the shot passing successive screens. Then if v_{s} denote the velocity of the shot, and f_{s} the retarding force of the air upon the shot at the time t_{s},

$$
v_{s}=\frac{d s}{d t_{s}}=\frac{l}{\Delta t_{s}-\frac{1}{2} \Delta^{2} t_{s}+\frac{1}{3} \Delta^{3} t_{s}-\frac{1}{4} \Delta^{s} t_{s}+\frac{1}{8} \Delta^{5} t_{s}-\& \mathrm{c}^{2}},
$$

also

$$
=\frac{l}{\Delta t_{s-l}+\frac{1}{2} \Delta^{2} t_{s-2 l}+\frac{1}{3} \Delta^{3} t_{s-3}+\frac{1}{4} \Delta^{4} t_{t-4}+\frac{1}{5} \Delta^{5} t_{s-k}+\& c .},
$$

and

$$
\begin{aligned}
\dot{f}_{s} & =\frac{d^{2} s}{d t_{s}^{2}}=-\frac{d^{2} t_{s}}{d s^{2}}\left(\frac{d s}{d t_{s}}\right)^{3} \\
& =-\frac{v_{v}^{s}}{l^{2}}\left(\Delta^{2} t_{s-l}-\frac{1}{12} \Delta^{4} t_{s-2}+\frac{1}{90} \Delta^{6} t_{s-3}-s c \cdot\right) .
\end{aligned}
$$

The following scheme explains how these differences are to be taken

$$
\begin{aligned}
& +\Delta t_{0} \quad+\Delta^{s} t_{t-2}+\Delta^{5} t^{5} t_{t-2} \\
& t_{s+l}+\Delta^{2} t_{s}+\Delta^{4} t_{s-l}+\Delta^{5}+\Delta^{6} t_{t-2 l} \\
& t_{t_{s+2}}+\Delta t_{s+1}+\Delta^{2} l_{s+2}+\Delta^{3} t_{s}+\Delta^{4} t_{s}+\Delta^{5} t_{t-1}+\Delta^{6} t_{s-1} \\
& +\Delta t_{t+2}+\Delta^{3} t_{s+l}+\Delta^{5} t_{s} \\
& t_{s+, w}
\end{aligned}
$$

34. Let v_{5} denote the velocity of the shot at the 5 th screen, f_{5} the retarding force at the same point, and $l=150$ feet, in round 148 , then we have

$$
\begin{aligned}
v_{\mathrm{s}} & =\frac{150}{\Delta t_{s}-\frac{1}{2} \Delta^{2} t_{s}+\frac{1}{3} \Delta^{2} t_{s}-\delta \mathrm{sc} .} \\
& =\cdot \frac{150}{11844-\frac{1}{2} \cdot 00242+\frac{1}{3} \cdot 00002-\mathbb{d c} .}=1279 \cdot 5 \mathrm{f.s} .
\end{aligned}
$$

and

$$
\begin{aligned}
f_{\mathrm{s}} & =-\frac{v_{5}^{3}}{l^{3}}\left(\Delta^{2} t_{t-1}-\frac{1}{12} \Delta^{4} t_{t-2 l}+\delta \mathrm{c} .\right) \\
& =-\frac{v_{5}^{3}}{(150)^{2}}(\cdot 002+1)=-\because l v_{\mathrm{s}}^{3} .
\end{aligned}
$$

But when this experiment was made the weight of a cubic foot of air was 53455 grains, and the standard weight 53422 grains.

Hence

$$
\begin{aligned}
K_{r_{\mathrm{s}}} & =2 b(1000)^{3} \frac{w}{d^{2}} \frac{534 \cdot 22}{534 \cdot 55} \\
& =\frac{002+1}{(150)^{2}}(1000)^{3} \frac{23 \cdot 84}{\left(t^{\prime} \cdot 22\right)^{2}} \frac{534 \cdot 2 \cdot}{534 \cdot 5}=105 \cdot 4 .
\end{aligned}
$$

In the same way the corresponding values of v and K_{v} may be found at each screen, as follows

Screen	$v \quad \Delta v \quad \Delta^{2} v$	K_{v}^{-}
2	$\begin{gathered} \text { f.s. } \\ 1363.0 \end{gathered}$	$104 \cdot 5$
3		1045
4	$1306 \cdot 3-26 \cdot 8 \cdot 1 \cdot 0$	$105{ }^{\circ}$
5	$1279.5-25^{\circ}+{ }^{1}+1.0$	1054
6	$1253.7-24.9+0.9$ $1228.8-2.7$	
7	$1208.6-24.2+0 \cdot 8$	1076
9	${ }_{118} \mathbf{1} \cdot 2 \cdot 2{ }^{-2.4}$	108.5

35. Thus round 148 gives the following values of $K_{\text {, }}$

v	K_{v}	v	K_{v}	v	K_{v}
f. 5. 1360	104.5	f.s. 1300	$105 \cdot 1$	f.s.	$106 \cdot 3$
1350	104.50	1290	$105 \cdot 2+1$	1230	$106 \cdot 7+4$
1340	$104.5+\cdot 1$	1280	$1054+2$	1220	${ }_{107}{ }^{+}+3$
1330	$104.6+\cdot 1$	1270	$105 \cdot 6+2$	1210	$1074+4$
1320	$104.7+1$	1260	$105 \cdot 8^{+2}$	1200	$107 \cdot 8+4$
1310	$104.9+\cdot 2$	1250	$106.0+3$	1190	$108.2+4$

Each of these values of K_{v} will be found under its proper velocity v in the Summary.
36. The Chronograph when tried with 10 equidistant screens in November and December 1865, in Plumstead Marshes, proved successful. Eighteen rounds in all were fired through ten screens 120 feet apart from the Armstrong 12 Pr. B. L. gun. The diameter of the shot was 3 inches, and its weight about 12 lbs ., but no particular care was taken to weigh the shot, as the only object of the experiment was simply to test the working of the instrument. Of the eighteen rounds, two were fired by mistake, while the cylinder was stationary. One shot carried away a screen, and another cut the conducting wire at the second screen. But I was able to give a good account of eleven out of the eighteen rounds fired to test the Chronograph.
37. The following is a statement of the results of this trial experiment, where d denotes the diameter in inches and w the weight of the shot in pounds, and l the distance in feet between successive screens.

Report dated December 18, 1865.
$d=3 \mathrm{in}$., $w=12 \mathrm{lbs}$., $l=120$ feet.

Round	Screen	Screen 2.	Screen 3	Screen 4.	Screen 5.	Screen 6.	Screen 7.	Screen 8.	Screen 9.	Screen 10
1	0"'0	-10640	-21409	32297	43293	54386	-65564	76816	-88131	-99498
2	0\%o	-10450	-20981	-31609	$\cdot 42349$	53215	$\cdot 64220$	'75376	- 86694	'98184
5	$0 \cdot$	'10461	-21025	31694	$\cdot 42472$	-53365	-64381	75530	- 86826	
7	-*	-10335	-20872	-31567	-42386	'53305	-64310	-75398	-86577	${ }^{9} 97866$
10	\bigcirc	-10540	-21164	31891	. 42732	'53694	$\cdot 64786$	- 76008	. 87360	${ }^{9} 9842$
II	\bigcirc	'10467	-21096	31877	42800	'53855	$\cdot 65032$	76321		
13	$0 \cdot 0$	$\cdot 10505$	- 21110	-31830	- 42670	'53630	$\cdot 64710$	75910	- 87228	-98660
15	$0{ }^{\circ}$	'10420	-21010	31750	'42620	'53600	$\cdot 64670$	75810		
16	\bigcirc	'10495	21120	31875	$\cdot 42760$. 53775	$\cdot 64917$	76182	87567	-99072
17	\bigcirc	$\cdot 10506$	-21147	$\cdot 31924$	-42838	-53890	$\cdot 65080$	${ }^{7} 76409$. 87877	'99484
18	$0 \cdot 0$	'10572	-21239	-32004	$\cdot 42872$.53850	$\cdot 64947$	76173	- 87538	'99052
Means	0%	-10490	-21107	$\cdot 31847$	42708	'53688	$\cdot 64783$	75994	-87311	98832

38. Thus it appears that the average of the mean times of passing each screen was
$\left.\begin{array}{ccccc}\text { Screen } & \text { dist. } & t & \Delta t & \Delta^{2} t \\ & \text { feet }\end{array}\right)$

As $\Delta^{2} t$ was here found to be nearly constant it was assumed that the space s described in the time t were connected by the equation
$t=a s+b s^{2}$, which gives $v=\frac{d s}{d t}=\frac{1}{a+2 b s}$,
and

$$
f=\frac{d^{2} s}{d t^{2}}=-\frac{2 b v}{(a+2 b s)^{2}}=-2 b v^{3},
$$

or the resistance appeared to vary approximately as the cube of the velocity for this short range.

CHAPTER III.

EXPERIMENTS WITH THE CHRONOGRAPH.

39. In the next place, some experiments were authorised to be made at Shoeburyness with elongated projectiles having hemispherical, hemispheroidal, and ogival heads struck with radii of one and of two diameters of the shot. These experiments were carried out on Sept. 25, 26, and 27, 1866. The firing was often interrupted by passing ships, and on the 28th not a single experimental round could be safely fired. As only 44 , out of the 70 shots provided were fired, and there was never an opportunity to complete the experiment, the results were not quite so satisfactory as they should have been. But all the hollow ogival headed shot of one and of two diameters were fired alternately, and this constitutes one of the best experiments of the kind ever performed. In order to avoid any confusion in numbering the rounds between the parties on the range and in the observing room it was usual to note at both places the exact time of firing every round. This arrangement enables me to state that the rounds $23-31$ were fired in 44 min . 50 sec ., and these nine rounds gave 89 good records. The following is a statement of the particulars of each round ${ }^{1}$. The results of these experiments were applied to calculate tables of remaining velocities for each form of shot used. The screens were 150 feet apart.

[^12]40. Report dated Oct. 23, 1866.

No. of Round	Weight.	1 Sc.	2 Screen.	3 Screen.	4 Screen.	${ }_{5}$ Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
Jbs.											
1	$39 \cdot 344$	$0^{\prime \prime} \cdot 0$	-12639	$\cdot 25467$	$\cdot 3848$ I	$\cdot 51678$	-65055	78609	-92337	I 06236	I-20303
5	$39^{\circ} 310$	00				-00000	-13330	-26810	'40440	- 54220	-68150
13	$39^{\circ} 330$	$0 \cdot 0$	-12669	- 25487	- 38456	-51578	-64855	-78289	'91882	I 05636	-19553
34	$39^{\circ} 340$	$0{ }^{\circ}$	-12670	- 25500	- 38490	51643	-64962	78450	92110	105945	I'19958
43	$39^{\circ} 340$	$0^{\circ} \mathrm{O}$	'12596	-2536I	-38297	51406	-64690	78151	'91791	1×05612	I'09616

Hemispheroidal-headed Projectiles.

2	$38 \cdot 72$	$0 \cdot 0$	12662	25444	35352	51392	4570	77892	91364		
7	$38 \cdot 69$	$0{ }^{\circ}$	-12721	- 25582	-38583	-51724	-65005	$\cdot 78426$	-91987	I 05688	
35	$38 \cdot 69$	00°	-12677	- 25482	- 38415	-51478	-6́4673	$\cdot 78002$	-91467	I 05070	I*IS8I3
40	$38 \cdot 69$	$0 \cdot$	- 12640	-25416	$\cdot 38329$	-51380	-64570	$\cdot 77900$	-91370	I'04980	I'10730

Solid Ogival-headed Projectiles (one diameter).

Solid Ogival-headed Projectiles (two diameters).

4	$38 \cdot 56$	00°	- I2655	-25461	$\cdot 38414$	-51510	-64746	'78119	'91626	I 005264	$1 \cdot 19030$
37	$38 \cdot 48$	00°	-12756	- 25652	$\cdot 38683$	-51844	-65130	*	*		
42	$38 \cdot 47$	00°	-12302	- 24768	$\cdot 37397$	-50188	-63140	776252	- 89523	I 02952	1.1653 ${ }^{3}$

14	21.78	$0 \cdot 0$	0010	-20276	30	41565	52585	. 6385	75374	-87140	99150
16	21.81	$0 \cdot 0$	-0985	-19926	- 30247	-40\$24	-51662	-62762	$\cdot 74124$	-85748	97634
18	21.81	00°	. 09930	-20114	- 30552	-41244	-52189	-63386	74834	-86532	98479
20	21.83	00°	. 09900	-20072	- 30505	-41190	-52120	. 63290	$\cdot 74699$	-86346	98230
22	21.81	$0 \cdot 0$	-09892	-20019	-30382	- 40983	${ }^{-} 51825$	-62912	$\cdot 74248$	-85837	97683
24	21.83	000	-09953	-20157	-30613	41322	${ }^{-} 22285$	- 63503	$\cdot 74977$	-86708	-98697
26	21.81	$0 \cdot 0$. 09975	-20205	- 30687	-41418	-52395	-63615	-75075	-86772	98703
28		0	. 09900	-20048	- 30444	-41088	-51981	-63123	'74514	-86154	-98043
30	21	$0 \cdot 0$	-09947	-20147	-30600	41306	-52265	-63477	-74942	-86660	98631
32	$21 \cdot 8$	$0 \cdot 0$	-10379	-2098	3183	42915	- 54240	$\cdot 65814$	$\cdot 77644$	-S973	02105

15	21.92	00°	'09934	-20123	$\cdot 30562$	-41247	-52175	-63344	$\cdot 74753$	- 86402	*
19	21.94	0'0	.09829	- 19913	-30257	-40866	-51745	-62899			
21	21.89	00°	-0995 1	-20143	- 30575	-412,46	-52155	-63301	'74683	- 86300	${ }^{98151}$
23	21.89	$0 \cdot 0$	-09857	-19949	- 30277	-40842	${ }^{-51645}$	-62687	'73969	- 85492	*
25	21.97	-	.0992 1	-20072	$\cdot 30453$	41064	- 51905	- 62976	$\cdot 74277$	- 55808	-97569
27	21.95	00°	-09906	-20045	$\cdot 30416$	41018	-51850	-6291 1	${ }^{7} 74201$	- ${ }^{5720}$	-97468
29	2197	0'0	'09890	- 20025	-30401	${ }^{4} \mathrm{SIOI}_{4}$	-51861	-62939	$\cdot 74246$	-85780	-975.39
$3!$	$21^{\circ} 91$	$0 \cdot 0$	-09928	- 20075	30448	-41053	-51895	-62978	$\cdot 74305$	-85878	-97698
33	21.94	00°	'10171	'20569	$\cdot 31200$	42070	-53185	-64550	$\cdot 76169$	-SSO45	*

Hollow Ogival-headed Projectiles (two diameters).

Report dated Oct. 23, 1886.
41. Hemispherical Head.

Round I	${ }^{\nu}=$	rifof.s.	1150 f. s.	IT40\%.s.	ri30 ¢.s.	1220 f.s.	iriof.s.	rioof.s.
	$K_{\nu}=$	147'3	145.8	144*2	1427	14122		
	$K_{\nu}^{\prime}=$				+	*	1187	${ }_{118} 87$
13	$K_{\nu}=$	1200	121.2	122.4	123.5	124.7	125.9	${ }^{127} 1$
34	$K_{0}{ }^{K_{v}}=$ $K_{v}=$	127.0 $135^{\circ} 9$	${ }_{\text {128.6 }}^{128}$	$130^{\circ} 3$ 1380	131.9 1390	133.6 $140^{\circ} \mathrm{O}$	1335.4	${ }^{137}{ }^{1}$
43	$K_{v}=$	${ }^{1355^{\circ}}$	${ }^{137}{ }^{\circ}$	${ }_{13} 3^{\circ} \mathrm{O}$	${ }^{1339}{ }^{\circ}$	${ }^{140}{ }^{\circ}$	${ }^{141^{+1}}$	
Mean	$K_{v}=$	${ }^{13} 32 \cdot 6$	133.2	1337	1343	$\underline{1349}$	${ }^{132 \cdot 1}$	${ }^{133^{\circ} 2}$

42. Hemispheroidal Head.

	$y=$	1160 f.s.	1r50\%.s.	1240 fs.	1130 f.s.	1200f.s.
Round 2	$K_{\nu}=$	109.4	105			
	$K_{\nu}=$ $K_{\nu}=$	109.1 $100 \cdot 2$	109.1 101 10		109.1 104	
35 40	$K_{\nu}=$ $K_{v}=$	100.2 106.9	1016 1076	108.3	104.3 108.8	1088
Mean	$K_{v}^{\prime}=$	1044	105.9	107.5	108.8	107

43. Ogival Head (one diameter) Solid.

	${ }^{v}=$	1760 f.s.	risof.s.	1440\%.s.	1130 f.s.	1220 f.s.	niof.s.
Round 3	$K_{\nu}=$			141°	$141^{\circ} \mathrm{O}$	141°	$14^{\circ} \mathrm{O}$
$4{ }_{4}^{36}$	$K_{v}=$ $K_{v}^{\prime}=$	112.1 115 15	111.3 1098	1115 1072	111.3 104	109.9 103.6	${ }_{103}{ }^{*} \cdot 6$
	$K_{\nu}=$	H115	109.8	$\underline{1072}$	1048	10,	
Mean	$K_{\nu}=$	H118	1106	119.8	1190	118.2	122

44. Ogival Head (two diameters) Solid.

		1160 f.s.	1250 f.s.	xi40 f.s.	1330 f.s.
Round 4	$K_{v}=$	113.0	$110{ }^{7}$	108.7	1067
	$K_{v}=$ $K_{v}=$	105.2	102.0 123	${ }_{123 \cdot 6}^{98}$	
	$K_{v}=$		112.I	$\stackrel{110 \cdot 1}{ }$	

Report dated Oct. 23, 1886.
45. Ogival Head (one diameter) Hollow.

		1460 f. s.	1440 f.s.	1420 f. s.	1400 f. s.	1380 f. s.	1360 f.s.	1340 f.s.	1320 f. s.	1300 f. s.
Round 14		*	$110 \% 9$	110	1100	109		109.6		108.7
16	$K_{v}=$ $K_{v}=$	109*2	III'9	113.5	114.7	$115{ }^{\circ}$	$115{ }^{\circ} \mathrm{I}$	115.1	$115 \cdot 1$	$115 \cdot 1$
IS	$K_{v}=$	-	III* 6	111.6	III'3	III'I	110.8	110.5	11002	1099
20	$K_{v}=$	*	113.0	110.8	108.9	$107 \% 3$	$105 \cdot 7$	105*3	$105^{\circ} 0$	$104 \% 7$
22	$K_{v}^{\prime}=$	103.8	1044	1050	105.9	1070	108.1	$109 * 3$	110.5	11177
24	$K_{v}^{\prime}=$	*	III ${ }^{\circ}$	111.2	1115 5	111.8	112.1	112.3	112.6	112.9
26	$K_{v}=$	*	$110 \cdot 4$	109.6	108.8	108.0	107.1	106.3	$105 \cdot 3$	104.4
28	$K_{v}=$	108.9	108.9	1090	109.3	109.4	109.4	109.4	109.4	109.4
30	$K_{v}=$	III\%	1110	II I'O	111\%	III*O	III\%	1110	I I I'O	III'O
32	$K_{v}=$	*	*	*	102.5	103.6	104%	106.4	10S. 2	110.2
Mean	$K_{v}=$	108.2	110.3	110.2	$109 \% 4$	10904	109.4	109.5	$109 \% 7$	$109 \cdot 8$

46. Ogival Head (two diameters) Hollow.

	${ }^{v}=$	1460 f. s.	1440 f.s.	1420 f. s.	1400 f.s.	1380 f s.	${ }^{2} 360$ f.s.	134\% \% s.	${ }^{1320}$ f.s.
Rot								106.0	
$\begin{aligned} & 15 \\ & 21 \end{aligned}$	No $K_{v}=$ N_{v} $=$	*	105%	$105 \cdot 4$	105.1	1049	104.6	1043	104*
23	$K_{\nu}^{\prime}=$	104.2	$104 \cdot 5$	1047	105\%	105\%3	$105 \cdot 6$	105*9	
25	$K_{\nu}=$	1018	10.8	1018	1018	10.8	101.8	10. 8	1or $\cdot 8$
27	$K_{v}=$	102.6	102:3	1020	1017	1014	1013		
29	$K_{v}=$	106.5	$105 \cdot 5$	$104{ }^{\circ} 5$	1037	102.8	1020	101	100%
33	$\begin{aligned} & K_{v}= \\ & K_{v}= \end{aligned}$	99	$10 \cdot 6$	$\begin{aligned} & \mathrm{yO}_{3}{ }^{-1} 6 \end{aligned}$	$104 \cdot 5$ 105%	$105^{\circ} 7$ I07.0	$\begin{aligned} & 106 \cdot 7 \\ & 108 \cdot 7 \end{aligned}$	$\begin{aligned} & 107.7 \\ & 110 \% 1 \end{aligned}$	ios. 3 1114
Mea	$\mathrm{K}_{v}=$	${ }^{103}{ }^{\circ}$	104.4	104.2	104.3	1045	$\underline{104}$	$\underline{105} 3$	$\underline{105}$

47. Afterwards an extended series of experiments was authorised to be made at Shoeburyness by the use of my chronograph, which were carried out in 1867, 68. The M. L. guns employed were $3,5,7$ and 9 inches in calibre; and the projectiles were 2.92 , $4.92,6.92$ and 8.92 inches in diameter, their heads being all struck with a radius of one diameter and a half. Their lengths were generally two and a half times the calibres of the guns from which they were fired. Both hollow and solid or cored shot were provided for each gun. The charge of powder was varied in order
to obtain as great a variation in the velocity of the shot as possible. The maximum velocity of $1700 \mathrm{f.s}$. was at that time considered ample for all practical purposes. The firing was continued till five good rounds were obtained with each charge. The 3,7 and 9 -inch guns were service guns, and to complete the series a bronze gun was bored out to 5 inches and rifled, but it only gave a few good rounds with low charges before it failed. Afterwards a condemned Armstrong B. L. gun was converted into a 5 -inch M. L. rifled gun. This imparted a remarkable degree of steadiness to the projectiles, as was shown by the lowness of its coefficients of resistance, and by the great number of records it gave for the rounds fired.
48. Further experiments were carried out with elongated projectiles, in 1878, 9 and again in 1880. The particulars of these three sets of experiments made with ogival-headed shot are here given together, in order to combine all the values of K obtained for each velocity. Rounds $\mathbf{1 - 2 4 0}$ were fired on thirteen days from Oct. 7, 1867 to May 21, 1868, which were reported July 23, 1868^{1} ($84 / \mathrm{B} / 1941$). Rounds 412 - 482 were fired on fourteen days from Sept. 13, 1878 to March 12, 1879 which were reported July 8, 1879^{2} (84/B/2853); and rounds 483-502 on three days March 8-10, 1880, which were reported Aug. 13, 1880^{3} (84/B/2909).
49. Experiments were also carried out by firing both hollow and solid spherical projectiles from the $3,5,7$ and 9 -inch guns on twelve days from May 6 to Nov. 5, 1868. The Report of these experiments was dated, Feb. 13, 1869 ${ }^{4}$. The screens were 150 feet apart, except in the few cases noted.
50. The coefficients of resistance were originally reduced for a density of the air such that one cubic foot of air weighed 530.6 grains. But since 1879 the standard density of air has been taken to be that which corresponds to a temperature of $62^{\circ} \mathrm{Fah}$., and a height of 30 inches of the Barometer, which give the weight of a cubic foot of dry air $534 \cdot 22$ grains. All the English coefficients have now been adapted to this density.
51. As these experiments are now concluded I have carefully revised all the rounds already published, expressing tine to five places of decimals of a second-not because time can be really

[^13]measured with such extreme accuracy-but in order to obtain from each round consistent values of v and K_{v}. Thus the reader has placed before him the evidence for the values of K finally adopted. When each group of values of K for a given velocity consisted of numerous experiniental determinations of K, I have endeavoured to include all irregular values of K as far as possible in taking the means. But in the few cases where I have felt obliged to exclude any experimental value of K, it has been marked (${ }^{*}$).

52 . In each case I have been careful to specify here not the date on which any experiment was made-but the date of the Report of my results to Government, which would always be found to be a day or two prior to the date of the official stamp affixed to all documents of this kind when they are received. As the dates of each round have already been given in published Reports, they need not be here repeated, for in all cases of question of priority, the date required is the day when the statement in its definite form left the hands of the experimenter. For so long as any experimenter's results remain in his own possession they are liable to be corrected or modified by him as circumstances may seem to require.

With a view to afford the Secretary of State full and reliable information of the precise value of the results obtained, the Committee, who superintended the experiments with my chronograph, 1867, 8 , suggested that their report should be "referred to "mathematicians of eminence, such as the Astronomer Royal, "Professor Adams, Director of the Cambridge Observatory, or "Professor Stokes, Secretary to the Royal Society ${ }^{1}$." After considerable delay the referees sent in a most valuable report, in which they reviewed most of the recent chronoscopes and modes of conducting ballistic experiments. This report was printed ${ }^{2}$ in full, but at the time no further notice was taken of it. Shortly afterwards I retired from Her Majesty's Service, but some years after this, being iuvited to lend my chronngraph and complete my experiments, I readily agreed to do so.

[^14]Report dated July 23, 1868.
Times at which the Projectiles passed the Screens.
53. (1) 3-inch Gun. Solid Ogival-headed Projectiles.
$w=12 \mathrm{lbs} . ; d=2.92$ inches.

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	roScre
1	${ }^{\prime \prime}$ "०	- 12457	- 25125	-38005	$\cdot 51098$	- 64405	$\cdot 77927$	-91665	1.05620	1•19793
2	\bigcirc	-12244	- 24659	-37241	-49986	-62890	-75949	-89160	1.02521	1.1603 1
3	$\bigcirc{ }^{\circ}$	-12335	- 24866	- 37597	-50530	-63665	-77001	-90536	$1 \cdot 04267$	1.18190
4	$0^{\circ} 0$	-12244	- 24645	- 37208	-49938	-62841	'75923	$\cdot 89190$	1.02648	*
5	$\bigcirc \cdot$	-12279	- 24702	-37279	-50017	-62920		*	*	*
49	\bigcirc	- 14400	$\cdot 28909$	-43528	-58258	$\cdot 73100$	-88054	1-03120	1-18298	1.33588
50	00	-14570	- 29244	-44032	$\cdot 58943$	-73986	-89168	I•04495	1•19972	1-35603
52	$0 \circ$	-14356	-28847	- 43470	-58221	-73097	-88095	$1 \cdot 03213$	1•18449	
53	\bigcirc	- 14657	- 29447	$\cdot 44375$. 59445	-74663	-90022	1-05532	1.21190	*
54	\bigcirc	-14502	- 29124	- 43867	-58733	$\cdot 73725$	- 88847	1.04104	*	*
	$\bigcirc \circ$	-19273	-38696	$\cdot 58267$	-77985	-97850	$1 \cdot 17862$		*	
56	$0 \cdot 0$	-19347	- 38832	-58456	-78221	-98129	1		*	*
57	0	-19139	$\cdot 38406$	- 57804	-77336	-97005	I•16814	1-36767	$1 \cdot 56868$	*
59	\bigcirc	-18913	$\cdot 37983$	- 57213	$\cdot 76607$	-96168	$1 \cdot 15900$	*	*	*
60	$0 \times$	-19077	$\cdot 38294$	- 57656	'77167	${ }^{-96831}$	1-1665		*	
135	$0{ }^{\circ}$	-19074			$\cdot 77210$	*				
1378	-	-18694		. 568506		.94910	I•14344 1-18416	-33937	1.53692	*
138	$0 \cdot 0$	-19341	-38840	- 58497	$\cdot 78312$	'98285	1-18416			*

54. Hollow Ogival-headed Projectiles. $w=9 \mathrm{lbs} . ; d=2.92$ inches.

6	00°	- II 395	- 23077	-35052	-47329	-59920	*	*	*	*
7	00°	-10900	- 22005	- 33325	- 44870	- 56649	-68669	-80935	-93450	
9	$0 \cdot 0$	-11318	- 22877	- 34680	- 46730	-59030	*		*	*
10	$0{ }^{\circ} 0$	- 11193	- 22634	- 34325	- 46269	-58469	-70928	-83649	*	*
11	00°	-10996	- 22243	- 33744	- 45502	-57520	-69801		*	
12	$0 \cdot 0$	- 11051	- 22339	-33872	- 45657	-57701	-70008	-82580	*	*
124	$0 \cdot 0$	- IIII4	- 22470	- 34070	-45916	-58009	-70350	-82940	-95779	r 08867
126	00°	- 10865	- 21978	$\cdot 33337$	-4494I	-56790	-68885	-81228	$\cdot 93822$	I 0667 I
13	00	-13064	- 26382	-39959	-53799	- 67905	-82279	*	*	*
14	$0{ }^{\circ}$	- 13340	- 26865	-40581	-54493	-68604	-82916	-97430	*	*
15	$0^{\circ} 0$	- 13244	-2673I	- 40478	- 54496	-68790	* ${ }^{\text {* }}$	*	*	*
16	00	- 13037	$\cdot 26267$	- 39693	- 53318	-67146	-81181	-95426	I•09882	I•24549
17	$0 \cdot 0$	- 12765	- 25754	- 38970	-52416	-66095	-80010	'94164	*	*
18	00	- 12958	-26119	- 39484	- 53055	$\cdot 66834$	-80822	$\cdot 95020$	*	*
19	$0 \cdot 0$	-12421	- 25088	-38001	- 51160	*	*	*	*	*
26	00	-16784	-33701	-50751	-67935	-85254	1.02709	*	*	*
27	00	-17203	- 34500	-51895	-69391	-86990	*	*	* 68	*
28	00°	-16971	- 34072	$\cdot 51304$	- 68668	-86165	1×03796	1.21563	1-39468	*
29	$0 \cdot 0$	-17109	34351	-51728	-69243	-86900		*	*	*
30	00°	-17130	34391	-51787	-69323	-87005	*	*	*	*
31	00°	-17187	- 34505	-51955	-69538	-87255	*	*	*	*
32	00	-17115	-3435	-51713	$\cdot 69205$	-86830	1*04590	*	*	*

55. Hollow Ogival-headed Projectiles. $w=6$ lbs.; $d=2.92$ inches.

No. of Round	${ }_{1} \mathrm{Sc}$.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	roScre
39	$0^{\prime \prime} \cdot 0$	-09467	-19281	- 2944	-3995	'50				
40	$0 \cdot$. 09415	-19169	- 2925	-3968	-50440	-61531	-72958	-84724	-96833
41	$\bigcirc \circ$	-09567	-19458	-29676	- 40225	-51108	-62327	. 73885	- 85784	
43	$0 \cdot$	-09795	-1993I	-30408	41227	-52388	. 63892	75741	. 87936	1.00479
44	$0 \cdot 0$	'09300	-18929	-28892	-39193	-4983	-60828	72171	-83870	-95930
27	$0 \cdot$.09902	-20169	-30797	41	531	648	769		
129	$0 \cdot 0$	-09863	-20054	3057	*			*		
130	$0 \cdot 0$	-09733	-19809	-3022	-40990	-52096	. 6354	75345	-87492	'9999
131	00	-10219	-20779	-31682	-42931	-54529	. 6648	'78787	-91454	
132	-\%	.09830	-19992	-30492	4133	-52520	-64050	75924	- 88143	$1 \cdot 00709$
133	00	-09855	-20078	-30669	4162	-52956	$\cdot 646$	'76722	-89160	I'01968
134	00	-10249	-20883	-31902	-43307	-55099	-6728	'79852	*	*
33	$0 \cdot 0$	-1131	-22678	- 34643	47029	. 598				
34	00	-11298	-22889	34780	- 46978	*			*	*
35	$0 \cdot 0$	-11027	-22396	-34107	-46159	-5855	71282	-84351	'9775	14
36	$0{ }^{\circ}$	-11075	- 22503	$\cdot 34289$	46438	- 5895	771843	85103	*	
37	$0 \cdot 0$	-10979	'22325	-3403	-46118	-58566	$\cdot 71383$			*
38	$0{ }^{\circ}$	- II	-22709	-3458	-46817	59402	72344	56	993	1-133
20	0.0	-14753	- 29677	-44773	-60043	$\cdot 75489$	-9111	1.06921	$1 \cdot 22912$	1.390
21	$0 \cdot 0$	-14718	-29620	-44706	-59977	75434	-91078	1-06910	*	
23	$0 \cdot$	- 14240	- 28724	43456	. 5843	$\cdot 73676$	-89170		*	
24	-	-14572	-29374	44406	-59668	-75160	-90883	1.06839	1.23031	1•39462
25	$0{ }^{\circ}$	-14554	-29318	44294	-59483	-74887	-90507	I.06345	1-22404	$1 \cdot 35688$

56. (2) 5 -inch Gun. Cored Ogival-headed Projectiles.

$w=47.68 \mathrm{lbs}$; $d=4.92$ inches.

164	$0 \cdot 0$	-10995	- 22112	-33352	-44716	-56205	-67820	79561	-91428	I'0342 1
165	00	- 11234	- 22573	- 34019	- 45574	- 57240	-69019	. 80912	-92920	1.05044
166	00	-11320	- 22745	- 34275	-45910	- 57650	-69496	-81449	-93510	1.05680
167	$0 \cdot 0$	- III94	- 22500	- 33919	-4545	- 57097	-68858	-80735	92728	$1.04 S_{3} \mathrm{~S}$
168	00°	-11401	- 22910	- 34528	$\cdot 46255$	-58092	$\cdot 70039$	-82097	-94266	1.06547
139	0.0	- 12	- 24	-37194	- 49820	2561	-75418	88391	1.01480	1.14685
140	$0 \cdot 0$	-12201	- 24519	-36957	-49518	-62204	-75016	-87955	1021	1-14214
141	$0 \cdot 0$	- 12192	-24511	- 36959	-49537	-62247	$\cdot 75050$	-85066	1.01176	1•14422
142	$0 \cdot 0$	- 1217	- 24462	$\cdot 36863$	- 49380	-62013	$\cdot 7476$. 87627	1.00609	1.13710
143	00°	-12216	- 24566	- 37049	-49664	-62410	$\cdots 75286$	-8S292	$1 \cdot 01428$	1'14694
169	0	-13336	-26776	-40324	- 53984	-67759	-81651	-9566I	1.09790	.
170	$0 \cdot 0$	-13124	- 26371	- 39741	- 53234	-66550	-805-59	94450	$1 \mathrm{OS}_{432}$	1. 22534
171	00°	-13040	- 26189	- 39447	- 52814	-66291	-79879	-93579	1 07392	1.21319
172	0%	- 12979	- 26075	- 39289	-52621	-6607 1	-79639	-93326	1.07132	1.21057
173	00	-13082	- 26275	-395So	- 52998	-66529	-80174	-93933	1.07806	1.21793
159	00°	-14329	-28743	- 43242	- 57826	-72495	-87248	$1 \mathrm{O}^{1} 02085$	$1 \cdot 17005$	1-32007
160	00°	-1454 I	-29168	-43881	-586So	- 73565	-88536	1.03593	1•18736	1-33565
161	0.0	-14629	- 29339	-44131	-59004	-73958	-88994	1'04112	1-19311	1-34592
162	$0 \cdot 0$	-14762	-29625	- 44590	-59658	-74830	-90107	105490	I-209So	*
163	$0 \cdot 0$	-14520	-29111	-43773	- 58506	-73310	- 88185	1.03131	$1 \cdot 18149$	1-33239

57. Hollow Ogival-headed Projectiles. $w=23^{\circ} 84 \mathrm{lbs}$.; $d=4.92$ inches.

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
4	$0^{\prime \prime} \cdot$	-08737	-17643	-26718	- 35962	*		*	*	*
145	$0 \cdot$	-08586	-17377	-26374	- 35578	-44991	-54614	-64449	-74498	- 84763
146	00	-08542	-17284	- 26227	- 35372	-44720	-54272	-64028	-73988	-84152
147	$0 \cdot 0$	-08694	-17594	-26701	-36015	-45537	-55267	-65206	$\cdot 75354$	-85711
154	00	-09137	-18491	-28063	-37854	- 47865	-58097	-68552	-79234	-90147
155	$0 \cdot 0^{\circ}$	-09160	-18504	$\cdot 28042$	-37784	- 47740	-57920	-68334	-78992	-89904
156	$0 \cdot$	-09133	-18455	- 27974	- 37698	- 47635	-57793	-68180	-78805	-89677
157	$0 \cdot 0$	-09239	-18654	$\cdot 28257$	- 38060	-48074	-58310	-68779	-79491	-90456
158	$0{ }^{\circ}$	-09160	-18533	-28I2 I	- 37926	-47950	-58195	-68663	-79356	-90276
148	$0 \times$	- 10885	-22009	- 33372	-44975	-56819	-68905	-81235	-93811	1.06635
149	00	-10793	-21842	-33149	- 44715	-56540	-68624	-80967	-93568	1.06426
150	$0 \cdot 0$	-10935	-22099	-33493	-45118	-56975	-69065	-81389	-93949	1.06747
151	$0{ }^{\circ}$	-10933	-22101	- 33507	- 45154	-57045	-69183		*	
152	$0 \cdot$	-10899	- 2204	- 33427	-45058	-56935	-69058	-81427	-94042	1.06903
153	$0 \cdot 0$	-10729	-21691	32886	-44314	-55975	-67869	-79997	'92359	I.04955
61	$0 \circ$	-11780	- 23863	-36251	-48946	-61950	-75265	*	*	*
62	0	- 11556	-23401	-35535	-47958	*	*	*	*	*
63	$0 \cdot 0$	-11612	- 23473	$\cdot 35587$	-47958	\%	*		$1 \cdot 0080$	*
64	$0 \cdot 0$	-11673	- 23596	- 35767	$\cdot 48184$	-60845	-73748	-86893	1.00280	I•13909
66	$0 \cdot 0$	-11617	$\cdot 23467$	-35551	- 47870	-60426	-73222	-86262	'99551	1-13095
67	$0 \cdot 0$	-1166I	$\cdot 23567$	-35715	-48103	-60731	-73600	-867 I I	100067	I•13672
174	$0 \times$	-12618	- 25463	-38533	-51826	-6534I	-79076	93030	1•07202	-21592
175	$0 \cdot 0$	-13780	- 27780	41990	-56402	-71011	-85813	1 -00806	*	*
176	$0{ }^{\circ} 0$	-13321	$\cdot 26840$	-40557	- 54471	-68581	-82886	-97385	*	*
177	$0{ }^{\circ}$	-16960	- 34051	-51273	$\cdot 68627$	-86115	1•03740	1.21506	*	*
178	0\%	-16103	$\cdot 32342$	-48719	$\cdot 65236$	-81895	-98698	I'15647	*	*

58. (3) 7-inch Gun. Cored Ogival-headed Projectiles.
$w=123.125 \mathrm{lbs} . ; d=6.92$ inches.

97	$0 \cdot 0$	-11185	- 22465	-33841	-45314	- 56885	-68555	-80326	-92200	*
98	00	-11054	- 22205	- 33455	-44806	- 56260	-67819	-79485	-91260	I.03146
99	$0 \cdot 0$	-10916	- 21922	-33019	-44207	- 55487	-66860	$\cdot 78328$	- 89893	I 01557
100	00	-10940	-21974	-33104	- 44332	- 55660	-67091	$\cdot 78627$	-90270	1'02022
IOI	$0{ }^{\circ}$	-11467	$\cdot 23039$	-34718	- 46506	- 58405	*	*	*	*
86	00	- 12305	-24691	-37160	-49714	-62355		*	*	*
87	$0 \cdot 0$	-12232	- 24564	- 36996	- 49528	-62160	-74892	-87724	I 00657	1-13692
88	$0{ }^{\circ}$	- 12380	$\cdot 24863$	-37451	-50146	-62949	'75860	-88878	1×02002	1.15230
89	00	-12331	- 24758	-37281	+	8		*	-	
91	00	-12591	- 25275	-38049	- 50910	-63856	$\cdot 76885$	-89995	1*03185	$1 \cdot 16454$
92	00	- 12330	- 24739	- 37227	- 49794			-0202		I•17035
93	00	-12515	-25157	- 37924	-50814	-63825	$\cdot 76955$	'90202	1×03563	1•17035
103	0%	-15018	-30102	-45251	- 60464	$\cdot 75740$	-91078	1.06477	I-21936	1•37454
104	0`o	-15138	- 30335	- 45590	-60902		- 00776		$1 \cdot 21604$	*
105	$0 \cdot 0$	-14941	- 29960	- 45055	-60224	$\cdot 75465$	-90776	1.06156	1.21604	*

59. Hollow Ogival-headed Projectiles. $w=61 \cdot 156 \mathrm{lbs}$. $\quad d=6 \cdot 92$ inches.

No. of Kound	${ }_{1} \mathrm{Sc}$.	2 Screen.	${ }_{3}$ Screen.	4 Screen.	${ }_{5}$ Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	roScreen.
$1{ }^{1} 3$	$0^{\prime \prime} \cdot 0$	-09199	- 18565	-28101	- 37810	- 47694	57754	67991	$\cdot 78406$	
114	$0 \cdot$	-09303	-18782	- 28440	-38280	48305	'58518	-68921	79516	
115	0	-09147	-18474	- 27984	-37680	47565			${ }^{*}$	
116	\bigcirc	-09333	- 18834	- 28503	$\cdot 38339$	48341	58508	$\cdot 68839$	$\cdot 79333$	$\cdot 89989$
117	\bigcirc	-09193	-18552	-28079	$\cdot 37776$	47646	57692	+	*	*
94	0%	-11213	-22604	-34177	45936	-57885	-70028	-82368	94907	$1 \cdot 07646$
96	$0 \cdot$	-10988	-22187	-33599	45226	-57068	-69125	*	*	
110	$0 \cdot 0$	-11100	-22421	- 33966	45738	- 57740		**	*	*
111	$0 \cdot 0$	-11138	-22486	- 34046	45820	57810	$\cdot 70018$	-82446	*	*
112	\bigcirc	-11192	-22573	- 34149	-45924	57900	$\cdot 70079$	82463	95054	$1 \bigcirc 07854$
121	$0 \circ$	$\cdot 17071$	-34313	-51725	-69306	- 87055	1.04971	*	*	*
122	$0 \cdot 0$	-17178	-34522	. 52031	$\cdot 69704$	-87540	$1 \cdot 05539$	123701	142026	*

60. (4) 9-inch Gun. Cored Ogival-headed Projectiles. $w=250 \mathrm{lbs}$. $\quad d=8.92$ inches.

218	\bigcirc	-11523	-23124	-34803	-46560	- 58395	$\cdot 70308$. 82300	-9437 1	1.06521
219	o	-11549	-23166	-34854	-46616	-58455	770375	-82381	'94478	
220	$0 \cdot 0$	-11590	-23271	-35041	-46898	- 58839	$\cdot 70861$	-82961	'95136	1.07383
221	$0 \cdot$	- 11496	- 23076	- 34740	-46488	- 58320	$\cdot 70236$	-82237	-94323	1 066494
228	- 0	-11674	-23441	-35298	-47243	-59274	-71389	-83587	${ }^{\text {¢ } 95867}$	
229	$0 \circ$	-11876	-23812	-35808	-47864	-59950	72156	-84392	-96688	
239	0\%o	-11872	- 23804	-35798	447856	-59979	$\cdot 72169$	-84428	-96758	1.09161
240	- 0	-12060	-24185	-36375	-48630	-60951	$\cdot 73339$. 85795	$\cdot 98321$	$1 \cdot 10920$
208	- 0	-12522	-25121	- 37796	- 50546	-63370	76267	-89237	1.02280	1•15396
209	\bigcirc	-12464	- 24999	-37605	-50282	-63029	75846	-88732	$1 \bigcirc 01687$	
210	$0 \circ$	-12407	- 24882	-37425	-50035	-62713	75459	-88273	*	
211	0\%	-12517	- 25125	$\cdot 37823$	-50609	-63481	$\cdot 76436$	-89471	1.02582	
212	$0 \cdot 0$	- 12560	-25181	$\cdot 37864$	-50609	-63417	$\cdot 76289$	-89227	1.02232	$1 \cdot 15306$
232	$0 \cdot 0$	-13428	- 26942	-4054 I	-54224	-67990	- 81838	-95768		
233	0°	-13390	-26887	-40491	-54202	*		*	*	
234	-	-13401	- 26855	-40366	-53938	-67575	. 81281	. 95060	1.08916	
235	$0 \cdot$	-13516	- 27084	-40704	-54377	-68104	-81886	-95725	$1 \cdot 09623$	
236	00	-13362	-26S03	-40323	-53922	-67601	-81362	-9520S	1.09142	1.23168
237	$0 \cdot 0$	-13448	-26977	-40587	-54277	-68046	-81894	${ }^{95} 9521$	$1 \cdot 09827$	$1 \cdot 23912$
238	$0 \cdot 0$	-13412	-26899	-40462	$\cdot 54103$	-67824	-81627	-95514	$1 \cdot 09487$	$1 \cdot 23548$
222	$0 \cdot 0$	-15369	-30781	-46237	$\cdot 61738$	$\cdot 77285$	-92879	$1 \cdot 08521$	1-24212	
223	$0 \cdot 0$	-15327	-30717	46170	$\cdot 61686$	$\cdot 77266$. 92911	$1 \cdot 08622$	$1 \cdot 24401$	1.40250
224	$0 \cdot 0$	-15287	-30635	-46047	-61526	77074	-92693	1.08385	$1 \cdot 24152$	1-39996
225	$0 \cdot$	- 15486	- 31049	46688	-62403	$\cdot 78194$	'94061	$1 \cdot 10003$		
226	\bigcirc	-15304	- 30667	46091	$\cdot 61579$	$\cdot 77133$	-92755	*		
227	$0 \cdot$	-15539	- 31135	46789	$\cdot 62502$	$\cdot 78277$	94118	1-10030	$1 \cdot 26019$	*

61. Hollow Ogival-headed Projectiles. $w=125 \mathrm{lbs}$.; $d=8.92$ inches.

| 230 | 0.0 | $\cdot 14203$ | $\cdot 28707$ | .43512 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 213 | $0 \circ$ | $\cdot 17402$ | .35024 | .52866 | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| 214 | 00 | $\cdot 17620$ | .35453 | .53499 | $\cdot 71757$ | .90226 | $*$ | $*$ | $*$ | $*$ |

Report dated Feb. 13, 1869.
Times at which the Projectiles passed the Screens.
62. (1) 3 -inch Gun. Solid Spherical Projectiles.
$w=3.316 \mathrm{lbs} . ; d=2.92$ inches.

No. of Kound	x Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
284	${ }^{\prime \prime \prime} 0$.07184	-14980	-23389	-32410	*	*	*	*	*
285	$0{ }^{\circ}$	-07294	-15215	-23806	-33110	-43170	- 54028	-65725	-78302	'91800
286	0×0	-07062	-14698	- 22963	-31912	41601	-52086	-63423	$\cdot 75068$	-
287	- 0	-07170	-14937	- 23347	- 32446	-4228I	-50900	-62352	$\cdot 74687$	-87956
288	00	-07592	-15801	$\cdot 24677$	$\cdot 34270$	-44631	-55810	-67858	- 80825	$\cdot 94762$
290	00	-08388	-17483	-27329	-37970	-49448	-61798	$\cdot 75048$	-89219	1'04325
291	00	-07691	-1601	-25008	-34730	-45225	$\cdot 56540$	-68722	-81818	$\cdot 95874$
292	$0{ }^{\circ}$	-08361	-17437	- 27270	-37897	-49350	-61655	$\cdot 74833$	-88900	ı•03867
293	$0{ }^{\circ}$	-07932	-16572	-25929	-36011		*	*	*	*
294	00	$\cdot 07821$	-16311	- 25510	- 35459	-46200	-57776	$\cdot 70231$	*	*
295	$0{ }^{\circ}$	-08312	-17320	-27070	-37608	-48979	-61228	-74400	- 88540	*
296	$0 \cdot 0$	-08225	-17166	- 26863	-37355	-48681	-60879	-73986		*
297	$0 \cdot 0$	-08183	-17096	-26771	-37240	-48535	60688	-73731	*	*
312	$0 \cdot 0$	-08442	-17644	-27637	-38451	- 50115	-62657	$\cdot 76104$	-89482	*
261	00	-12310	-25571	- 39738	-54773	-70646	- 87336	*	*	*
262	$0{ }^{\circ}$	-12460	$\cdot 25812$	-40033	- 55104	$\cdot 71009$	-87736	1.05276	*	*
263	$0 \cdot 0$	-12318	- 25554	- 39677	- 54655	-70456	-87048	1-04399	*	
264	00	-11669	- 24255	- 37732	$\cdot 52076$	-67266	-83284	$1 \cdot 00116$	I•17752	1.36186
266	00	- 12536	- 25987	-40326	*	*	*	*	*	*
267	$0 \cdot 0$	- 12046	- 25079	-39027	-53821	*	*	*	*	*
268	00	- 15270	-31383	48337	-66130	-84760	*	*	*	*
269	$0 \cdot 0$	- 13915	-28619	-44124	-60443	77590	-95580	I'14429	*	*
270	$0{ }^{\circ}$	- 12822	-26517	-41085	-56526	72840	*	*	*	*
271	$0 \cdot 0$	-13572	-28001	-43270	$\cdot 59362$	76260	-93947	1•12405	*	*
272	$0 \cdot 0$	-14167	-29124	-44888	-61477	$\cdot 78910$	-97207	*	*	*
273	00	-13753	$\cdot 28347$	-43745	-59910	*	*	*	*	*

63. Hollow Spherical Projectiles. $w=2 \mathrm{lbs}$; $d=2.92$ inches.

310	00	. 07226	-15304	- 24534	$\cdot 35123$	-47185	-6074 I	$\cdot 75718$	-91949	*
311	00	. 07149	-15327	$\cdot 24658$	$\cdot 35305$	-47391	-60958	$\checkmark 75964$	-92318	*
281	00	.09060	-19443	-3II94	- 44356	-58970	$\cdot 75075$	*	*	
282	00	-11458	- 24393	$\cdot 38742$	- 54442	-71429	-89638	I 09004	*	
283	00	-09013	-19353	$\cdot 31024$	- 3858	15	*	*	*	
299	00	-07816	-16795	- 27023	$\cdot 38586$	- 51570	- 80837	*	*	
300	00	-09936	- 21333	- 34157	-48.373	-63945	-80837	-99012	${ }^{*}$	
301	$0 \cdot 0$	-07729	-16520	- 26556	$\cdot 37963$	-50811	$\cdot 65115$	-80837	$\cdot 97887$	1*16124
277	$0 \cdot 0$	-11958	- 25372	-40171	- 56286	$\cdot 73650$	*	*	*	*
279	$0 \cdot 0$	- 11549	- 24592	-39048	$\cdot 54836$,	*	*	*	
302	00°	-09346	-20110	- 32296	-45908	-60950	-77426	*	*	2808
303	$0 \cdot 0$	-0922I	-19822	-31857	- 45347	-60278	$\cdot 76597$	-94214	I•13004	$1 \cdot 32808$
304	00	-09274	-19968	$\cdot 32098$	- 45680	-60730	*	*	*	
274	00	-17092	-35481	- 55005	$\cdot 75502$	*	*	*	*	*
275	00	-18342	- 37606	- 57907	- 79360	*	*	*	,	
308	0.0	-12551	- 26565	-41962	- 58662			*		
309	00	- 12540	-26580	- 42044	-58855	$\cdot 76933$	-96193	*	*	*

64. (2) 5-inch Gun. Solid Spherical Projectiles. $w=15.789$ lbs.; $d=4.92$ inches.

No.of Round	1 Sc .	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	ro Screen
407	0 "'0	-07452	-15252	-23432	-32024	*	*	*	*	*
408	$0{ }^{\circ}$	-07814	-16030	-24664	-33732	-43251	-53238	63710	$\cdot 74683$	-86173
409	$0 \cdot 0$	-06918	-14195	- 21847	- 29884	-38314	47147	-56399	-66098	- 76291
410	$0 \cdot 0$	-06822	-14003	-21558	-29502	- 37849	46613	-55807	-65444	75537
411	00°	-06927	-14206	-21851	-29876	$\cdot 38296$	47126	-56381	*	*
315	0.0	-07980	-16385	- 25227	-34518	- 44269	-54491	. 65195	*	*
316	$0 \cdot 0$. 08212	-16834	-25878	-35359	-45295	-55707	-66618	78053	90039
317	$0 \cdot 0$	-07982	-16372	-25188	-34449	- 44174	- 54382	-65091	-76318	-88079
318	$0 \cdot 0$	-09417	-19278	-29583	-40332	-51525	*			*
380	$0 \cdot 0$	-07848	- 16069	- 24689	-33734	-43229	. 53199	-63669	$\cdot 74663$	- 86205
381	$0 \cdot 0$	-08017	-16423	- 25235	-34471	-44149	$\cdot 54287$	-64902	-7601 1	. 87630
382	$0{ }^{\circ}$	-09119	-18674	- 28690	39191	-50200	-61739	-73829	-86491	-99746
383	$0 \cdot 0$	-09078	-18561	-28508	-38978	-50030	*	*	*	*
385	0.0	-08680	-17754	- 27247	-37186	47600	-58519	-69974	-81996	-94616
386	$0 \cdot 0$	-08817	-18031	-27688	-37830	- 48492	-59700	$\cdot 71467$	-83789	-9664 1
387	00	-08788	-18011	$\cdot 27687$	-37834	- 48470	-59613	-71280	*	*
388	00	-09636	-19724	-30278	41312	-52840	-64875	*	*	
389	$0 \cdot 0$	-09625	-19685	-30209	-41226	-52763	-64846	77500	90750	
390	$0 \cdot 0$	-09533	-19495	-29942	-40929	- 52510	*	*	*	
392	00	.09583	-19598	-30086	41090	-52655	*	*	*	*

65. Hollow Spherical Projectiles. $w=7.894$ lbs.; $d=4.92$ inches.

394	0'0	-06508	-13692	- 21622	-30367	- 39995	-50573	-62167	$\cdot 74842$	*
395	00°	. 06332	-13282	- 20930	- 29356	-38639	- 48857	-60087	-72405	*
396	$0 \cdot 0$	-06266	-13165	-20774	$\cdot 29161$	- 38425	-48616	-59815	$\cdot 72095$. 85529
397	00°	. 06355	- 13354	-21061	- 29540	*	*	*	*	*
398	$0 \cdot 0$.06172	-13141	- 20910	- 29482	- 38858	-49038	-60022	$\cdots 1810$	*
399	00°	-06278	-13209	- 20863	- 29310	-38619	- 48858	-60094	-72393	-85820
400	$0 \cdot 0$. 06521	-13732	- 21692	-3046I	-40100	- 50671	-62237	*	${ }^{*}$
401	00°	.06236	-13127	-20741	-29145	$\cdot 38405$	- 48587	- 59756	-71978	-85319
320	00	. 07762	-16322	-25746	-36100	-4745 ${ }^{1}$	- 59867	-73416	-8S166	*
321	00°	-07680	-16159	- 25499	- 35762	-47010	*	*	*	*
322	00	-07769	- 16288	- 25666	- 36012		*	*	*	*
323	00	-07574	- 15963	- 25226	- 35421	-46605	- 58835	-72168	-86661	*
324	00	-07616	-16036	- 25322	- 35537	-46745	-59011	*	*	*
325	00	.07681	-16120	$\cdot 25398$	- 35595	46790	-59061	*	*	*
402	00	-07657	- 16082	- 25355	- 35556	-46765	- 59062	*	*	*
403	00	-07870	${ }^{-16534}$	-26065	- 36537	48026	-60608	$\cdot 74359$	- 89355	*
404	$0 \cdot 0$	-07564	- 15895	- 25065	- 35146	-462 II	$\cdot 58333$	*	*	*
405	$0 \cdot 0$	-07655	-16075	- 25359	- 35607	- 46920		*	*	*
406	00	-07597	-15955	-25154	- 35273	-46390	$\cdot 58582$	*	*	*

66. (3) 7-inch Gun. Solid Spherical Projectiles. $w=44.094 \mathrm{lbs} . ; d=6.92$ inches.

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen
326	$\mathrm{o}^{\prime \prime} \mathrm{o}$.08417	-17110	-26107	- 35436	-45125	-55202	**	*	*
327	$0{ }^{\circ}$	-08409	-17124	-26154	- 35507	-45190	$\cdot 55209$	-65571	$\cdot 76282$	-87349
329	00°	-08673	-17631	-26889	- 36463	-46370	-56627	- 67250	'78255	
330	$0{ }^{\circ} 0$	-08412	-17125	- 26144	- 35475	- 45124	-55097	-65400	$\cdot 76039$	
341	$0{ }^{\circ} 0$	${ }^{\circ} \mathrm{O} 843 \mathrm{I}$	-17168	-2622 I	- 35600	-45315	-55376	-65793	$\cdot 76577$	-87739
373	00	-08552	-17406	-26571	-36055	- 45866	-56011	-66498	-77336	-88534
379	0×0	-08547	-17415	$\cdot 26607$	$\cdot 36127$	-45979	-56168	-66699	-77577	-88808
331	$0{ }^{\circ}$	-09281	-18900	- 28863	-39175	-49840	- 60862	*	*	*
332	$0 \cdot 0$	-09285	-18910	-28875	-39180	-49826	-60813	*	*	*
334	$0 \cdot 0$	-09353	-19016	-28999	-39313	-49969	-60979	*	*	*
336	$0{ }^{\circ}$	-09343	-19010	-29011	- 39356	- 50054	-61115	'72548	-84361	-9656I
342	$0 \cdot 0$	$\cdot 09241$	-18816	-28731	$\cdot 38992$	-49606	-60581	*	*	*
343	$0 \cdot 0$	-09226	-18806	$\cdot 28740$	- 39029	- 49672	-60668	$\cdot 72016$	*	*
337	$0 \cdot 0$	- 11053	-22480	- 34285	-46473	- 59049	-72017	-85381	'99145	1-13312
338	$0 \cdot 0$	-12033	- 24458	- 37276	$\cdot 50487$	-64090	*	*	*	*
339	$0{ }^{\circ}$	- 12482	- 25382	-38689	- 52393	-66484	-80953	-95790	1-10985	*
344	00	-11235	-22853	- 34860	- 47262	-60065	$\cdot 73275$	-86897	1 ${ }^{\circ} 00935$	*
345	0×0	- I 1343	-23054	-35148	-47639	$\cdot 60541$	$\cdot 73867$	*	*	*
353	00	-14380	-29083	-44122	- 59509	-75255	-91370	1×07863	1-24741	1.42010
354	00°	-14585	-29504	- 44768	. 60387	$\cdot 76370$	'92725	I•09459	*	*
355	$0 \cdot 0$	-16081	-32433	- 49151	-66289	-83861	I'01838	$1 \cdot 20151$	*	*
356	00	-15464	$\cdot 31210$	- 47309	$\cdot 63802$	-80700	- 97985	1.15610	*	*
357	$0 \cdot 0$	$\cdot 14087$	$\cdot 28567$	-43445	$\cdot 58726$	$\cdot 74415$	*	*	*	*

67. Hollow Spherical Projectiles. $w=22.047 \mathrm{lbs}$.; $d=6.92$ inches.

346	00°	-08645	-17875	-27741	$\cdot 38293$	- 49580	*		*	*
347	0%	.08485	-17569	- 27296	-37711	-48860	*	*	*	
349	$0 \cdot 0$.08534	-17644	- 27388	- 37826	-490́21	-61040	*	*	
350	$0 \cdot 0$	-08473	-17545	- 27255	-37641	- 48740	-60589	-73225	- 86685	*
351	-0'0	-08780	-18186	-28255	-39024	- 50530	-62810	${ }^{\circ} 75901$	*	*
352	$0 \cdot 0$.08530	-17698	-27528	-3S043	- 49267	*	*	*	
365	0'o	.08881	-18402	-28599	- 39508	-51165		*		*
366	0'o	.08716	-18045	-28034	- 38724	-50150	- 62343	$\cdot 75332$	-89146	*
367	$0 \cdot 0$	-09480	-19626	- 30476	- 42068	- 54440	-67630		*	*
368	0'0	'09536	-19750	-30669	-42322	- 54740	*		* 0	*
369	$0{ }^{\circ} 0$. 09506	-19684	-30553	-42153	- 54545	-67811	-82054	'97398	*
370	0\%o	-09525	-19717	-30618	- 42262	- 54675	-67875	-81871	-96663	
371	00°	-09468	-19600	-30421	-41957	- 54236	-67287	-81140	*	
372	00°	-09444	-19524	-30299	-41814	- 54102	-67185	-81077	$\cdot 95785$,
374	0*o	-09247	-19173	-29801	- 41153	- 53249	-66109	-79752	-94196	. 09458
375	$0{ }^{\circ} 0$	-08807	-18226	- 28287	- 39020	- 50456	- 62626		*	*
376	00	-09333	-19295	- 29928	- 41275	- 53379	-66282	. 80025	'94648	*
377 378	000	-09692	- 20102	- 31252	- 43164	. 55859	-69357	-83677		*
378	00°	-08971	-18601	-28919	- 39954	51736	$\cdot 64295$	$\cdot 77662$	'91868	*
360	00	- 10942	-22612	- 35036	- 48240	-62250		*		*
363	00	- 10800	$\cdot 22382$	-3475	- 47905	-61835	$\cdot 76523$	$\cdot 91942$	1.08056	*
364	00	'09995	- 20620	-31931	-43981	$\cdot 56820$,	*	*	*

68. (4) 0-inch Gun. Solid Spherical Projectiles.
$w=94^{\circ} 5 \mathrm{lbs} . ; d=8.888$ inches.

No. of Round	Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	roSc
253	-"	-07805	-15818	-24043	- 32485	41148	-50035	-59148		-78059
255	$0 \cdot$	-07719	-15653	-23802	- 32167	-40748	-49545	- 58557	-67783	'77222
257	O\%	-08017	-16218	- 24617	-33227	-42059	-51124	-60432	-69993	-79817
258	$0 \cdot 0$	-08021	-16231	- 24640	-33258	-42095	-51161	-60466	$\cdot 70019$	79829
259	\bigcirc	-07961	-16131	-24510	-33098	-41898	-50913	-60148	- 69608	-9300
260	$0 \cdot 0$	-08015	-16206	-24591	33187	-42010	-51074	-60392	-69974	79827
204	- 0	-08885	-18018	-27404	-37047	-46949	-57112	-67538	-78228	-89182
205	$0 \cdot 0$	-08673	-17575	- 26707	-36071	-45669	-55503			
206	$0{ }^{\circ}$	-08907	-18050	- 27454	-37097	46989	- 57133	-67531	78183	89090
241	$0 \cdot 0$	-0880	-17841	-27121	- 36640	-46399	-56397	-66633	77107	
242	- 0	-09022	-18284	- 27792	- 37552	- 47569	- 57849	- 68396	-79216	-90313
243		-08914	-18060	- 27443	-37068	-46940	- 57064	-67445	$\cdot 78087$	-88995
244	$0 \circ$	-08950	-18130	-27546	- 37204	-47110	- 57270	-67690	-78376	-89334
245	-०	-08779	-17783	-2702I	-36500	-46227	-56209	-66454	-76970	-87765
179	- 0	-09729	-19714	-29957	-404	-51221	-62244	-73527	-85069	-96870
180	$0 \cdot 0$	-09712	-19691	-29937	-40448	-51221	-62254	-73547	-85100	-96915
181	\bigcirc	-09799	-19849	-30155	-40723	- 51560	-62673	- 74070	-85756	-97733
182	-0	.09831	-19918	- 30267	- 40884	- 51775	-62943	$\cdot 74388$	-86113	-98121
183	$0 \cdot 0$	-9	-19459	- 295	-39915	-50534	3	7258	-84038	*
184	-0.	- 12202	- 24689	$\cdot 37462$	-50523	-63875	$\cdot 77521$	-91464	1.05706	1.20248
185	\bigcirc	-13617	- 27488	- 41614	-55996	-70634	- 85528	1.00678	$1 \cdot 16083$	*
187	\bigcirc	-12312	- 24946	- 37894	- 51148	- 64700	78541	-92662	$1 \cdot 07053$	
189	$0 \circ$	-13121	-26522	- 40204	-54168	- 68415	. 82945	-97758	1-12855	1.28236
190	- 0	- 12599	- 25478	- 38638	-52080	- 65805	$\cdot 79814$			
191	00°	- 12830	- 25946	- 39350	-53044	-67030	-81310	-95887	1-10763	
192	- 0	-13156	-26577	-40265	-54222	-68449	-82947	'97718	$1 \cdot 12765$	$1 \cdot 28092$

69. Hollow Spherical Projectiles. $w=67.5$ lbs.; $d=8.886$ inches.

248	$0{ }^{\circ}$	-07497	-15262	-23306	$\cdot 31651$	-40310	$\cdot 49296$	- 58620	-68291	$\cdot 78316$
249	\bigcirc	-07793	-15888	-24290	-33004	-42035	-51389	-61071	$\cdot 71086$	
251	$0 \cdot$	-07555	-15415,	- 23580 .	- 32051	-40828	-49911	-59300	-68996	
246	$0 \cdot 0$	-08794	-17919	-27388	-37214	-47410	-57990	-68969	-80362	. 92185
247	$0 \cdot 0$	-08728	-17768	-27135	- 36845	-46914	-57357	-68189	'79424	91076
252	$0 \cdot 0$	-08777	-17891	-27354	-37177	-47371	-57946	-68911	-80273	-92037
254	$0 \cdot$	-08648	-17643	-26987	- 36684	-46740	-57162	-67957	-79132	-90694
256	- 0	-08798	-17933	- 27407	- 37226	- 47400	-57944	-68877	- 80222	*
193	\bigcirc	-10513	-21416	- 32710	-44396	- 56475	-68948	-81816	'95080	1.08741
194	0	-10431	-21256.	- 32476	-44092	- 56107	-68524	-81345	'94572	1.08206
195	-०	${ }^{1} 10401$	-21186	- 32359	- 43926	-55895	-68274	-81069	-94284	r.07921
196	$0 \circ$	-10788	-21978	-33572.	45573	- 57985	$\cdot 70812$	-84057	'97722	1-11808
197	-○	-11108	-22583	- 34427	-46641	-59225	$\cdot 72178$	-85500	'99193	1•13261
198	\bigcirc	-14273	-28919.	-43942	-59345	'75130	-91298	1.07850	1.24787	
199	-0	-14482	-29332	-4455 I	. 60140	$\cdot 76101$	-92437	1.09151	126247	*
200	-	- 14483	-29322	- 44521	$\cdot 60084$	$\cdot 76013$	-92308	1.08969	$1 \cdot 25998$	$1 \cdot 43399$
201	-0	-12838	-26021	-39549	*					
202	-0	-14670	- 29679	- 45033	-60741	$\cdot 76815$	-93266	$1 \cdot 10103$	1×27333	$1 \cdot 44961$
203	$0 \cdot 0$	-14453	- 29263	-44436	- 59977	$\cdot 75890$. 92178	1.08843	$1 \cdot 25888$	143317

Report dated July 8, 1879.
70. Times at which the Elongated Projectiles passed the Screens.

\bigcirc		응 －					ホか응 かった $\mathfrak{\infty} \dot{\infty} \mathrm{i}$ i		$\begin{aligned} & \stackrel{\text { N}}{\infty} \\ & \underset{\sim}{N} \\ & \underset{N}{n} \end{aligned}$
\cdots		$\begin{array}{ll} \ddagger \\ \stackrel{\infty}{0} \\ 8 \\ i & 0 \\ i n & i n \\ i n \end{array}$		$\begin{aligned} & \text { gion } \\ & \text { N్N } \\ & \text { क్N } \\ & \text { in } \end{aligned}$					
\pm		$\begin{aligned} & \text { onn } \\ & \text { ong } \\ & \text { on } \\ & \text { Min } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { Now } \\ & \text { \& Now } \\ & \text { Non } \\ & \text { inn min } \end{aligned}$				
\cdots			$\begin{aligned} & \text { hon in in } \\ & \text { ininin } \\ & i=i n i n \end{aligned}$						$\begin{aligned} & \text { mono } \\ & \text { y } \% ~ \\ & \text { nól } \\ & \text { in io } \end{aligned}$
$\stackrel{N}{N}$								$\begin{aligned} & \text { No } \\ & \text { Nom } \\ & \text { Non } \\ & \text { nin in } \end{aligned}$	no 戸がが ＋is No inini
\cdots		OOO O				$\begin{aligned} & \text { YNu } \\ & \text { WNN } \\ & \text { ONiN } \end{aligned}$	$\begin{aligned} & \text { QNM } \\ & \text { ONN } \\ & \text { NN N } \\ & \text { Nin min } \end{aligned}$	$\begin{aligned} & \text { oqd } \\ & \text { ow } \\ & \text { minn } \\ & \text { inn } \end{aligned}$	
O			$\begin{aligned} & \text { ino o } \\ & \text { Hon in } \\ & i=1 \end{aligned}$	$\begin{aligned} & \text { oNO } \\ & \text { No } \\ & \text { on N } \\ & \vdots \text { No } \\ & \text { No } \end{aligned}$	っすす ハㄴN ∞ Nூ 				$\begin{aligned} & \text { goo } \\ & \text { WNM N } \\ & \text { NM } \\ & \text { Hinn win } \end{aligned}$
a			$\begin{aligned} & \text { No } \\ & \text { Non } \\ & \text { ond } \end{aligned}$					$\begin{aligned} & \text { NNO } \\ & \text { BNO } \\ & \text { Now } \\ & \text { Nin Min } \end{aligned}$	
∞			$\begin{aligned} & \text { ào } \\ & \text { लo } \\ & \text { ू } \\ & \text { ong } \end{aligned}$			$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { Nos } \\ & \text { Ano } \end{aligned}$	サ욱 Nơ कo		
\cdots	$\begin{aligned} & \text { No } \\ & \text { Non } \\ & \text { ôप̣ } \end{aligned}$	Norom 		$\begin{aligned} & \text { NiN } \\ & \text { NiN } \\ & \end{aligned}$	以는 かった in	$\begin{aligned} & \text { No } \\ & \text { N్N } \\ & \text { NMN } \end{aligned}$		$\begin{aligned} & \text { moN } \\ & \text { on } \\ & \text { M } \\ & \hline \end{aligned}$	
\bigcirc					$\begin{aligned} & \text { nun } \\ & \text { कo } \\ & \text { on } \\ & \text { +ind } \end{aligned}$	$\begin{aligned} & \text { QNE } \\ & \text { NiNe } \\ & \text { Ự } \end{aligned}$			$\begin{aligned} & \text { go in } \\ & \text { on in } \\ & \text { Now Nom } \end{aligned}$
10					$\begin{aligned} & \hat{0} \mathbb{N}^{n} \\ & 0.0 \% \\ & 0.0 \end{aligned}$	$$		$\begin{aligned} & \text { ano } \\ & \text { :nप़̣ } \end{aligned}$	
－	$\begin{aligned} & \text { Nơo } \\ & \text { Mono } \\ & \text { MुM } \end{aligned}$	Roso ơM		$\begin{aligned} & \text { NM } \\ & \text { Nू } \\ & \text { N్N } \end{aligned}$					
m		© 0 으N		$\begin{aligned} & \text { mo } \\ & \text { Ho } \\ & \end{aligned}$			$\begin{aligned} & \text { Jid } \\ & \text { NTN } \end{aligned}$		$\begin{aligned} & \text { ЮNN N } \\ & \text { Mon } \\ & \text { MलMM } \end{aligned}$
\cdots	$\begin{aligned} & \text { ON M } \\ & 0 \text { NON } \\ & 0.0 \end{aligned}$	∞ 웅웅	꿍 N్యN		$\begin{aligned} & \text { +o in } \\ & \text { \%io } \\ & 0 \% \end{aligned}$		N్N N్ల	$\begin{aligned} & \text { +o } \\ & \text { Now } \\ & \text { Mon } \end{aligned}$	
\checkmark	000	$\begin{array}{lll} \circ & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{l:l} \circ & \circ \\ 0 & 0 \\ \circ & 0 \end{array}$	$\begin{array}{lll} \circ & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{l:l} \circ & \circ \\ \circ & \circ \\ \hline 0 \end{array}$	$\begin{aligned} & 00 \\ & 000 \\ & 00 \end{aligned}$	$\begin{array}{ll} \circ & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{lll} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{llll} \circ & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$
	$\text { NM~ } \underset{\text { M }}{\ddagger}$	$\stackrel{M 60}{\substack{2}}$	$\stackrel{\infty}{\sim_{7}} \underset{\sim}{\sim}$	ザサ	まじ!	$\mathfrak{F} \underset{F}{\mathfrak{N}}$	우ํ누ํ	Mษ~~	
	＝$=$＝	＝＝	＝$=$	＝$=$	二＝	$==\hat{N}$	＝＝	＝：$=$	こ＝
	గొ?	부o 000 00	$\begin{aligned} & \text { Mふ } \\ & \dot{0} \mathrm{~m} \\ & \dot{0} \dot{0} \end{aligned}$	$\begin{aligned} & \text { Mñ } \\ & \text { ino } \end{aligned}$		$\begin{aligned} & \text { צ" } \\ & \dot{0} \dot{0} \end{aligned}$	$\begin{aligned} & \text { OO O } \\ & \dot{Q} \dot{R} \dot{R} \end{aligned}$		응

Report dated Aug．31， 1880.
72．Times at which the Ogival－headed Projectiles passed the Screens．

	$\stackrel{\text { N }}{\sim}$	* *					
	\pm			* *	$\begin{aligned} & \text { Hmo } \\ & \text { むo } \\ & \text { ộdot } \end{aligned}$	∞ ̂̂̀ñ	
	\bigcirc	$\begin{aligned} & \pm \\ & \sigma_{0} \\ & \vdots \end{aligned}$	웅웅	*		con to	
	a	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{i}{f} \end{gathered}$		N	$\begin{aligned} & \text { âo } \\ & \text { ôb } \\ & \text { H} \end{aligned}$		서숭우8 Mninvo セッセック！
	∞	$\begin{gathered} i \\ \stackrel{\circ}{o} \\ \stackrel{3}{m} \end{gathered}$	$\begin{aligned} & \text { はñ } \\ & \text { なinen } \\ & \text { Mn } \end{aligned}$				
	－	$\stackrel{\stackrel{\circ}{\underset{m}{N}}}{ }$					
	\bigcirc	$\stackrel{\text { No }}{\substack{\infty\\}}$	Nơo				
	in	Ni				$\begin{aligned} & \text { iot } \\ & \text { Nod } \\ & \text { No } \\ & \hline \end{aligned}$	がす성№ గ్యియ్యం
	\pm	$\begin{aligned} & \hat{y} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	స్ల్రొం	すNin	Now	$\begin{aligned} & \text { mo } \\ & \text { ont } \\ & \text { ont } \\ & \hline 10 \end{aligned}$	
	m	$\begin{aligned} & \text { 종 } \\ & \text { on } \\ & \hdashline-9 \end{aligned}$	亿o io	Now	㮏	Cow	
	N						
	－	ㅇ․ㅇ․	¢0： 0	웅	응ㅇ	응ㅇ	$\begin{array}{llll} 0 & \circ & O \\ O & O & 0 & 0 \end{array}$
		があう	¢	が\％びす	ぶふす	がo	
	－	$\stackrel{\circ}{\text { i }}=$	：：$=$	：：$=$	＝：$=$	＝：：	＝：：：$=$
	\％ 8	¢ ${ }^{\text {¢ }}=$	＝：＝	＝：	：	：	：：：：

73. Repurt dated February 13, 1869.

Round	K_{v}											
$1320 f . s$. continnzed.		$1360 \mathrm{f.s}$		$1360 f$.s. continued.		$1400 \mathrm{f} . \mathrm{s}$. continued.		$1400 \mathrm{f} . \mathrm{s}$. continued.		$1440 f . s$. continued.		
304	147.4	180	133.7	374	144*0	256	149 ${ }^{\circ}$	373	$138 \cdot 5$	252	$147^{\circ} \mathrm{I}$	
310	152.2	181	142.7	375	139.3	281	140°	374	142.2	254	142.3	
1	148.6	182	142.5	376	142.4	283	137.9	375	136.5	256	143.3	
312	145.4	183	1424	377	148.5	285	139.5	376	138.6	281	$139{ }^{\circ} 7$	
316	153.9	193	146.9	378	145.4	286	144.4	377	146.6	283	137.8	
317	152.9	194	$148 \cdot 5$	380	155.4	287	140	378	142.8	285	$136 \cdot 9$	
320	148.9	195	146.1	381	144.5	288	138.8	379	136.5	286	$140{ }^{\circ} 9$	
323	148.2	196	151.2	382	150.4	290	139.5	380	151.4	287	$136 \cdot 9$	
324	149.5	204	$138 \cdot 9$	385	152.5	291	137.9	381	$141 \cdot 5$	288	$135^{\circ} 7$	
325	151.4	246	I $57 \cdot 3$	386	159.1	292	138.6	382	146.4	290	137°	
336	148.6	247	$155^{\circ} 3$	387	148.0	294	138.2	383	$167{ }^{1}$	291	1349	
337	148.9	252	$152^{\circ} \mathrm{O}$	388	140.8	295	139.6	385	147°	292	136.5	
349	158.5	254	146.8	389	$146 \cdot 8$	296	$140 \cdot 4$	386	155.5	294	135.5	
350	1477°	256	156.4	390	165.1	297	139.5	387	144.8	295	$136 \cdot 8$	
351	147.8	281	141.8	392	152.8	299	$136{ }^{\circ}$	388	$138 \cdot 2$	296	138.0	
360	$147{ }^{\circ} \mathrm{O}$	285	142.3	394	143.2	300	149.9	389	$141 \cdot 7$	297	137.5	
363	157.7	286	$148{ }^{\circ}$	395	146.4	301	141.2	390	156.4	299	134°	
364	144.3	287	143.2	396	146.0	302	$145 \cdot 8$	392	145%	301	138.8	
366	148.9	288	$142{ }^{\circ} \mathrm{O}$	398	113.6	303	$145{ }^{\circ} 5$	394	$140 \cdot 3$	302	145.7	
367	$149{ }^{\circ}$	290	$142{ }^{1}$	399	143.8	304	146	395	$143{ }^{\circ} \mathrm{O}$	303	$144{ }^{\circ}$	
368	146.5	291	$141{ }^{\circ} 0$	400	$140 \cdot 4$	310	148.2	396	142.8	304	146.3	
369	146	292	140.6	401	$143{ }^{\circ}$	3 II	143.7	398	113.6	310	$145{ }^{\circ}$	
370	148.4	294	$141{ }^{\circ} 0$	402	$146 \cdot 3$	312	1417\%	399	$140 \cdot 8$	311	$140 \cdot 7$	
371	143.4	295	142.5	403	$144{ }^{\circ} 4$	316	144.8	400	137.5	312	$139 \cdot 8$	
372	149.4	296	142.9	404	143.9	317	$147{ }^{\circ} \mathrm{I}$	401	$140^{\circ} 0$	315	138.7	
374	$145^{\circ} 9$	297	141.6	406	$145{ }^{\circ} 7$	318	128.1	402	142.8	316	140%	
375	$142^{\circ} \mathrm{I}$	299	$138 \cdot 1$	408	144.4	320	142.6	403	$141{ }^{\circ} \mathrm{O}$	317	144.1	
37	$146 \cdot 3$	300	$149{ }^{\circ} \mathrm{I}$			321	$141^{\prime} 7$	404	$140 \cdot 7$	318	128.1	
377	1504	301	143.3	Mean	145^{2}	323	142.9	405	149.9	320	139.6	
378	148.1	302	145.9			324	143.4	406	142.3	321	138.9	
38 I	$147{ }^{\circ} 5$	303	$146 \cdot 6$			325	144°	408	141.6	323	$140 \cdot 4$	
	154.4	304	147°	13		327	139.8	1		324	140.7 140.9	
386	1617	311	$146 \cdot 1$	Mean	143.5	331	$141^{\circ} \mathrm{O}$			327	$137{ }^{\circ} 7$	
387	151.3	312	143.5			332	$135{ }^{\circ}$			329	144.8	
388	143.6	316	1490°			334	138.8			330	132.9	
389	$151^{\circ} 7$	317	$150{ }^{\circ}$			336	142.2			331	${ }^{1} 39.7$	
394	$146 \cdot 2$	320	145.7			341	146.2	Mean	140%	332	$135{ }^{\circ}$	
395	1498	323	145.5	179	I 33.9	342	141.8			334	134.8	
396	1493	324	146.4	180	I 34.4	343	139.4			336	139°	
398	113.6	325	147.8	181	138.	346	142.4			341	142.6	
399	$146 \cdot 8$	336	145.5	182	140	347	144.1			342	139.1	
401	$146{ }^{\circ}$	343	139°	183	138.	349	147.5	179	133.3	343	139.7	
402	$149{ }^{\circ} 9$	349	152.8	193	$146 \cdot$	350	$140 \cdot 5$	180	$136 \cdot 1$	346	138.4	
403	147.9	350	143.7	194	148.2	351	141.3	181	134.5	347	$140^{\circ} 3$	
404	$147 * 3$	351	144.5	195	144.8	352	138.9	182	137°	349	142.6	
406	$149{ }^{\circ}$	364	$139^{\circ} 2$	204	138.9	364	${ }^{1} 34{ }^{\circ} \mathrm{I}$	183	134	350	137.5	
		365	146	206	$134{ }^{\circ} \mathrm{O}$	365	$143 \cdot 1$	204	138.6	351	138.2	
Mean	147.6	366367	146	242	1478	366	143 1	206	133.6	352	136.9	
			145	243	142.7	367	142.3	242	144.6	364	128.9	
		$\begin{aligned} & 367 \\ & 368 \end{aligned}$	$143 \cdot 8$	244	145.4	368	141.3	243	139	365	140.1	
$1340 f . s$		$\begin{aligned} & 369 \\ & 370 \end{aligned}$	142.4	246	152.8	369	138.9	244	$141{ }^{\circ} 8$	366	$140 \cdot 3$	
		$145 \cdot 6$	247	1510	370	142.7	245	146.6	367	$139^{\circ} \mathrm{I}$		
Mean 146.8			371372	$140{ }^{\circ} 9$	252	149.7	371	$138 \cdot 7$	246	148.3 146.6	368 369	1390° 136.2
		$146{ }^{\circ}$		254	$144{ }^{\circ} 5$	372	142.4	247	146.6	369	136.2	

Round	χ°	ormm	J.\%	\%oun	K_{v}	Round	N_{*}	Roun	K_{v}	Round	K_{v}
$1440 \mathrm{f} . \mathrm{s}$ continual.		$148 \mathrm{~J} . \mathrm{s}$. continuct.		1480 f. s. continued.		1520 f. s. continued.		1520 f. s. continued.		${ }^{1} 560$ f. s. continued.	
370	139.6	44	138.2	367	$136^{\circ} 0$	243	134.4	368	$134 \cdot 7$	246	$7 \cdot 1$
371	136.5	245	$142 \cdot 1$	368	$136 \cdot 8$	244	134.8	369	133^{1}	247	133.5
372	1383	246	144.3	369	134.2	245	$137 \cdot 7$	370	${ }^{132}{ }^{\circ} 9$	248	134.6
373	1355	247	$142 \cdot 3$	370	136.2	246	140.5	371	132.4	249	127°
374	140%	252	144.3	371	134.4	247	138.0	372	12900	252	138.4
375	133.7	254	140.2	372	1338	252	141.4	373	$130 \cdot 5$	254	136.6
376	$134{ }^{\circ} 9$	256	${ }^{1} 38.9$	373	${ }^{132}{ }^{\text {P }}$	254	138.3	374	136	256	$132 \cdot 6$
377	$144 \cdot 8$	251	138.8	374	$138 \cdot 6$	256	135.3	375	12	257	$140 \cdot 3$
378	$140 \cdot 3$	283	1377	375	131.2	281	137.8	376	128.0	258	137.3
379	$134^{\circ} 8$	$2 S 5$	$134 * 3$	376	131.4	283	137.6	378	$135 * 9$	260	144.8
380	147.4	286	1376	377	143.2	285	131.8	379	131.6	285	129.4
381	$135 \cdot 5$	$2 \mathrm{S7}$	133.9	378	138.1	286	134.3	380	139.5	286	$131^{\circ} 2$
3^{82}	142.5	283	$132 \cdot 6$	379	$133^{\prime 2}$	287	$131{ }^{\circ}$	381	132.7	287	128.3
333	158.3	290	134.4	380	143.4	288	$129^{\circ} 6$	382	$134 \% 7$	288	126.6
38	$141^{\prime} 7$	291	132°	3^{81}	$135^{\circ} 6$	290	131.9	$3{ }^{3} 3$	$140^{\circ} 0$	290	129.4
356	1509	292	134.4	$3^{S 8}$	${ }_{1} 38.6$	291	129.1	385	131.9	291	126.4
387	141.7	294	133°	383	149.2	292	132.4	386	$140^{\circ} 0$	292	$130 \cdot 3$
38	135.7	295	$134 \cdot 1$	385	${ }^{1} 36 \cdot 8$	294	$130 \cdot 5$	387	$135 \cdot 8$	293	12.2
389	136.5	296	1357	386	145.8	295	131.5	388	$130 \cdot 8$	294	128.1
390	1474	297	$135 \cdot 6$	357	138.7	296	133.5	389	126.4	295	128.9
392	137×9	299	${ }^{1} 32^{\circ} \mathrm{O}$	388	133.1	297	$133 \cdot 8$	390	128.9	296	$131 \cdot 3$
394	137.5	301	136.4	399	131.4	299	$130 \cdot 2$	392	124.1	297	132°
395	139.8	302	$145 \cdot 6$	390	138.2	301	$133 \cdot 7$	394	${ }^{132} 11$	299	128.4
396	139.7	303	$143^{\circ} \mathrm{O}$	392	$130 \cdot 9$	310	140.1	395	$133 \cdot 7$	301	131.0
398	113.6	304	146.0	394	1347	311	134.3	396	$133^{\circ} 9$	310	136.6
399	138°	310	143°	395	136.7	312	136.4	398	113.6	311	$131^{\circ} \mathrm{O}$
400	$134 \cdot 8$	311	137.5	396	136.7	315	$135 \cdot 1$	399	$132 \cdot 6$	312	134.8
401	137.2	312	138.1	398	113.6	316	$133^{\circ} 3$	400	129.6	315	133.4
402	139.4	315	${ }^{136.8}$	399	135.3	317	138.3	401	131.9	316	$130 \cdot 1$
403	$137 \cdot 8$	316	$136 \cdot 8$	400	$132 \cdot 1$	318	$12 \mathrm{~S} \cdot 1$	402	132.9	317	135.3
404	$137 \cdot 6$	317	141.2	401	134.5	320	134*0	403	$131 \cdot 7$	320	131.4
405	145.8	318	125	402	136.1	321	133.7	404	131.6	321	131.3
400	139 138.9	320	${ }^{136}{ }^{1} 36$	403	1347	323	$135{ }^{\circ} 7$	405	138.0	322	135.9
408			13	404	134.5	324 325	${ }^{135 \%} 3$	406	$132 \cdot 7$	323	133.5
Mean	139.2	324	${ }_{13} 13.0$	405		325 326	134.3 153.7	409136.9		324	132.8
		325	137.6	408	136.2	327	133.5			325 326	$131 \cdot 2$ $146 \cdot 1$
1460 f . s.		327	1356	Mean		329	134.7	Mean	an 133.6	327	131.6
		329	1398			330	128.9			329	$129^{\circ} 6$
Meart 137.8		330 331	${ }^{130} 0^{8} 9$			331	137°	1540 f. s.		330	127.1
		33	134.9			332 334	$\begin{aligned} & 134.9 \\ & 127.5 \end{aligned}$			331 332	135.3
		334	1310			336	$133^{\circ} \mathrm{O}$	Mea	132.4	331 334 334	134.9 124.2
$1+80 \mathrm{f} . \mathrm{s}$.		336	${ }^{1} 36{ }^{\circ} 1$	$1500 \mathrm{f.s}$.Mean 134.8		341	136.3			336	129.9
150	137.2	343	$140^{\circ} \mathrm{B}$	1520 f. s.		343 346	$139{ }^{1}$	1560 f. s.		342 343	133.3 1397 1
181	$131^{1 / 2}$	346	134.4			347	133.3	204	$135^{\circ} 6$	346	126.7
182	133.6	347	$136{ }^{\circ}$	179	131.7	349	$133^{\prime 2}$	205	123.7	347	129.9
183	${ }^{130} 3$	349	137.8	180	137.3	350	1315	206	$130^{\circ} 3$	349	128.7
204	1377	350	134.5	$1 S_{3}$	126.7	351	132.3	241	129.3	350	128.6
200	133.0	351	135.3	204	$136 \cdot 6$	352	133.2	242	135.6	251	129.5
241 242	128.3 1416	352	135° 1372	206	12	365 366	134.4	243	131.7	352	131.5
243	${ }^{137} 3$	305 366	137° $137^{\circ} \mathrm{Z}$	241 242	123.8 138.3	360	134° 133	244	131.6 133.9	365 366	1317 130.7

Round	v	Round	v	Round	Round	k_{v}	Round	K_{v}	Round	K_{v}^{-}	
I 560 f.s. continued.		$1600 f . s$. continued.		1600 f.s. continued.	$1640 f . s$. continued.		I 660 f . s . Mean 12.40		1 $680 f$. s. continued.		
373	$128 \cdot 3$	257	${ }^{1} 35^{\circ}$	$395 \mid 12$	294	123.6			79	${ }^{\circ}$	
374	I $35^{\circ} \mathrm{I}$	258	132.7	396128.3	295	124°	I680 f.s.		380	$24^{\circ} 6$	
37	126.4	259	121.8	398 I 13.6	296	127			381	121.4	
378	133.7	260	$140 \cdot 8$	399 127.4	297	$128 \cdot 7$			385	114.9	
379	$130 \cdot 3$	285	127°	400 124.8	299	$125^{\text {I }}$	205	120	394	$122^{\text {I }}$	
380	$135{ }^{\circ} 7$	286	128.1	401127	301	125°	24.1	28	395	122.3	
3^{81}	129.7	287	$125^{\circ} 6$	402 126.8	310	129.5	245	122.	396	123.1	
382	$130 \cdot 7$	288	123.8	403126	311	124.4	247	121°	398	113.6	
383	130.9	290	$126 \cdot 9$	404126.	312	$13 \mathrm{I} \cdot 6$	248	$127^{\circ} 3$	399	122.5	
385	127.3	291	123.7	405 1 30°	315	$130^{\circ} \mathrm{I}$	249	122.5	400	120.3	
386	133.4	292	128.2	$406126 \cdot 7$	316	124.7	251	1179	401	122.2	
387	132.9	293	122°	408128.4	317	129.7	253	121.5	402	121*1	
394	129.5	294	125°	409 124.0	320	126.	254	I 33.9	403	120.6	
395	$130 \cdot 7$	295	126.4	410 124.9	321	$126 \cdot 6$	255	$115{ }^{\circ} 9$	404	120.9	
396	131.1	296	$129^{\circ} \mathrm{I}$		322	127.9	257	$125^{\circ} 2$	405	123.7	
398	113.6	297	130.3	Mean 128.1	323	129.2	258	I22.9	406	$121^{\prime} 1$	
399	129.9	299	126.7		324	128.2	259	116.2	408	123.6	
400	$127^{\circ} 2$	301	$128 \cdot 1$		325	125°	260	129.5	409	116.9	
401	129.4	310	$133^{\circ} 2$	$1620 \mathrm{f.s}$.	326	$131 \cdot 3$	285	$122^{\circ} 4$	410	121.1	
402	129	311	127.7		327	127.7	286	122.2	411	1190	
403	128.8	312	133.2	Mean 126.7	329 11		28712				
404	128.7	315	131.7		330	123.6	288	118.5	Iean 122.4		
405	134.3	316	127.3		341	$127^{\circ} 8$	290	122.4			
406	$129{ }^{\circ}$	317	132.5		346	$119{ }^{\circ}$	291	1186			
408	130.9	320	128.8		347	123.4	292	124°	I 700 f . s.		
409	1297	321	128.9	$\begin{array}{l\|l} 204 & 131.9 \end{array}$	349	$120 \cdot 1$	293				
410	I 26.9	322	131.8	205121.	350	123.	294	121.6	Mean 12I'I		
Mean		323	131.3	206128.6	351	124	295	$121^{\circ} 6$			
	$13{ }^{\circ}$	$\begin{aligned} & 324 \\ & 325 \\ & 326 \end{aligned}$	$130 \cdot 5$	241129	352		296				
			12	24212	$\begin{aligned} & 366 \\ & 373 \end{aligned}$	$124{ }^{\circ}$	297 127 299 123		$1720 \mathrm{f.s}$.		
			$138 \cdot 7$			123.7					
I $580 \mathrm{f.s}$		327	129.8	$244{ }^{125} 5^{\circ} \mathrm{I}$	375	128.0	301121.8	121.8	248 $124 \cdot 4$ 249 $121 \cdot 2$		
		$\begin{aligned} & 329 \\ & 330 \end{aligned}$	124.7	245	379		310				
Mean 129.8			125.4	246	380		311121		$25 I$		
		$130 \cdot 5$	247	381		$\begin{aligned} & 312 \\ & 315 \end{aligned}$	$130^{\circ} 1$	253 120*4			
			346	122.9	24813		385		128.5	255	116.3
1600 f . s.		347	12	249 I24	$\begin{aligned} & 386 \\ & 387 \end{aligned}$	119.5 127.5	$\begin{aligned} & 315 \\ & 316 \end{aligned}$	122.5	$\begin{aligned} & 257 \\ & 258 \end{aligned}$	$\begin{aligned} & 119.7 \\ & \text { II } 8.0 \end{aligned}$	
		349	124	251 117		127.5	$\begin{aligned} & 316 \\ & 317 \end{aligned}$	$127^{\circ} 0$			
204	$134{ }^{1} 1$	350		25213	$\begin{aligned} & 387 \\ & 394 \end{aligned}$	124.5	320	124°	259		
205	122.6	351	126.9	253	395	125°	321322	$124^{\circ} 4$	260	122.8	
206	129.3	352	129.8	254	396	$125^{\circ} 7$		123.9127.1	284	105°	
241	128.9	365	$129^{\circ} \mathrm{I}$	255 II5 ${ }^{\circ}$	398	I $13 \cdot 6$	323		285	$120 \cdot 3$	
242	132.5	366	127.4	256130°	399	124.9	324	125.8	286	119.4	
243	$129{ }^{\circ}$	373	$125^{\circ} 9$	257130	400	122.5	325	122.2	287	118.2	
244	128.4	375	$124^{\circ} \mathrm{I}$	258 I27	. 401	124.6	326	123.8	288	1159	
245	130.2	378	1 31.6	259 II8	402	123.9	327	125.6	291	I16.1	
246	133.7	379	129.1	260 135\%	403	123.3	329	115.3	292	121.8	
247	129.2	380	131.9	285124.7	404	123.4	330	121.9	293	1215	
248	132.4	381	126.9	286 125. ${ }^{\text {I }}$	405	$127^{1} 1$	341	$125^{\circ} 2$	294	119.6	
249	125.5	382	$126 \cdot 8$	287123°	$\begin{aligned} & 406 \\ & 408 \end{aligned}$	123.9	346	115.4	295	$119{ }^{\circ} 3$	
251	118.1	383	121.3	288 121.		$125^{\circ} 9$	347	$120{ }^{\circ} 4$	296	123.2	
252	135.5	385	122.9	290.124^{6}	$\begin{aligned} & 408 \\ & 409 \end{aligned}$	1197	349	115%	297	$125^{\circ} 6$	
253	123.3	386	126.7	$2911^{121} 1$	$\begin{aligned} & 409 \\ & 410 \end{aligned}$	123°	350352373	$\begin{aligned} & 120.3 \\ & 126.6 \\ & 121.4 \end{aligned}$	$\begin{aligned} & 299 \\ & 301 \\ & 310 \end{aligned}$	$\begin{aligned} & 122.0 \\ & 118.5 \\ & 121.3 \end{aligned}$	
254	${ }^{1} 35^{\circ} 3$	387	$130^{\circ} 2$	292 126.1							
256	131°	394	127°	293122.3	Mean	$125^{\circ} 4$	373				

Round	K:	Round	K^{-}	Round	$K_{\text {S }}$	Kound	K^{\prime}	Round	K_{v}	Round	K_{v}		
1720 f. s. runtisurd.		1760 f.s. conbintied.		1800f.s. coutinued.		18.40f. s. contiulued.		ISSof.s. continuted.		I940f.s. Mean 106 S			
311	1180	9	IIS. 2	258	$107 * 9$	253	114.8	$2 S_{5}$	112.2				
315	126.5	286	116.6	259	1127	255	116.1	286	10S.8				
316	$120 \cdot 7$	287	1159	260	$106 \cdot 8$	257	100.9	287	109.4	$1960 \mathrm{f.s}$.			
317	124.4	258	113.4	284	1054	258	1030	2 SS	106.2	 248 103.1			
320	$121 \cdot 7$	291	113.7	2 S 5	116	259	112.7	310	101.6				
321	122'2	293	121.1	$2 S 6$	114.1	260	$97 \cdot 6$	311	108.0	284 105.2			
322	120.1	294	117.6	287	113.6	$2 S_{4}$	1034	323	117.6	285			
323	$125^{\circ} 1$	299	120.5	285	1110	285	114.1	394	1110	286			
324	1237	301	$115{ }^{\circ}$	291	111.3	286	111.5	395	$109{ }^{\circ} 3$	$287 \quad 100^{-3}$			
325	$119^{\circ} 3$	310	116.8	293	120.6	2 S 7	111.5	396	1109	$310 \quad 90 \cdot 3$			
326	116.2	311	115.2	294	115.8	288	108.6	397	$107 \% 9$	311 104*3			
327	123.4	315	125.3	301	111.6	291	109'1	398	113.4	394			
330	120.5	316	$119^{\circ} 1$	310	1119	294	1139	399	11184	395			
341	122.6	317	$122{ }^{\circ}$	311	112.5	310	1070	400	$110 \cdot 2$	396			
373	119.0	320	119.5	315	123.3	311	109.8	401	1114	397 104\%			
379	126.3	321	$120^{\circ} 1$	317	$119^{\circ} 6$	320	115.2	404	1090	398			
380	$121{ }^{\circ}$	322	116.2	320	1173	321	116	406	107.8	399			
351	$118 . \mathrm{S}$	323	123.2	321	$115 \cdot 1$	322	108.7	407	$107 \cdot 3$	400			
394	1197	324	121.6	322	112.4	323	119.4	409	1096	4011074			
395	119.6	325	116.5	323	121.3	324	1176	410	112.3	407			
396	120.6 113.6	3 SO	117.4 116.3	324	119.6	325	11009	411	$109{ }^{\circ}$	409			
328	113.6	381	116.3	325	113.7	380	$110 \cdot 4$			$410 \quad 109^{\circ}$			
399	120.2	394	11775	350	113.8	394	1131	Mean 110\%		411105.5			
400	118.2	395	116.9	381	$114^{\circ} \mathrm{O}$	395	111.5			Mean 105			
401	120	396	118.1	394	$115{ }^{\circ} 3$	396	113.3						
402	IIS.3	398	113.6	395	114.3 115.6	398	113.5	$1900 \mathrm{f.s}$.					
403	118.1 118.4	399	$118{ }^{\circ}$	396	$115{ }^{\circ}$	399	1135			I 98 Jf.s.			
405	115.4 120.3	400 401	116.1 117	398	113.5	400	112.2	Mean 108.9					
406	11S.3	402	115.5	400	$114{ }^{1}$	402	$110 \cdot 3$			Mean $105 . \mathrm{S}$			
405	121.3	403	115.6	401	115.6	404	$111 \cdot 3$	$1920 \mathrm{f.s}$					
409	114%	404	116.0	402	112.9	405	IIO. 5			2000 f.s.			
410	119%	405	116.9	403	113.2	406	$110 \cdot 3$	$2.48 \mid 107 \circ 0$					
411	116	406	$115{ }^{\circ} 6$	404	113.6	407	111.3	251	117.5	$2 S_{4}$	$\cdot 2$		
Mean	119.5		$119{ }^{\circ}$	405	113.7	408	115.2	$2{ }_{2}$	105.3	256			
		410			12	409	110		110.3	287	$103 \cdot 3$		
17.80 f . 5.		411	1149	¢08	$117{ }^{1} 2$	$411 \quad 1109$		$2 S 7$ 10 310 9		394	0.5		
		Mean 1170		409410411				$\begin{aligned} & 395 \\ & 396 \end{aligned}$	10.72				
M	118.5			Mcan		311					$\begin{aligned} & 390 \\ & 397 \end{aligned}$		
				394	393 113:2								
		1780 f.s.				Mean $114^{\circ} 6$		IS60f.s.		395		399	
17	f.s	Mean 115°		397				400 105.0					
248				1820 f. s.		Mean	1114			39 S [1133		401	
299	$120{ }^{\circ}$	1800 f. s.					40010		410 107% 411 103.9				
251				Mean 113.2									
353 355	818.8			$\begin{aligned} & 407 \\ & 409 \end{aligned}$		Mean 105°							
255 257	1168	248				18.40 f s.		2.4511107					
257	11.82	289	118.8	$=49$	116.6			409 1007 410 $110 \% 7$		2320 f. s.			
39	1129	251	1179	251	117.5			411107					
$3 \times$		253	1170	24 ${ }^{18} 11.4$		253	112.7						
2	$105 \cdot 3$	255 257	116.4 1050	251 11:7		255 254	115.9	Mean	10,93	Mean 104:2			
-	1053					2541053							

Round	κ_{v}^{-}	Round	K_{v}	Round	Λ_{v}	Round	K_{v}	Round	K_{v}	Round	K_{v}
2040 f. s.		2080f. s.		2120 f . s.		2160 f . s.		2200 f. s.		2240 f. s. continued.	
286	98.9	394	$100 \cdot 8$	394	99°	394	97. 1		$90 \cdot 7$		
394	$102 \cdot 8$	395	97.4	395	$9{ }^{9} \cdot 1$	395	$92 \cdot 8$	396	93.6	398	12.7*
395	$99^{\circ} 7$	396	99.8	396	$97^{\circ} 8$	396	95.7	397	93.2	399	93.9
396	$102{ }^{\circ}$	397	98.5	397	${ }^{96 \cdot 7}$	397	94.9	398	112.8*	401	94.7
397	100^{2}	398	1133°	398	1130^{*}	398	112.9*	399	95.7		
398	113.1	399	101.3	399	$99^{\circ} 4$	399	97.5	401	96.4	Me	- 92.0
399 400	103.2	400	101.6	400	$100 \cdot 1$	400	98.6 98.2	Mean 93.9			
400	103.3	401	101.8	401	100\%	401				2260 f.s.	
401 409	1037	409	103.1	410 102.4		Mean 96.4					
409	104.8	$\begin{array}{l\|l} 410 & 104^{\circ} \\ 41 \mathrm{I} & 100.8 \end{array}$		Mean $98 \cdot 8$				2220 f. s.		Mean 91.3	
410	$105 \cdot 6$										
	102.3	Mean 102\%						Mean	93°	2280 f.s.	
Mean 103.3		2 10دf.s. Mean 100\%		2140 f. s. Mean 97.9		$2180 f$. s. Mean 95.5		2240 J. s.		396 $89 \cdot 7$ 398 $112 \cdot 6 *$ 401 $93^{\circ} 0$	
2060 f. s. Mean 102.9											
		395 396	88.5 91.6			Mean	-914				
		397	91.4								

74. Density of the Air when the following Rounds were fired.

No. of Rounds	Density	No. of Rounds	Density	No. of Rounds	Density
1-15	1.002	225-240	- 0.989	431-438	I ${ }^{\circ} \mathrm{O} 25$
16-41	1011	241-260	0.986	439-444	I 039
42-60	1.025	261-287	$1{ }^{\circ} 005$	445-448	1.031
$6 \mathrm{I}-68$	1.045	288-312	1.015	449-452	I.053
69-84	1.045	313-325	1.005	$453-460$	I 054
85-89	1.028	326-340	$1{ }^{\circ} \mathrm{O} 32$	46 I	I.030
90-102	$1{ }^{\circ} \mathrm{O} 20$	341-352	I 037	462	$1{ }^{\circ} \mathrm{O} 34$
103-117	1.027	353-364	1.016	463	1.042
118-138	1.037	365-379	I.030	464-466	1.051
139-147	$1{ }^{\circ} 007$	380-391	$1{ }^{\circ} 002$	467-477	I 039
148-178	$1{ }^{\circ} \mathrm{OOI}$	392-411	I'026	478-482	1.014
$179-187$	1.034	412-414	$1{ }^{\circ} \mathrm{OII}$	483-488	1.046
188-206	1.011	415-423	1.008	489-499	I 037
207-224	0.986	424-430	1.020	500-502	I 0224

75. Corrected mean values of K_{v} for Spherical Projectiles.

$$
(w=534.22 \text { grains }) .
$$

$\begin{gathered} v \\ f . s . \end{gathered}$	Experimental values of人。	Correction	Corrected values of K'	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	Experimental values of κ_{v}	Correction	Corrected values of κ^{*}
720	$119{ }^{\circ}$			1520	133.6	+0.3	133.9
740	113.2			1540	132.4	+0.1	132.5
760	106.5			1560	131.4	-0.3	131.1
780	$106 \cdot 3$			1580	129.8	-0.1	129.7
800	118.2			1600	128.1	$+0.2$	$128 \cdot 3$
820	128.2			1620	126.7	$+0.2$	126.9
840	133.9	$+6.9$	140.8	1640	125.4	$+0.1$	125.5
860	136.4	$+4.4$	140.8	1660	$124^{\circ} \mathrm{O}$	+0.1	124.1
SSo	$140^{\circ} 0$	$+0.8$	$140 \cdot 8$	1680	122.4	+0.3	122.7
900	1417	-0.9	$140 \cdot 8$	1700	121.1	$+0.2$	121.3
920	$141{ }^{1} 1$	-0.3	140.8	1720	119.8	+0.1	119.9
940	$141^{\circ} \mathrm{O}$	-0.2	$140 \cdot 8$	1740	118.5	-	$118 \cdot 5$
960	140%	$+0.1$	$140 \cdot 8$	1760	$117{ }^{\circ}$	+0.1	117*
9So	141.7	-0.5	141.2	1780	115.2	+0.5	1159
1000	$142^{\circ} 9$	-0.9	$142^{\circ} \mathrm{O}$	1800	114.6	-0.2	114.4
1020	$144^{\circ} \mathrm{O}$	0	$144^{\circ} \mathrm{O}$	1820	113.2	-0.1	113.1
10.40	147.5	\bigcirc	$147 \% 5$	1840	1117	+0.2	11199
1060	150.5	0	150.5	1860	1114	-0.6	110.8
10S0	152.9	-0.3	152.6	1880	$110 \cdot 5$	-0.7	$109 \cdot 8$
1100	$154^{\circ} \mathrm{O}$	+0.1	154.1	1900	108.9	-	$108 \cdot 9$
1120	155.4	-0.3	$155{ }^{\circ} 1$	1920	1078	+0.3	108.1
1140	155.3	$+0.4$	155.7	1940	106.8	+0.5	1073
1160	156.4	-0.4	$156{ }^{\circ}$	1960	$105 \cdot 2$	+1.3	106.5
1180	156.2	-0.2 +0.6	156.0	1980	$105 \cdot 8$	-0.1	105\% 7
1200	$154{ }^{\circ} 9$	+0.6	155.5	2000	105°	-0.1	$104{ }^{\circ} 9$
1220	154°	+0.4	154.6	2020	$104 \cdot 2$	-0.1	104.1
1240	152.7	+0.7	153.4	2040	103.3	-0.1	103.2
1260	151.4	$+0.6$	$152^{\circ} \mathrm{O}$	2060	1029	-0.7	$102 \cdot 2$
1250 1300	150.1 148.6	+0.4 +0.1	150.5	2080	$102{ }^{\circ}$	-0.9	101*1
1300	148.6	+0.1	$148 \cdot 7$	2100	$100{ }^{\circ}$	-0.1	99*9
1320	1.476 1.46 .8	-0.4	$147 \cdot 2$	2120	$98 \cdot 8$	-0.1	98.7
1340	146.8	-0.8	146.0	2140	97.9	-0.3	$97 \cdot 6$
1360	145.2 143.5	-0.5 -0.1	144.7 143.4	2160 2150	96.4	$+0.1$	96.5
1400	143.5 142.3	-0.1 -0.2	143.4 142.1	2150 2200	$95 \cdot 5$ 93.9	-0.1 +0.5	95.4
1420	140.7	+0.1	140.8	2220	$93{ }^{\circ}$	+0.4	974 93
:470	$139^{\circ} \mathrm{L}$	+0.3	139.5	2240	92°	+0.4	92.4
1460 1430	137.8 136.4	+0.3 +0.3	138.1	2260	91.3	$+0.1$	91.4
1430	136.4	$+0.3$	136.7	22SO	914	-1.0	$90 \% 4$
1500	134.3	± 0.5	$135^{\circ} 3$				

76. Reports dated July 23, 1868, July 8, 1879, and Aug. 31, 1880.

Round	Λ_{0}	Round	N_{v}^{*}	Round	人v	iRound	$\lambda^{*} v$	Round	K_{v}^{*}	Kound	κ_{v}^{*}								
1420 f. s.		1.760 f. s.		1500 f.s.		$15+0 \mathrm{f}$. s.		${ }_{15}$ Sof.s.		1620 f. s. continutd.									
39	105.2	39	107’9	39	1076	39	1074	44	$100 \cdot 5$										
40	103.0	40	103.3	40	1038	40	1044	113	$94 \cdot 3$	470	72.0								
41	102.8	41	101.9	41	1010	41	$100 \cdot 2$	114	98.2	472	87\%3								
43	109:2	43	104\%	43	104\%	44	101.7	115	101.8										
44	1049	44	1037	44	1026	113	$96 \cdot 3$	116	92.8	Mean	SS.0								
116	89.6	113	$9{ }^{5} \cdot 2$	113	97.3	114	100.5	117	$93 \cdot 1$										
127	1086	114	104.8	114	102.8	115	104.0	145	$91 \cdot 3$										
130	1034	116	$90 \cdot 5$	116	91.5	116	$92^{\circ} 3$	1.46	$88 \cdot 7$	163									
131	${ }^{103.1}$	127	1094	130	103.4	117	95°	147	$90 \cdot 4$										
132	102'7	129	$98 \cdot 9$	132	$100 \cdot 1$	145	92.2	154	94.9										
133	1109	130	103.4	145	93^{2}	146	857	155	86.1										
134	${ }^{116.1}$	132	1016	147	90.9	147	90.7	156	87.5										
154	98.5	133	110.9	154	95.9	154	$95^{\circ} 3$	157	$81 \cdot 3$	16	f. s.								
155	1073	154	96.6	155	$96 \cdot 7$	155	$9{ }^{1}+$	158	$94^{\circ} \mathrm{I}$										
156	105.1	155	102.0	156 157	$95^{\circ} 9$	156 157	$91 \cdot 7$ $85 \cdot$			144	73.5 90.2								
157	105.9 98.3	156 157	$100^{\circ} 2$ 100	157 158	94.4 96.2	157 158	$\begin{aligned} & 88 \%^{\circ} \\ & 95^{\circ} \end{aligned}$	Mear	92.5	145	- 88.1								
Mean		${ }_{15}{ }^{5}$	97⒉2							147	90°								
	10.43	Mean		Mea	98.7	Mea	96.2	1500 f . s.			$\begin{array}{r}75 \cdot 5 \\ 87 \% \\ \hline\end{array}$								
								$91 \cdot 4$											
1430 f. s. Mean roj"4		1470 f. s. Mean ior. 1			$\begin{aligned} & 1510 f . s . \\ & \text { Mean } 97 \cdot 3 \end{aligned}$		I 550 f . s. Mean 95 5		1600 f. s.		1650 f.s.								
							$\begin{array}{r} 93.2 \\ 1007 \end{array}$	Mean $\mathrm{S}_{4}+$											
1440 f. s.		1480 f. s.		1520 f.s.		I560f.s.			92.4										
									91.0 88.6										
39	108.0	40	103.5	1520	J.				85. 90										
40	103.2 102.4 1	41	101.4		107.5 $104^{\circ} 0$					154									
41	$102 \cdot 4$ 104.1	43	$10 \%^{\circ}$ 103.1		104% 1006	44	101.1	155	$8{ }^{8.4}$	145	89.9 87%								
43	104.1 10.4	44 113	103.1 97.8	41	100\%6	113	95.5	156 157	${ }_{85} 8.4$	147									
114	105.6	114	10\%	113	96.9	114	99 102			470	$7{ }^{7}{ }^{\text {8 }} 9$								
116	90'1	116	$9 \mathrm{I}^{\circ} \mathrm{O}$	114	101.7	115	102.9 92.7	472	93 873 80	472	873								
127	$105 \cdot 9$	127	$109 \cdot 5$				94°												
130 131	103.4 1029	129 130	95.9 103.4	117 145	96.4 92	145	$9+\circ$ 91.7	Mean	89.9	Mean	84.6								
132	102.2	132	100.9	146	88.7	146	$88 \cdot 7$												
133	110.9	133	110.9	147	90.9	147 154	$90 \cdot 4$												
154	$97 \cdot 6$	I.47	90.9	154	$95 \cdot 6$	154 155	95.1 8.7		. s.										
155	1046	154	$96 \cdot 1$	155 156 157	$\xrightarrow{9+\circ}$	155 156	$85 \cdot 7$ 89.6				S4.8								
150	103'7	155	99.3	150	93.8	158 157	89.6 85.2												
157 158	$\begin{array}{r}103.1 \\ 97.7 \\ \hline\end{array}$	156	95.1	157 158	91.4 95		$\begin{aligned} & 85.2 \\ & 9+6 \end{aligned}$			168									
Mean 103.0		$\begin{aligned} & 157 \\ & 158 \end{aligned}$				Mean 94.3		$1620 \mathrm{f}. \mathrm{s}$.											
		Mean $\frac{1008}{}$		Mean 96.5						144	73.5								
		115	$99 \cdot 6$ $90 \cdot 7$			145 146	89.7 87.6												
1.450 f. 5.												146	SS. 3	147	S9.9				
		1490 \%.s.		${ }^{1} 530$ f. s.				147	90.1	470	$8 \mathrm{SI}^{1}$								
		1570 f. s.	154 155 15			94.4	472	86.7											
Mean 10:'5				Mean 99.6		Mcan $6 \cdot 1$		Mean $93{ }^{\circ}$		155156158	$80 \cdot 7$ $83 \cdot 3$	Mean $84 \cdot 8$							
		83.3 $93^{\circ} 2$																	

Round K_{v}	Round K_{v}^{*}	Round K_{v}	Round K_{v}	Round K_{*}^{*}	Round	h_{v}^{-}
I 690 f .	1770f.s. Mean So 7	1860 f. s.	$1920 f . s$. continued.	ig $90 f$. s. continued.	2030 f.s. Mean $67 \cdot 8$	
Mean 84.8		73.5				
		462 91.1	477 677	482 62.2		
1700	I $780 \mathrm{f.s}$.	46378	502 65.1	497 74.5		
		502	Mean 72.8	5015	473	
$144 \mid 73.5$		Mean 76.9		502643		
145 8904	$\begin{array}{l\|l} 462 & 91 \cdot 3^{*} \\ 463 & 80 \cdot 3 \end{array}$		1930 f. s.	Mean	474	$70^{\circ} 7$
14687					475	74.4 67.7
147 89	Mean So 3	$1870 \mathrm{f}$. s.			476	$67 \cdot 7$
$470 \quad 83.6$			Mean 71.4	$1990 f . s$.	477	$70^{\circ} 1$
472 84.6		Mean 77 ${ }^{\circ}$			478 479	$65 \cdot 2$ $66 \cdot 7$
Mean 84.7	1790 f. s. Mean 79.9	I 880 f . s.	1940 f. s.	Lean	480	$65 \cdot 9$
					481	$62 \cdot 6$
1710 f. s.			473 69.5	2000 f. s.	482	$63 \cdot 7$
		461 $75^{\circ} 6$	474 7100		491	67.4
Mean 83.7		462 89*	475 70		493	$68 \cdot 1$
	1800f. s.	463 78.	476 68.	473 71.4	497	$75^{\circ} \mathrm{O}$
		473 65.8	477 68	474 70\%7	498 499	$71 \cdot 8$ 66.4
$1720 f . s$.	462 $92 \cdot{ }^{*}$ 463 79	50264%	502	475 74*3	499 500	$66 \cdot 4$ $72 \cdot 1$
$145 \mid 89^{\circ} 2$		Mean 74.9	Mean $68 \cdot 8$	476 $67 \cdot 9$ 477 $70 \cdot 1$	501	59.7
146 87.2	Mean $79{ }^{\circ} 4$			479 66.8	502	$62 \cdot 6$
470 85.4		1800 f. s.	1950f. s.	$480 \quad 66 \cdot 1$		
471	18iof.s.			$481 \quad 61 \cdot 7$	Mean	68.0
472 827		Mean 73.8	Mean 69.4	$482 \quad 62 \cdot 6$		
Mean 83.3	75°			497 74.7		
		I $900 f . s$.	$1960 \mathrm{f}$. s.	$50073 \cdot 0$	Mea	
				501 59.7 502 63.5		
1730 f. s. Mean 82.4	1820 f. s.	461 $78 \cdot 3$	473 70%	Mean 67.9	2060 f. s.	
		462 88.4	474 70•7			
	461 71.3 462 92.0	463 77	475 72.1		473	$4 \cdot 5$
	462 92.0*	473 68.2	$476 \quad 68 \cdot 3$		474	$70^{\circ} 1$
$1740 f$	463 $78 \cdot 6$	474 71	47768	2010	475	73.5
462 87	Mean 75°	47567	479 66.	n 67.9	476	677
$470 \quad 87.7$		476 67\%	497 74.5		477	$70 \cdot 1$
471 68.5		50265°	50265°		478	6
472 8i.0	$183 \supset f$. s. Mean 75. 1	Mean 73	ean	0	480	$66 \cdot 1$
Mean 8I•2					481	63.0
				473 72.5	482	$64 \cdot 6$
1750 f. s. Mean So:2		I9IOf. s.	1970 . s.	474 70.7	491	67.1
	1840 f . s.		1970 . S.	$475 \quad 74 *$	493	$68 \cdot 4$
		Mean 72.5	Mean 68.7	$476 \quad 67 \cdot 7$	497	$75^{\circ} \mathrm{O}$
				477 70 1	498	$71 \cdot 6$
	$\begin{array}{l\|l} 461 & 72 \cdot 0 \end{array}$	$1920 f . s$.	1980 f. s.	$47966 \cdot 8$	499	66.4
1760 f . s.	462 92.0			$480 \quad 65.7$	500	71.6
	463 786	1920f.		$481 \quad 62 \cdot 2$	501	59.4
	Mean 75*	461 81.6	473 $70 \cdot 6$	$482 \quad 63.0$	502	62.2
462 89		462 87.0	474 70\%7	$497 \quad 74{ }^{\circ} 9$	Mean	
463 8i•I		463 76.5	475 73.3	$500 \quad 72.7$		65*0
470 90.0		473 68.7	476 68.3	50159.7		
471 65%	1850f.s.	474 71.4	477 69.5	$502 \quad 62.9$	2070 f. s.	
		475 69 1	479 $66 \cdot 8$ 48 I $6 \mathrm{I} \cdot 2$			
Mean 8I'6	Mean 76.8	476 67\%	481 61.2	Mean 68*o	Mean	67.9

77. Corrected mean values of K_{0} for Ogival-headed Projectiles. ($w=534.22$ grains.) Cubic Law.

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	$\begin{aligned} & \text { Experimental } \\ & \text { valuess of } \\ & \boldsymbol{K}_{\psi} \end{aligned}$	Correc-	Corrected values of κ_{v}	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	$\begin{aligned} & \text { Experimental } \\ & \text { values of } \\ & K_{v}^{\circ} \end{aligned}$	Correc-	Corrected values of K_{v}
430	130.6	$+10.1$	140\%7	775	81.9	-3.8	$78 \cdot 1$
435	133.6	+ $5 \cdot 5$	$139^{.1}$	780	$80 \cdot 3$	-2.7	$77 \cdot 6$
440	133.6	+3.9	1375	785	$75 \cdot 6$	$+1.5$	$77 \cdot 1$
465	$129^{\circ} 9$	+0.2	$130 \cdot 1$	790	$69^{\circ} 7$	+6.9	$76 \cdot 6$
470	$130 \cdot 6$	-199	128.7	795	74.6	+1.5	$76 \cdot 1$
475	120.1	$+73$	1274	800	62.1	+13.5	$75 \cdot 6$
530	120.2	-6.0	114.2	805	61.9	+132	75^{1}
535	118.8	- 57	113.1	810	$61 \cdot 1$	+13.5	74.6
540	112.6	-0.6	$112{ }^{\circ}$	815	57.9	+16.3	74.2
545	107.2	+3.8	1110	820	$67{ }^{\circ}$	+6.9	73.9
550	102.8	+7.2	110°	825	74.3	-0.6	73.7
555	1015	+ 7.5	$109{ }^{\circ}$	830	74.7	$-1 \cdot 1$	$73 \cdot 6$
560	$98 \cdot 1$	+9.9	$108{ }^{\circ}$	835	74.9	-13	$73 \cdot 6$
565	99.5	+766	1071	8	$72 \cdot 2$	+14	$73 \cdot 6$
570	100.5	+5.6	106.1	845	74.5	-0.9	73.6
575	$98 \cdot 6$	+6.6	105.2	850	70.0	+366	$73 \cdot 6$
580	99.7	+4.6	104.3	855	69.6	+4.0	73.6
$5{ }_{5}$	102.6	$+0.8$	103.4	860	67°	+6.6	73.6
590	100.9	+1.6	102.5	865	66.1	+75	73.6
595 600	112.9 100.6	-11.2	1017	870	63.1	+10.5	$73 \cdot 6$
600	100.6	+0.2	$100 \cdot 8$	875	$62^{\circ} 4$	+11.2	$73 \cdot 6$
605	113.2	-13.2	$100{ }^{\circ}$	880	64.9	+8.7	$73 \cdot 6$
650 655	95.5	-2.4	93.1	885	$75 \cdot 3$	-177	73.6
655 660	96.5	-4.1 -6.0	92.4 91.7	890 805	72.9	+0.7	73.6 73.6
665	97.7 99.6	-6.0 -8.6	$9{ }^{91} 9$	895 900	74.1 81.9	-0.5 -8.3	$73 \cdot 6$ 73.6
670	$99^{\circ} 9$	-9.6	$90^{\circ} 3$	905	$79 \cdot 8$	-6.2	73.6
675	100.1	- 10.5	89.6	910	81.9	-8.3	$73 \cdot 6$
$6{ }^{650}$	$95 \cdot 6$	-9.6	89°	915	$80 \cdot 2$	-6.6	$73 \cdot 6$
655 690	97.5 96.4	-9.2 -8.7 -3.7	88.3	920	78.4	-4.8	$73 \cdot 6$
680 695	964 907	-8.7 -3.7	87% 870	925 930	$75 \cdot 6$	- 2.0	73.6
700	86.7	-0.3	86.4	935	71.1	-2.3 +2.5	73.6 73.6
705	$84^{\circ} 9$	+0.9	85.8	940	69.9	+3.7	$73 \cdot 6$
710	S1.1	+4.1	85.2	9.45	75.9	-2*3	$73 \cdot 6$
715 720	$80 \cdot 2$ 82.6	+4.4	$8_{4} \cdot 6$	950	$77 * 3$	-3.7	$73 \cdot 6$
720 725	82.6 8100	+1.4 +2.4	84.0 83.4	955	75.9	-2.3	73.6
730	SIPI	+ 2.4 +1.8	83.4 82.9	960	73.1	+0.5	73.6
735	$77 \cdot 2$	+5.1	88	965 970	75.5	-1.9 +0.3	73.6
780	77.3	+4.5	81.8	975	73.9	+0.3 +0.3	$73 \cdot 6$ 73.6
745	750	+ 3:2	$81 \cdot 2$	9 90	$72 \cdot 9$	+0.7	$73 \cdot 6$
750	830 83 8.2	-2.3	So. 7	955	$72 \cdot 9$	+0.7	73.6
755 760	83.2 83 8	-3.1 -3.9	So. 70.6	990	74.6	-10	$73 \cdot 6$
-65	\$5.5	- 3.9 -6.4	79^{7}	995 1000	74.8	-1.2	73.6
770	846	-6.0	$\begin{aligned} & 79.1 \\ & 75.6 \end{aligned}$	1000 1005	74.5 74.8	-0.9 -0.2	73.6
			75	1005	73.	-0.2	73.6

Corrected mean values of K_{v} for Ogival-headed Projectiles-(cont.).

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	Experimental values of κ_{v}	Corrections	Corrected values of κ_{v}	$\begin{gathered} v \\ f . s . \end{gathered}$	Experimental values of K_{v}	Corrections	Corrected values of K_{v}
1010	74.2	-0.4	$73 \cdot 8$	1410	105.6	- I'0	104.6
1015	73.9	+0.2	$74^{1} 1$	1420	104.3	-0.3	104*0
1020	73.4	+ I. 2	$74 \cdot 6$	1430	103.4	\bigcirc	103.4
1025	$75 \cdot 6$	-0.2	75.4	1440	$103{ }^{\circ}$	-0.2	$102 \cdot 8$
1030	$76 \cdot 1$	+0.5	$76 \cdot 6$	1450	102.5	-0.4	$102 \cdot 1$
1035	$81^{\circ} \mathrm{O}$	-2.6	78.4	1460	101.9	-0.5	$101 \cdot 4$
1040	83.7	-29	$80 \cdot 8$	1470	IOI'I	-0.4	100\% 7
1045	$89^{\circ} 6$	- $5 \cdot 8$	$83 \cdot 8$	1480	100.8	-0.9	$99^{\circ} 9$
1050	90.9	$-3 \cdot 6$	87.3	1490	$99 \cdot 6$	-0.4	99^{2}
1055	$91^{\circ} 6$	-0.8	$90 \cdot 8$	1500	$98 \cdot 7$	-0.3	$98 \cdot 4$
1060	$92 \cdot 2$	+ I•8	$94^{\circ} \mathrm{O}$	1510	$97 \cdot 3$	+0.4	$97 \cdot 7$
1065	$92 \cdot 5$	$+4 \cdot 1$	$96 \cdot 6$	1520	96.5	+0.3	$96 \cdot 8$
1070	104.5	$-5 \cdot 8$	$98 \cdot 7$	1530	$96 \cdot 1$	0	$96 \cdot 1$
1080	105.2	-3.0	102.2	1540	$96 \cdot 2$	-0.9	$95 \cdot 3$
1090	106.6	- 1.7	104.9	1550	$95 \cdot 5$	- 1.0	94.5
1100	107.3	-0.4	$106 \cdot 9$	1560	94.3	-0.6	$93 \cdot 7$
1110	$107 \cdot 4$	$+1.0$	108.4	1570	93.0	-0. I	$92 \cdot 9$
1120	1057	$+3.5$	$109{ }^{\circ} 2$	1580	$92 \cdot 5$	-0.4	$92 \cdot 1$
1130	107.2	$+2.4$	109.6	1590	$91 \cdot 4$	-0.1	91•3
1140	107.6	$+2.0$	109.6	1600	$89^{\circ} 9$	+0.6	$90 \cdot 5$
1150	$109 \cdot 3$	+0.3	109.6	1610	$88 \cdot 9$	+0.9	89.8
1160	109.9	-0.3	109*6	1620	$88 \cdot 0$	+ I'I	89^{1}
1170	1100	-0.4	109.6	1630	83.9	+4.5	$88 \cdot 4$
1180	110°	-0.4	ro9.6	1640	$84^{\circ} \mathrm{I}$	+3.6	87.7
1190	109.9	-0.3	109.6	1650	84.4	$+2 \cdot 6$	$87 \cdot 0$
1200	$106 \cdot 9$	$+2 \cdot 7$	109.6	1660	$84 \cdot 6$	+ 1.7	$86 \cdot 3$
1210	$107{ }^{\circ}$	$+2.6$	109.6	1670	84.8	+0.8	$85 \cdot 6$
1220	IIO I	-0.5	109.6	1680	$84 \cdot 8$	+0.1	84.9
1230	I IO'I	-0.5	109.6	1690	$84 \cdot 8$	-0.6	$84 \cdot 2$
1240	110°	-0.4	109.6	1700	84.7	- I'2	83.5
1250	$110 \cdot 2$	-0.6	109.6	1710	83.7	-0.9	82.8
1260	109.6	-	109.6	1720	$83 \cdot 3$	- $1 \cdot 2$	82.1
1270	III ${ }^{\circ} \mathrm{O}$	- I. 4	109. 6	1730	82.4	-0.9	$8 \mathrm{~S} \cdot 5$
1280	110.9	- $1 \cdot 3$	109.6	1740	$8 \mathrm{I} \cdot 2$	-0.3	80.9
1290	$110 \cdot 1$	-0.5	109.6	1750	$80 \cdot 2$	+0.1	$80 \cdot 3$
1300	109.9	-0.5	$109 \cdot 4$	1760	$8 \mathrm{I} \cdot 6$	- I.9	$79^{\circ} 7$
1310	$108 \cdot 7$	$+0.4$	$109 \cdot 1$	1770	$80 \cdot 7$	- I•5	$79^{\circ} 2$
1320	108.9	-0.1	$108 \cdot 8$	1780	$80 \cdot 3$	- $1 \cdot 7$	$78 \cdot 6$
1330	108.5	\bigcirc	$108 \cdot 5$	1790	79.9	- I'9	$78 \cdot 0$
1340	107.3	+0.8	108.1	1800	79.4	-2.0	77.4
1350	$106 \cdot 5$	$+\mathrm{I} \cdot 2$	1077	1810	$75^{\circ} 2$	+ I. 6	$76 \cdot 8$
1360	$106 \cdot 0$	$+1 \cdot 2$	107.2	1820	75°	+ $1 \cdot 2$	$76 \cdot 2$
1370	106.5	+0.3	$106 \cdot 8$	1830	$75^{\circ} \mathrm{I}$	+0.6	$75^{\circ} 7$
1380	$105 \cdot 9$	+0.4	$105 \cdot 3$	1840	$75 \cdot 3$	-0.1	$75^{\circ} 2$
1390 1400	$105 \cdot 6$ 105.8	+0.2	$105 \cdot 8$	1850	$76 \cdot 8$	-2.1	747
1400	$105 \cdot 8$	-0.6	105°	1860	$76 \cdot 9$	-2.6	74.3

Corrected mean values of K_{0} for Ogival-headed Projectiles-(cont.).

$\begin{gathered} 2^{\prime} \\ \text { f.s. } \end{gathered}$	Experimental values of κ^{*}	Corrections	Corrected values of \hat{N}^{*}	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	Experimental values of κ_{v}	Corrections	Corrected values of κ_{v}
1 S70	77°	-3.2	73.8	2330	$62 \cdot 8$	$-2 \cdot 1$	$60 \cdot 7$
1 SSo	74.9	-1.6	$73 \cdot 3$	2340	62.9	-0.7	$60 \cdot 2$
1S90	$73 \cdot 8$	-1.0	$72 \cdot 8$	2350	62.8	-3.1	59'7
1900	$73^{\circ} 1$	-0.9	$72 \cdot 2$	2360	$62 \cdot 8$	$-3 \cdot 7$	$59^{\circ} 1$
1910	72.5	-0.3	717	2370	$60 \cdot 5$	-19	58.6
1920	$72 \cdot 8$	- I'6	71.2	23So	$60 \cdot 7$	-2.7	58.0
1930	71.4	-0.6	$70 \cdot 8$	2390	58.4	-0.9	57.5
1940	GS-S	$+1.6$	$70 \cdot 4$	2400	58.4	- 1.4	57°
1950	69.4	$+0.6$	70°	2410	$57 \cdot 8$	-1.3	56.5
1960	$69 \cdot 6$	0	69.6	2420	$55^{\circ} 2$	+0.8	56.0
1970	$68 \cdot 7$	+0.6	69.3	2430	53°	$+2 \cdot 6$	$55 \cdot 6$
19 SO	67.4	+1.6	$69^{\circ} \mathrm{O}$	2440	53°	$+2.1$	55^{1} I
1990	679	+0.9	68.8	2450	519	$+2.8$	54.7
2000	67.9	+0.6	CS. 5	2460	$51 \cdot 3$	$+3.0$	54.3
2010	67.9	+0.3	68.2	2.470	51.4	+25	$53^{\circ} 9$
2020	65°	0	$68 \cdot$	2480	51.4	$+2.2$	$53 \cdot 6$
2030	$67 \cdot 8$	0	$67 \cdot 8$	2490	$51 \cdot 5$	$+1 \cdot 7$	53.2
2040	$65^{\circ} \mathrm{O}$	-0.3	$67 \cdot 7$	2500	51.5	$+14$	52.9
2050	68.0	-0.5	67.5	2510	51.7	$+10$	52.7
2060	68.0	-0.6	67.4	2520	$51 \cdot S$	+0.7	$52 \cdot 5$
2070	67.9	-0.6	$67 \cdot 3$	2530	51.9	+0.4	$52 \cdot 3$
20So	67.1	+0.1	$67 \cdot 2$	2540	520	+0.2	$52 \cdot 2$
2090	67.1	\bigcirc	$67 \cdot 1$	2550	52°	0	52.0
2100	66.7	$+0 \cdot 3$	67.0	2560	$52^{\circ} \mathrm{O}$	-0.1	51.9
2110	66.6	+0.3	66.9	2570	$52 \cdot 1$	-0.3	51.8
2120	66.9	-0.1	$66 \cdot 8$	2580	53°	-1.3	51.7
2130	$66 \cdot 3$	+0.4	$66 \cdot 7$	2590	$53^{\circ} \mathrm{I}$	-1.5	$51 \cdot 6$
2140 2150	66.3 66.3	+0.3	$66 \cdot 6$	2600	53.2	-1.7	51.5
2150 2160	$60 \cdot 3$ $66 \cdot$	+0.2 +0.4	66.5 66.4	2610	53.3	- I.9	51.4
2100 2170	60.0 659	+0.4	66.4 $66 \cdot 3$	2620	53.3	-1.9	51.4
2180	65.8	+0.4 +0.3	66.3 66.1	2630 2640	$51^{\circ} \mathrm{O}$	+0.4 +0.4	51.4
2150	659	$+0.1$	66.0	2650	51.5	+0.4	51.4 51.4
2200	$65 \cdot 9$	-0.1	$65 \cdot 8$	2660	51.5	-0.1	51.4
2210	65.9	-0.3	$65 \cdot 6$	2670	51.4	0	51.4
2220	65.9	-0.6	65.3	2680	51.4	0	51.4
2230	65.8	-0.7	$65^{\circ} 1$	2690	$51 \cdot 3$	\bigcirc	$51 \cdot 3$
22.40	65.8	-0.9	649	2700	$51 \cdot 3$	0	$51 \cdot 3$
2250	65.8	-1.2	6.6	2710	$51 \cdot 3$	0	51.3
2200 $22 \% 0$	65.9 65.5	-178	64.2	2720	$51 \cdot 3$	0	51.3
2270	$65 \cdot 5$	-1.8	$63 \cdot 7$	2730	51.2	\bigcirc	$51 \cdot 2$
2280	$60^{\circ} 3$	-3.1	63.2	2740	$51 \cdot 2$	\bigcirc	$51 \cdot 2$
2290 2300	65.5	-2.8	62.7	2750	51%	0	$51 \cdot 2$
2300	654	$-3 \cdot 2$	62.2	2760	51.4	-0.2	$51 \cdot 2$
2310	65.4	$-3 \cdot 7$	$61 \cdot 7$	2770	52'0	-0.S	512
2320	644	$-3 \cdot 2$	61.2	27So	52.0	-0.8	512

78. Report dated July 8, 1879.

Round K_{v}^{*}	Round	K_{v}	Round	Kiv	Round	K_{v}	Round	K_{v}	Round	K_{v}
1640 f. s	1680 f. s.		1720 f. s.		1 760 f. s.		1800 f. s.		1840 f. s.	
$\begin{array}{l\|l\|} 467 & 106 \cdot 4 \\ 468 & 127 \cdot 2 \end{array}$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	$\begin{aligned} & 106 \cdot 4 \\ & 123.6 \end{aligned}$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	$\begin{aligned} & 106.4 \\ & 119.4 \end{aligned}$	$\begin{aligned} & 464 \\ & 468 \end{aligned}$	$\begin{array}{\|l\|l} 106.4 \\ 1 \\ \text { I } 12.0 \end{array}$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	$\left\lvert\, \begin{array}{l\|l\|l\|} 106.4 \\ 1000: 8 \end{array}\right.$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	105% 89.9
469 113.1	469	114^{2}	469	113.9	469	113.9		1134	469	$13^{\prime 2}$
Mean 115.6	Iean I		Mean $\mathrm{HI}^{3} \mathrm{~F}$		Mean 1		Mean 1		Mean	
1650 f. s.	1690f. s.		\% 730 f. s.		$\begin{gathered} { }^{1} 77 \circ \mathrm{f} . \mathrm{s} . \\ \text { Mean } 109.9 \end{gathered}$				$1850 \mathrm{f.} .$ Mean ior. 6	
Mean 115	Mean 114.3									
1660 f .	1700 f. s.		1740f. s.		1780 f. s.		1820 f. s.		1860f. s.	
$\begin{array}{l\|l\|} 467 \\ 468 & 106 \cdot 4 \\ 4654 \end{array}$	467	$\begin{aligned} & 106 \cdot 4 \\ & 1217 \end{aligned}$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	$\begin{aligned} & 106 \cdot 4 \\ & 116.0 \end{aligned}$	$\begin{aligned} & 467 \\ & 468 \end{aligned}$	$\begin{aligned} & 106 \cdot 4 \\ & 1070^{\circ} \end{aligned}$	${ }_{468}^{467}$	$\begin{array}{r}106 \cdot 4 \\ 94.8 \\ \hline\end{array}$	467	$\begin{array}{r}105 \cdot 6 \\ 834 \\ \hline 14\end{array}$
469 III3.1	469	3.9	469	3.9		113.9		13.4		$13^{1 / 1}$
Mean 115°	Mean 114°		Mean 112.I		Mean 109.1		Mean 104.9		Mean 100\%7	
1670 f. s.	$\begin{gathered} 1710 f .5 \\ \text { Mean } 113.6 \end{gathered}$		$\left\lvert\, \begin{gathered} 1750 \mathrm{f} . \mathrm{s} . \\ \text { Mean III•5 } \end{gathered}\right.$		1790 f. s. Mean ios.o		$1830 \text { f. s. }$ Mean 103.7		1870 f. s.	
Mean 1155^{\prime}			Mean	n 99.6						

79. Corrected mean values of K_{v} for Projectiles with Hemispherical

Heads. ($\omega=534^{\circ 22}$ grains.)

$\begin{aligned} & \text { Vel. } \\ & \text { f.s. } \end{aligned}$	$\underset{K_{v}}{\text { Mean }_{2}^{\prime}}$	Correction	Corrected K_{v}	Vel. f.s.	$\begin{gathered} \text { Mean } \\ K_{v}^{\prime} \end{gathered}$	Correc tion	Corrected K_{v}
1100	132.6	$+0.4$	$133{ }^{\circ}$	1730	112.7	0	$1127-.6$
1110	133.2	-0.2	- 33°	1740	112*I	0	112.1-9
II 20	133.7	-0.7	$133{ }^{\circ}$	1750	III'5	$+^{\cdot} 1$	III4-4-7
1130	$134 * 3$	- I'3	1 33°	1760	110.8	-1	110.7-.8
1140	134.9	- I 9	133°	1770	$109 * 9$	0	109%
1150	$132 \cdot 1$	+0.9	133°	1780	$109{ }^{1}$	$-\cdot \boldsymbol{I}$	$109 \%-9$
1160	$130 \cdot 2$	$+28$	133°				
I640	115.6	0	$115{ }^{6}$	1790 1800	108*0	0 $+\quad 1$	$1080^{\circ}-1.0$ 1070
1650	115.3	$+1$	115.4-.2	1810	106*0	0	$1060-10$
1660	$115{ }^{\circ}$	+ 2	$115{ }^{\circ} 2-\cdot 2$	1820	104.9	0	$104 * 9$
1670	115 5°	$-{ }^{-1}$	$115{ }^{\circ}$	1830	$103 \cdot 7$	$+{ }^{\circ} 1$	$103 \cdot 8-1 \cdot 1$
1680	1147	0	$114.7-3$	1840	102%	0	1027 --1 1
1690	114.3	$+{ }^{\prime}$	$1144^{\circ}-3$	1850	101* 6	\bigcirc	101* $6-1 \cdot 0$
1700	$114^{\circ} \mathrm{O}$	0	$114^{\circ} \mathrm{O}-.4$		100*7	-1	$100 \cdot 6-10$
1710	II 3.6	0	I1 $3 \cdot 6-4$	1870	$99 * 6$	0	$99.6-10$
1720	113.2	0	$113 \cdot 2-5$				

B.
80. Report dated July 8, 1879.

Round K_{v}^{*}	Round	κ_{v}	Round	K_{v}	Round	k°	Round	K_{v}^{*}	Round	K_{v}^{\prime}		
1530 f.s.	1590 f. s. Mean 176.1		$1650 \text { f. s. }$ Mean 173.4		1710 f.s. Mean 172.7		${ }^{1} 770$ f.s. Mean 171.2		$183 \circ \text { f. s. }$ Mean $168^{4} 4$			
Mean 1737												
	1600 f.s.		1660 f. s.		$1720 \mathrm{f.s}$.		1780 f.s.		1840 f. s.			
	$464$$465$$466$	165.4	$\begin{aligned} & 464 \\ & 465 \\ & 466 \end{aligned}$	1654	$\begin{aligned} & 464 \\ & 465 \\ & 466 \end{aligned}$	165.4	$\begin{aligned} & 464 \\ & 465 \\ & 466 \end{aligned}$	$\begin{aligned} & 166^{\circ} \\ & 171^{\circ} \\ & 175^{\circ} \end{aligned}$		$166 \cdot 2$		
465 $162 \cdot 1$ 466 $162 \cdot 1$		182.9 170		$178{ }^{\text {P }} 9$		174.6				170° 166.5		
Mean 174.1	Mean 172.8		Mean $173{ }^{\circ}$		Mean 172.6		Mean 171°		Mean 167.6			
1550 f. s.	1610 f.s. Mean 173°		1670 f. s. Mean $173^{\circ} 3$		1730 f. s. Mean 172.4		1790 f. s. Mean $170 \cdot 5$		1850 f. s. Mean 166%			
Mcan 174*5												
1560 f.s.	1620 f. s.		16 Sof. s.		1740 f. s.		1800 f. s.		1860 f. s.			
465 185.1	$\begin{array}{l\|l} 464 & 165 \\ 465 & 181 ? \end{array}$		464465		464 165.4 465 173.5		464 $166 \cdot 2$ 465 $171 \cdot 2$		464 $166 \cdot 2$ 465 169.7			
$460 \mid 16.6$												
Mean 174.9	Mean 173.1		Mean 173.2		Mean 172*1		Mean 169*9		Mean $165^{\circ} 7$			
1570 f. s.	$163 \circ f . s$ Mean 173.2		$169 \circ f . s$ Mean $173^{\circ} 1$		1750 f. s. Mean $171 \cdot 8$		1810 f. s. Mean $169{ }^{\circ} 4$					
Mean 175.3												
	16.40 f. s.				$1700 \mathrm{f.s}$.		1760 f. s.		1820 f. s.			
	464 165% 465 180.3 460 174.2		464 165.4 465 1757 466 177.7		464 $165 \cdot 6$ 465 $172 \cdot 7$ 466 176.2		464 166.2 465 $170 \cdot 5$					
465 $184^{\prime 2}$ 466 16711												
Mean $175{ }^{\circ} 7$	Mean 1733				Mean 172.9		Mean 171		Mean 168*9			

81. Corrected mean values of K_{v} for Projectiles with Flat Heads.
($\omega=534.22$ grains.)

$\begin{aligned} & \text { Vel. } \\ & \text { f.s. } \end{aligned}$	$\stackrel{\text { Mean }}{K_{v}}$	Correction	$\begin{gathered} \text { Corrected } \\ K_{v}^{-} \end{gathered}$	$\begin{aligned} & \text { Vel. } \\ & \text { f. s. } \end{aligned}$	$\begin{gathered} \mathbf{M e a n}_{K_{v}} \end{gathered}$	Correction	$\begin{gathered} \text { Corrected } \\ K_{v}^{\prime} \end{gathered}$
1530	$173{ }^{\circ} 7$	$+0.6$	174.3	1710	172%	0	172.7
1540	$174^{\circ} 1$	$+0 \cdot 3$	1744^{+}	1720	172.6	0	172.6^{-1}
1550	174.5	$-0^{\circ} 1$	$174{ }^{\circ} 4+1$	1730	172.4	0	$172.4-3$
1560	174.9	-0.4	$174{ }^{\circ} 5$	1740	172.1	0	172.1
1570	$175^{\circ} 3$	-0.8	$174{ }^{\circ} 5$	1750	171.8	\bigcirc	$171{ }^{\circ} 8^{-3}$
1580	175%	-1.3	$174^{\circ} 4_{-1}$	1760	171.5	0	$171 \cdot 5-3$
1590	$176 \cdot 1$	- $1 \cdot 8$	$174{ }^{\circ} 3$	1770	171.2	0	171*2
1600	172.8	+14	$174{ }^{\circ} 2$	1780	171*o	-0.1	$170{ }^{\circ}{ }^{-3}$
1610	$173{ }^{\circ}$	$+1 \cdot 1$	$174^{\circ} 1$	1790	170.5	\bigcirc	$170{ }^{\circ} 5-5$
1620	173'1	+0.9	$174{ }^{\circ} \mathrm{O}$	1800	169.9	$+0.1$	170°
1630	$173{ }^{\circ}$	+0.7	1739^{-1}	1810	$169^{\circ} 4$	$+0^{\circ} 1$	$169 \cdot 5-5$
1640	$173{ }^{\circ} 3$	$+0.4$	1737 - 1	1820	168.9	\bigcirc	168*9-6
1650	173.4	$+0.2$	173.6	1830	168.4	-0.1	$168 \cdot 3$
1660	173.4	+0.1	$173.5{ }^{-1}$	1840	$167{ }^{\circ} 6$	\bigcirc	
1670	173.3	\bigcirc	$173 \cdot 3-2$	1850	166.7	+0.1	166.8-8
1680	173.2	0	$173 \cdot 2$	1860	$165 \cdot 7$	$+0.2$	165.9
1690	$173^{\circ} 1$	+0.1	1730^{-2}				
1700	172.9	0	$172.9-1$				

CHAPTER IV.

DESCRIPTION AND USE OF THE GENERAL TABLES S_{v} AND T_{v}.

82. It will be found sufficient for many practical purposes to neglect the effect of gravity and treat the motion of a projectile as if its path was a straight line. This will suffice for experimental purposes when it is desired to find the loss of velocity, or the time of flight over a limited range, the muzzle velocity being high and the elevation of the gun being small.

In calculating these general tables, for convenience the action of the air upon the projectile has been treated as an accelerating force, instead of a retarding force, because the results derived from the use of the Tables are the same in both cases, and the use of proportional parts is more simple in the case of an accelerating force, for then the time, space, and velocity all increase or decrease together.
83. The equation of motion when the accelerating force varies as the square of the velocity, is

$$
v \frac{d v}{d s}=2 c v^{2},
$$

or, integrating, $\quad \log , v=2 c s+C$,
and supposing, when

$$
v=0, \quad t=0, \quad v=V,
$$

then
ir

$$
\log \cdot \frac{v}{V}=2 c s,
$$

$$
\begin{equation*}
\frac{d^{2}}{w} s=\frac{1}{2 c} \frac{d^{2}}{w} \log _{e} \frac{v}{V}=\frac{(1000)^{2}}{k} \log \frac{v}{V} \tag{1}
\end{equation*}
$$

for $\quad 2 c=2 b v=K \frac{d^{2}}{v} \frac{v}{(1000)^{3}}=\left(K \frac{v}{1000}\right) \frac{d^{2}}{w}\left(\frac{1}{1000}\right)^{2}$

$$
=k \frac{d^{2}}{w}\left(\frac{1}{1000}\right)^{2} \text { suppose. }
$$

For velocities of ogival-headed shot below $820 f . s ., k=60.5$, which gives

$$
\frac{d^{2}}{w} s=38059 \log _{10}\left(\frac{v}{V}\right)
$$

and for velocities of spherical shot below $840 f . s ., k=118 \cdot 3$, which gives

$$
\frac{d^{2}}{w} s=19464 \log _{10}\left(\frac{v}{V}\right)
$$

84. Again

$$
\frac{d^{2} s}{d t^{2}}=\frac{d v}{d t}=2 c v^{2}
$$

and integrating

$$
\begin{equation*}
\frac{1}{\bar{V}}-\frac{1}{v}=2 c t, \tag{2}
\end{equation*}
$$

or $\quad \frac{d^{2}}{w} t=\frac{1}{2 c} \frac{d^{2}}{w}\left(\frac{1}{V}-\frac{1}{v}\right)=\frac{1000}{k}\left(\frac{1000}{V}-\frac{1000}{v}\right)$
85. The equation of motion, when the accelerating force varies as the cube of the velocity, is

$$
v \frac{d v}{d s}=2 b v^{3},
$$

and integrating

$$
\frac{1}{V}-\frac{1}{v}=2 b s
$$

or $\quad \frac{d^{2}}{w} s=\frac{1}{2 b} \frac{d^{2}}{w}\left(\frac{1}{V}-\frac{1}{v}\right)=\frac{(1000)^{2}}{K}\left\{\left(\frac{1000}{V}\right)-\left(\frac{1000}{v}\right)\right\} \ldots(3)$.
86. Again $\quad \frac{d^{2} s}{d t^{2}}=\frac{d v}{d t}=2 b v^{3}$.

Integrating $\quad \frac{1}{2 V^{2}}-\frac{1}{2 v^{2}}=2 b t$
or $\quad \frac{d^{2}}{w} t=\frac{1}{4 b} \frac{d^{2}}{w}\left(\frac{1}{V^{2}}-\frac{1}{v^{2}}\right)=\frac{500}{K}\left\{\left(\frac{1000}{V}\right)^{2}-\left(\frac{1000}{v}\right)^{2}\right\}$

Also, since

$$
\frac{1}{V}-\frac{1}{v}=2 b s,
$$

therefore

$$
\frac{d t}{d s}=\frac{1}{V}-2 b s,
$$

$$
\begin{equation*}
t=\frac{8}{V}-b s^{2} . \tag{5}
\end{equation*}
$$

In ealeulating general tables formulx (1) and (2), or (3) and (4) may be used so long as k or K respectively remain constant. But when k, or K varies with the velocity, its value will require to be often ehanged, so that k_{v} or K_{v} may be supposed to remain constant through a change of veloeity, say from (v-5) to $(v+5)$ f.s. Intermediate values can afterward be found by interpolation. In this way General T'ables xxiri. to xxvi. have been ealeulated.
87. The velocity of a projeetile is generally found by measuring the time t in seconds oceupied by the projeetile in passing over a range of s feet, and dividing the number of feet by the number of seconds, the veloeity in feet per seeond at the middle point of the range is approximately found in general. But where the accelerating or retarding force varies as the cube of the velocity, this is exactly true. For

$$
\frac{1}{v}=\frac{1}{V}-2 b s,
$$

and if v^{\prime} be the veloeity of the projectile at the distance $\frac{1}{2} s$, then

$$
\frac{1}{v^{\prime}}=\frac{1}{V}-b s
$$

But the measured velocity

$$
\begin{aligned}
& =\frac{\text { space in feet }}{\text { time in seeonds }} \\
& =\frac{s}{\frac{s}{V}-b s^{2}}=\frac{1}{\frac{1}{V}-b s}=v^{\prime}
\end{aligned}
$$

$=$ the velocity at the middle point of the range s.
88. Specinl tables of remaining velocities were given for elongated projectiles with various furms of heads in my Report
of 1866^{2}; also for 7,8 and 9 -inch ogival-headed projectiles in the Report of 1868^{3}; and for all the service spherical projectiles in the Report of 1860^{3}; and also for ogival-headed projectiles firel from all the Service guns ${ }^{4}$.
89. Suppose we have two projectiles of similar external forms, whose diameters are d, d^{\prime}; and weights w, w^{\prime} respectively. Then by equation (3), we have

$$
\frac{d^{2}}{w} s=(1000)^{3} \int^{v} \frac{d v}{\bar{K} v^{2}}=\frac{d^{\prime 2}}{w^{\prime}} s^{\prime},
$$

for K, v, and V are the same for both projectiles. Hence if we have calculated a table of ranges s^{\prime}, in which a projectile (d^{\prime}, w^{\prime}) loses any given velocity, from this table we can calculate the range s, in which another similarly shaped projectile (d, w) will lose the same given velocity, for then

$$
s=s^{\prime} \frac{d^{\prime 2}}{w^{\prime}} \div \frac{d^{2}}{w} .
$$

This led me in the first instance to calculate general tables where $\frac{d^{\prime 2}}{w^{\prime}}=1$, which were first published in 1871 for both spherical and ogival-headed projectiles ${ }^{5}$.

In the same way it may be shown that

$$
t=t^{\prime} \frac{d^{\prime 2}}{w^{\prime}} \div \frac{d^{2}}{w} .
$$

The corresponding General Tables were first published in 1872^{6}.
90. The variation in the density of the air must greatly affect the motion of projectiles, as the resistance of the air is assumed to vary as its density. As already explained the coefficients for both elongated and spherical projectiles have now been calculated for such a density that one cubic foot of dry air would weigh $534 \cdot 22$ grains. This change has had the effect of increasing the values of K given in the Report of 1868 by about 0.7 per cent. It is evident that, when any calculation of an experiment has to be made by the tables and methods given in this work, it will be

[^15]necessary to introduce corrections in order to adapt the results obtained to the density of the air on the day of that experiment.
91. Those who use French measures generally adopt as their standard, such a density of the air that one cubic metre of dry air would weigh 1.206 kil., which gives the weight of a cubic foot of air 526.94 grains, or nearly 527 grains. Hence it appears that the English coefficients ought to be numerically 1.37 per cent. greater than the French coefficients ; while the English coefficients of 1868 would exceed the French by about 0.7 per cent. But when a proper correction has been introduced to adapt the tables to the density of the air on any particular day then the results arrived at ought to be the same, whatever be the table made ase of.
92. The corrections of the coefficients \mathcal{k} and K, for the density of the air, are applied as follows. On any particular day, the weight of a cubic foot of air is easily found from Glaisher's Tables, when observations have been made with the Barometer and with the dry and wet bulb Thermometers. Suppose that τ denotes the weight in grains of a cubic foot of air on that day, divided by $534: 22$ the standard weight in grains, then τ will be a constant for that round, provided the shot does not rise high enough to have its resistance sensibly affected by the diminishing density of the air. As k and K vary as the density of the air, they will have the values τk and τK adapted to the density of air on that particular day. By formula (4) we have
$$
\frac{d t}{d v}=\frac{1}{2 b v^{3}}
$$
or
\[

$$
\begin{aligned}
\frac{d^{2}}{w} t & =(1000)^{3} \int^{v} \frac{d v}{K_{v} v^{3}}=T_{v}-T_{V}^{r} \\
& =\text { difference of two tabular numbers. }
\end{aligned}
$$
\]

But on the day above referred to every value of K_{v} must be replaced by τK_{v}, where τ is constant, and K_{v} is generally variable, then
or

$$
\begin{aligned}
& \frac{d^{2}}{w} t=(1000)^{3} \int^{v} \frac{d v}{\tau K_{\mathrm{v}} v^{3}}=\frac{(1000)^{3}}{\tau} \int^{v} \frac{d v}{K_{\mathrm{v}} v^{s}} \\
& \tau \frac{d^{2}}{w} t=(1000)^{s^{v}} \int^{v} \frac{d v}{K_{0} v^{s}}=T_{v}-T_{V} \\
&=\text { difference of the same tabular numbers } \\
& \text { Rs before. }
\end{aligned}
$$

And in the same way it may be proved that

$$
\begin{aligned}
\tau \frac{d^{2}}{w} s & =\text { difference of tabular numbers } \\
& =S_{v}-S_{V}
\end{aligned}
$$

93. Suppose now a change to be made in the form of the head of an elongated shot, and that it is found by experiment that it is necessary for this particular form of head to change the values of K obtained from experiments made with ogival-headed shot struck with a radius of one diameter and a half to κK, where κ is constant.

Further, suppose that we are experimenting with a gun that gives a degree of steadiness different from that of the average of the experimental guns, so as to require coefficients σK to be used instead of K, where σ is a constant.

Then as before, we shall find
and

$$
\begin{aligned}
& \tau \kappa \sigma \frac{d^{2}}{w} t=T_{v}-T_{V}, \\
& \tau \kappa \sigma \frac{d^{2}}{w} s=S_{v}-S_{V}
\end{aligned}
$$

In order to introduce these corrections into the results obtained by the use of the General Tables, or into the calculation of trajectories, we have only to find the value of $\tau \kappa \sigma \frac{d^{2}}{w}$ and use that value instead of $\frac{d^{2}}{w}$.
94. A table has been calculated so that, on referring to it with the readings of the Barometer and Thermometer, the value of $\log \tau$ can be obtained directly on the supposition that the air is $\frac{2}{3}$ ds saturated with moisture with sufficient exactness for all practical purpuses ${ }^{1}$. In calculating this Table xx., the weight in grains of a cubic foot of air $\frac{2}{3} \mathrm{ds}$ saturated with moisture, under a pressure of 29 inches of mercury, was found by Glaisher's Tables for each degree of temperature. Each of these numbers was divided by $534 \cdot 22$ the number of grains in the weight of the standard cubic foot of air,

[^16]and the resulting values of τ were adapted to heights 15 to 31 inches of the barometer.
95. Table xxi. gives the values of $\log \tau$ corresponding to various lieights. In calculating this table the simple formula
$$
z=c^{\prime} \log \frac{h}{h^{\prime}}
$$
was made use of, where h denotes the height of the barometer in inches at the lower station, h^{\prime} that at tle upper station, and z the difference in feet of the vertical heights of the two stations. Here the force of gravity, and the temperature of the air are supposed constant. The table has been calculated in the following manner.
\[

$$
\begin{aligned}
& \begin{array}{l}
\log \tau=\log \frac{h^{\prime}}{h}=-\frac{z}{c^{\prime}} \\
\quad=\lambda-\frac{100 \times n}{c^{\prime}}=0.0729-\frac{100 \times n}{64110}=0.0729-0.00156 n
\end{array} \\
& \begin{aligned}
u=0, \log \tau=0.0729 ; n=1, \log \tau=0.0729-0.00156=0.07134 \\
n=2, \log \tau=0.0729-0.00156 \times 2=0.06978, \text { \&c., \&c. }
\end{aligned}
\end{aligned}
$$
\]

910. From readings of the barometer, \&c. the value of $\log \tau$ is found by Table xx . at the place of observation. On referring to Table XXI. suppose this value of $\log \tau$ is found opposite the height H feet; then the tabular number found opposite $H+z$ feet, will be the approximate value of $\log \tau$ at a place z feet higher than the place of ubservation. Table xxi. may be used when French measures are employed, if the heights expressed in feet in the table are converted into metres.
911. The resistance of the air to a projectile of weight w and d inches in diameter moving with the velocity v is equal to

$$
-b \frac{w}{g} v^{s}=\frac{K}{g} d^{2}\binom{v}{1000}^{s}
$$

In this way Table xxir. has been calculated for spherical and ogival-headed projectiles.
98. General tables have been calculated to conrect velocity and range, and velocity and time of flight for both spherical and ogival-headed projectiles. See Tables xxir. to xxvi. Similar
tables for French measures have also been given. See Tables xxx . to xxxiII. In the latter case we denote the diameter of the shot in centimetres by a; its weight in kilogrammes by p, and the force of gravity by g metres per secoud.

Examples of the use of the General Tabjes.
99. (1) Suppose it was asked in what range and time an 1152 -inch ogival-headed shot weighing 600 lbs . would have its velocity reduced from 1420 to 1250 f. s. Here

$$
d^{2} \div w=(11 \div 52)^{2} \div 600=0 \cdot 2212 .
$$

Let s denote the required range, and t the time of flight, then

$$
\begin{gathered}
(\omega=534 \cdot 22 \text { grains }) \\
\frac{d^{2}}{w} s=0 \cdot 2212 s=S_{1420}-S_{1250}=41638 \cdot 4-40750 \cdot 8=887 \cdot 6,
\end{gathered}
$$

and therefore $\quad s=887 \cdot 6 \div 0 \cdot 2212=4013$ feet, and

$$
\frac{d^{2}}{w} t=0 \cdot 2212 t=160 \cdot 9015-160 \cdot 2344=0 \cdot 6671,
$$

and therefore $\quad t=0.6671 \div 0.2212=3^{\prime \prime} .016$.
(2) Calculate the same example with the tables adapted for French measures. Here

$$
\begin{aligned}
& a=11.52 \mathrm{in} .=29.26 \mathrm{~cm} \text {; } \\
& \mathrm{p}=600 \mathrm{lbs} .=272 \cdot 16 \mathrm{kgs} \text {. } \\
& 1420 \text { f. } s .=432 \cdot 81 \mathrm{~m} . \mathrm{s} ., \\
& 12 \text { อ̣. } 0 . s .=381.0 \mathrm{~m} . \mathrm{s} .,
\end{aligned}
$$

and

$$
\left.a^{2} \div p=3 \cdot 146 \text { (} \omega=\check{5} 27 \text { grains }\right)
$$

then

$$
\frac{\mathrm{a}^{2}}{\mathrm{p}} s^{\prime}=\tilde{\delta}_{43381}-\tilde{\sigma}_{381}=183042-179141=3901,
$$

or

$$
s^{\prime}=3901 \div 3 \cdot 146=1240 \text { metres }=4068 \text { feet },
$$

and

$$
\frac{\mathrm{a}^{2}}{\mathrm{p}} t^{\prime}=\mathfrak{W}_{4358 \mathrm{st}}-\mathfrak{T}_{381}=2320 \cdot 54-2310 \cdot 90=9 \cdot 64
$$

or

$$
t^{\prime}=9 \cdot 6 t \div 3 \cdot 146=3^{\prime \prime} \cdot 065
$$

As we have used the standard density for which each table was adapted, in order to make the results comparable, by (91) we must
reduce the French results by 1.37 per cent. Then the corrected value of $s^{\prime} \quad=4068-55=4013$ feet;
and the corrected value of t^{\prime}

$$
=3^{\prime \prime} \cdot 065-0^{\prime \prime} \cdot 041=3^{\prime \prime} \cdot 024
$$

(3) Suppose we wish to find the time of flight of a spherical projectile ($w=163.5 \mathrm{lbs}$., $d=104 \mathrm{in}$.) over a range of 5000 feet, the muzzle velocity being 1988 f.s. and $\omega=534 \cdot 22$ grains. Here $d^{2} \div w=0.6615$. In the first place we must find the velocity v at the end of the range of 5000 feet. Here by Table xxini.

$$
S_{v}=S_{198}-\frac{d^{2}}{w} 5000=11383 \cdot 5-3307 \cdot 5=8076 \cdot 0=S_{10,55 \cdot} \cdot
$$

Therefore the terminal velocity

$$
v=1045 \cdot 7 \mathrm{f.s}
$$

We must now find in what time the velocity of the same shot would be reduced from 1988 f. s. to 1045%. By Table xxiv.

$$
\frac{d^{2}}{w} t=0.6615 t=T_{190}-T_{10457}=19.4388-17 \cdot 0755=2.3633 .
$$

Therefore $t=2.3633 \div 0.6615=3^{\prime \prime} .572$ the required time of flight.
(4) We will now solve the same problem using French measures:

$$
\begin{aligned}
& \mathrm{a}=\text { diameter of spherical projectile }=10.4 \mathrm{in} .=26.42 \mathrm{c} . \mathrm{m} . \text {; } \\
& \mathrm{p}=\text { its weight }=163 \cdot 5 \mathrm{lbs}=74 \cdot 16 \mathrm{kgs} \text {; } \\
& 5000 \text { feet }=1524 \text { metres; } \\
& 1988 \text { f.s. }=605.93 \mathrm{~m} . \mathrm{s} \text {., } \\
& \text { This gives } \\
& \omega=527.0 \text { grains. } \\
& \tau=1 \cdot 0137 \text {. }
\end{aligned}
$$

and

By Table xxx. we find

$$
\begin{aligned}
& \Sigma_{b}=\Sigma_{\operatorname{mso}}-\frac{a^{2}}{\mathrm{p}} \tau s=50043-\frac{(26.42)^{2}}{74 \cdot 16} \times 1.0137 \times 1524 \\
& =50043-14540=35503=\text { § }_{\text {د107 }}, \\
& \therefore \mathrm{b}=318.7 \mathrm{~m} . \mathrm{s}=1045 \cdot 6 \text { f.s. }
\end{aligned}
$$

Next to find in what time t the velocity of the given spherical shot would be reduced from 605.93 to $318.7 \mathrm{~m} . \mathrm{s}$. By Table

$$
\frac{a^{2}}{\mathrm{p}} \tau t=\mathbb{C}_{\text {mon }}-\mathbb{C}_{\text {2112 }}=280^{\prime \prime} \cdot 343-246^{\prime \prime} \cdot 27=34^{\prime \prime} \cdot 073,
$$

therefore

$$
t=\frac{34^{\prime \prime} \cdot 073}{1.0137} \times \frac{74 \cdot 16}{(26 \cdot 42)^{2}}=3^{\prime \prime}: 571
$$

very nearly as before where $\omega=534 \cdot 22$ grrs.
100. The General Tables calculated for ogival-headed projectiles may be used to calculate range and time of flight for elongated projectiles having other forms of head, provided κ the ratio of their coefficients of resistance be known. In this case we shall have by (93)

$$
\frac{d^{2}}{w} \kappa s=S_{v}-S_{V} \text { and } \frac{d^{2}}{w} \kappa t=T_{v}-T_{V} .
$$

As an example we will take the three rounds (70) of flatheaded projectiles: Rounds $464-6$, where $w=70$ lbs., $d=6$ ins.; Barometer 30.4 ins.; Dry bulb thermometer $42^{\circ} \mathrm{F}$., Wet do. $41^{\circ} \mathrm{F}$. These observations give the weight of a cubic foot of air by Glaisher's Tables $561 \cdot 2$ grains on the day of experiment, so that $\tau=561 \cdot 2 \div 534 \cdot 22=1.051$. Or, using the Table xx., we find directly $\log \tau=0.0160+.0057=0.0217$ which gives $\tau=1.051$. The screens were 150 feet apart. The average of the times at which the three shots passed the third screen was $0^{\prime \prime} 16011$; and the ninth screen was $0^{\prime \prime} 69015$. Thus the mean time occupied by the shot in passing from the third to the ninth screen, or over 900 feet, was found by experiment to be $0^{\prime \prime} \cdot 5300$. The third screen was passed with a mean velocity 1827.7 f . s., and the ninth screen with a mean velocity of 1585 f . s. Referring to the Table xiv. of values of K for flat-headed shot we may assume $\kappa_{2}=2.06$ for the above range of velocity.

$$
\text { Then } \quad \frac{d^{2}}{w} \kappa_{2} \tau=\frac{36}{70} \times 2.06 \times 1.051=1.1134 \text {, }
$$

and by Table xxvi.

$$
\frac{d^{2}}{w} \kappa_{2} \tau t=T_{18: 7^{\prime} 7}-T_{1555}=161^{\prime \prime} \cdot 9892-116^{\prime \prime} \cdot 3993=0^{\prime \prime} \cdot 5899,
$$

therefore

$$
t=\frac{0^{\prime \prime} \cdot 5899}{1 \cdot 1134}=0^{\prime \prime} \cdot 530,
$$

which agrees with experiment. Again, by Table $x x v$.,

$$
\frac{d^{2}}{w} \kappa_{2} \tau s=S_{18277}-S_{1555}=4: 3388 \cdot 7-42: 384 \cdot 8=1003 \cdot 9
$$

therefore $\quad s=\frac{1003 \cdot 9}{1 \cdot 1134}=901 \cdot 6$ feet instead of 900 feet.
101. We will next take the three rounds $467-9$ of hemi-spherical-headed projectiles (70), fired on a day when the height of the barometer was 30.25 inches; dry-bulb thermometer $45^{\circ} \mathrm{F}$., and the wet ditto $42^{\circ} \mathrm{F}$. These give $\tau=1 \cdot 039$. The mean times of the shot passing the third and ninth screens were $0^{\prime \prime} .15923$ and $0^{\prime \prime} \cdot 66713$ respectively, giving $0^{\prime \prime} \cdot 5079$ as the mean time, found by experiment, occupied by the projectiles in passing from the third to the nintl screen, or over 900 feet. Also the mean velocity at the third screen was 1856 f . s.; and 1692 f .s. at the ninth screen. Referring to the Table xiri. of values of K for hemispherical-headed projectiles, it will be found that $\kappa_{1}=1.38$ between the above specified velocities.

Then

$$
\frac{d^{2}}{w} \kappa_{1} \tau=\frac{36}{70} \times 1.38 \times 1.039=0.7374,
$$

and, by Table xxvi.,

$$
\frac{d^{2}}{w^{2}} \kappa_{2} \tau t=T_{1850}-T_{1802}=162^{\prime \prime} \cdot 0495-161^{\prime \prime} \cdot 6766=0^{\prime \prime} \cdot 3729,
$$

therefore

$$
t=\frac{0^{\prime \prime} \cdot 37 \cdot 9}{0 \cdot 7374}=0^{\prime \prime} \cdot 506 .
$$

Again, by Table xxv.

$$
\frac{d^{3}}{w} \kappa_{1} \tau s=S_{18 s 8}-S_{1892}=43499 \cdot 7-42838 \cdot 9=660 \cdot 8 .
$$

Therefure $\quad s=\frac{660 \cdot 8}{0 \cdot 7374}=896 \cdot 1$ feet instead of 900 feet.
In the above two cases we have the advantage of using the values of κ_{1} and κ_{2} derived from the examples we have calculated. But the tables used in the calculations were derived from experiments made with ogival-headed projectiles.
102. In order to show clearly in what way the results of experiments were made available for the public service, it seems advisable to give, not ouly references, but specimens as well, of the useful ballistic tables adapted for practical use, which were published by me from time to time.
103. In the report of the results obtained by the employment of elongated projectiles with various forms of heads (1866), tables of remaining velocities were given for each form of projectile for
intervals of 100 feet in range ${ }^{1}$. The following is an abridgment of the two tables for solid ogival-headed experimental projectiles struck with radii of one and of two diameters, compared with similar tables calculated by the accompanying general tables (1889) derived from experiments made with ogival-headed shot struck with a radius of one diameter and a half.

$\frac{d^{2}}{v}=0.5584$				$\frac{d^{2}}{20}=0.5738$		
Distance	$\begin{gathered} \text { I diam. } \\ \text { I } 866 \end{gathered}$	$\begin{gathered} 1 \frac{1}{2} \text { dian. } \\ 1889 \end{gathered}$	Diff.	$\underset{1866}{2} \operatorname{diam} .$	$\begin{aligned} & \text { I } \frac{1}{2} \text { diam. } \\ & 1889 \end{aligned}$	Diff.
$\begin{array}{r} \text { feet } \\ 0 \end{array}$	$\begin{gathered} \text { f.s. } \\ 1500 \% \end{gathered}$	$\begin{gathered} \text { f.s. } \\ \text { I500. } \end{gathered}$	-	f.s. 1500	f.s. 1500 180	
500	1434.3	$1439 \cdot 3$	$+5^{\circ}$	$1435 \cdot 6$	$1437 \cdot 7$	$+2 \cdot 1$
1000	$1374{ }^{\circ}$	$1381 \cdot 2$	+ 7°	1376.4	$1378 \cdot 1$	+1•7
1500	1318.9	1326.2	$+7.3$	$13^{22}{ }^{\circ}$	1321.9	-0.1
2000	1267.9	1274.7	+6.8	1271.7	$1269^{\circ} 2$	-2.6
2500	$1220{ }^{\circ} 7$	1226.8	$+6.1$	1225.1	$1220 \cdot 5$	-4.6
3000	1176.9	1182.4	$+5.5$	1181.8	$1175{ }^{\circ}$	-6.4
3500	${ }_{11} 16^{6} \cdot 1$	1141.2	+5.1	1141.4	1133.5	-7.9
4000	1098.1	1102.8	+4.7	1103.7	1094.9	-8.8
4500	1062.6	1068.8	$+6.2$	$1068{ }^{\circ}$	$1061 \cdot 2$	-7.3

This comparison exhibits the value of the early experiments, for the calculated velocities of the ogival-headed projectiles struck with a radius of one diameter and a half, are generally less than those given for heads struck with a radius of two diameters, and greater than those given by a head struck with a radius of one diameter, as they ought to be.
104. In the Report on the resistance of the air to the motion of ogival-headed projectiles (July 23, 1868), tables were given of the remaining velocities of ogival-headed service shot when fired from 7, 8 and 9 -inch M. L. guns ${ }^{2}$, the projectiles being supposed to move under the action of the resistance of the air only. 'These tables were shortly afterwards reprinted in the Proceedings of the R. A. Institution ${ }^{3}$, and in Colonel Owen's Modern Artillery ${ }^{4}$. These are the tables referred to by General Mayevski in his Treatise on Balistique Extérieure, which matter will require to

[^17]be noticed hereafter. The following is a cnpy of the complete table for the 7 -inch gun, omitting decimals, where
$d=6.92 \mathrm{in} .=17.58 \mathrm{c} . \mathrm{m} . ; \quad w=115 \mathrm{lbs} .=52 \cdot 2 \mathrm{kil} . ; d^{2} \div w=0.4164$.

Distance	\bigcirc	100	200	300	400	500	600	700	800	900
feet	f.s.	f.s.	f. s.	f.s.	f.s.	f.s.	f.s.	s.	f.s.	f.s.
\bigcirc	1717	1706	1695	1655	1674	1663	1653	1643	1633	1623
1000	1613	1603	1593	1584	1575	1565	1556	1546	1537	1527
2000	1518	1509	1499	1490	1481	1472	1463	1455	1446	1437
3000	1428	1419	1410	1402	1393	1385	1377	1368	1360	1352
4000	1344	1336	1328	1320	1312	1304	1296	1288	1281	1273
5000	1266	1259	1252	1244	1237	1230	1223	1216	1209	1203
6000	1196	1189	1183	1176	1170	1164	1157	1151	1145	1140
7000	1134	1129	1123	1118	1113	1107	1102	1097	1091	1086
8000	1081	1076	1071	1066	1061	1056	1052	1048	1045	1041
9000	1038	1034	1031	1028	1024	1021	1018	1015	1011	1008
10000	1005	1002	999	996	992	989	986	983	980	977

105. Here it must be pointed out that the coefficients, by which the above table was calculated in 1868, were revised in the following year, as explained at the conclusion of the report on the experiments made with spherical projectiles as follows: "In order, however, to obtain a more satisfactory table of values of $2000 \mathrm{~b} \frac{w}{d^{2}}$ " (for ogival-headed projectiles) "we have commenced the recalculation of the times of passing each screen expressed to five places of decimals of a second. In this manner we shall obtain a table of average values of $2000 b^{\prime} \frac{v}{d^{2}}$ derived from all the rounds of elongated shot fired, just as we have obtained a table of values of $2000 b^{\prime} \frac{w}{d^{2}}$ for spherical shot ${ }^{1}$." These results were printed shortly afterwards and they entirely superseded the first table of coefficients ${ }^{2}$, although the alteration was not great.

Also in the Report on experiments made with spherical projectiles, the coefficients obtained by experiment were used in a manner similar to the above to calculate the remaining velocities of spherical projectiles fired from the service gums ${ }^{3}$. The same were reprinted in Tables of Remaining Velocities ${ }^{4}$, \&c.: in Colonel Owen's Modern Artillerys; and in the Proceedings of the R.A. Institution ${ }^{\text {. }}$ The following is an abridgment of this Table.

[^18]"Table showing the Velocities of Spherical Solid Shot for the "undermentioned Guns at intervals of 100 feet, supposing the "Shot to move in a straight line, subject only to the Resistance of "the Air." Report, dated Feb. 13, 1869.

Gun	$d^{2} \div w$	Gun	$d^{2} \div w$	Gun	$d^{2} \div w$
$15-\mathrm{in}$.	4898	32 -pr.	1.2161	9 -pr.	1.8422
150 -pr.	.6615	24 -pr.	1.3373	6 -pr.	2.1218
100 -pr.	.7766	18 -pr.	1.4648	3 pr.	2.6564
68 -pr.	.9487	12 -pr.	1.6696		

Distance	15-in.	150-pr.	100-pr.	68-pr.	32-pr.	24-pr.	18-pr.	12-pr.	9-pr.	6-pr.	3-pr.
feet	f.s.	f. s.	f.s.	f.s.	f.s.						
0	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100
100	2079	2072	2067	2059	2048	2043	2038	2030	2022	2011	1990
200	2058	2044	2033	2019	1998	1988	1978	1962	1947	1926	1886
300	2037	2016	2001	1980	1948	1935	1920	1896	1875	1845	1788
400	2017	1988	1970	1942	1900	1883	1863	1833	1806	1768	1696
1500	1805	1714	1654	1571	1449	1402	1349	1272	1215	1126	994
1600	1787	1691	1628	1541	1415	1366	1311	1233	1175	1086	957
1700	1769	1668	1603	1512	1381	1331	1275	1196	1137	1049	925
1800	1752	1645	1578	1484	1349	1297	1241	1161	1101	1015	897
1900	1735	1623	1553	1456	1318	1265	1208	1128	1068	984	873
2000	1717	1601	1529	1429	1288	1234	1176	1097	1036	956	
2100	1700	1580	1505	1403	1258	1204	1146	1068	1007	930	
2200	1683	1559	1482	1377	1230	1175	III7	1040	980	906	
2300	1667	1538	1459	1352	1203	1147	1090	1014	955	884	
2400	1650	1518	1437	1327	1176	1121	1065	990	932		
2500	1633	1498	1415	1303	1151	1096	1041	968	911		
2600	1617	1479	1394	1280	1127	1072	1018	946	892		
2700	1601	1459	1373	1257	1104	1050	997	926			
2800	1585	1440	1352	1235	1082	1029	977	907			
2900	1570	1422	1331	1214	1061	1009	958	889			
3000	1554	1403	1311	1193	104I	990	940	871			
3500	1479	1316	1219	1097	955	906	857				
……	…..	…..	……	,	88						
4000	1409	1235	II36	1019	884						
......	…..	…7.	…‥							
4500	1343	1163	1065	954							
5000	1281	1098	1005	¢ 898							
.....								
5500	1223	1042	952								
6000	1170	-1...	906								
		...									
6500	1120	950									
7000	1076	910									
7500	$1 . .76$										
8000	999										

106. By the help of the Table given for the 7 -inch gun, where $d^{\prime 2} \div 3 v^{\prime}=0.4164$, we may find in what range the velocity of a 10 -inch ogival-headed projectile where $d^{2} \div w=0 \cdot 2424$, will be reduced from 1700 to 1300 f.s. and from 1300 to 1100 f.s. Referring to the Table (104), it is found that the 7 -inch shot has its velucity reduced from 1700 to 1300 f.s. in a range

$$
4550-155 \text { feet }=4395 \text { feet : }
$$

therefore the 10 -inch shot would by (88) have its velocity reduced in like manner in a range

$$
\begin{gathered}
4395 \times\left(d^{\prime 2} \div w^{\prime}\right) \div\left(d^{2} \div w\right)=4395 \times 0.4164 \div 0.2424 \\
=7550 \text { feet }=2.517 \text { yards. }
\end{gathered}
$$

In the same way it is found from the Table that the velocity of the 7 -inch shot is reduced from 1300 to 1100 f .s. in a range $7640-4550=3090$ feet; therefore the 10 -inch shot would suffer the same reduction of velocity in a range

$$
3090 \times 0.4164 \div 0.2424=5307 \text { feet }=1769 \text { yards } ;
$$

where $\omega=530 \cdot 6$ grains.
The same law holds good for spherical projectiles. From the Table, (105), it appears that the 15 -inch spherical projectile has its velocity reduced from 2100 to 1409 f. s. in a range of 4000 feet, where $d^{2} \div w^{\prime}=0.4898$. From this, we find that the relocity of the $100-\mathrm{pr}$. projectile, where $d^{2} \div w=0.7766$, would have its velocity reduced in like manner from 2100 to 1409 f . s. in a range

$$
4000 \times 0.4898 \div 0.7766=2523 \text { feet. }
$$

From the Special Table for the 100 -pr. we find 2528 feet.
107. The following are specimens of my earliest General 'Tables for spherical and ogival-headed projectiles, which connect velocity and space, and velocity and time.
"A General Table for facilitating the Calculation of the Range "corresponding to a given loss of Velocity of any Spherical "Sнот¹." 1871.

Distance	\bigcirc	10	20	30	40	50	60	70	80	90
f	f.	.s.	J.s.			J.s.	J.s.		J.s.	J.s.
\bigcirc	$2100{ }^{\circ}$	2095'6	2091.3	2086•9	$2082 \cdot 6$	2078.3	2074*0	2069*6	2065:3	$2061{ }^{\circ}$
100	2056.7	$2052 \cdot 5$	2048.2	2043*9	2039 ${ }^{7}$	2035.5	2031.2	2027°	2022.8	$2018 \cdot 6$
200	$2014{ }^{4}$	$2010 \cdot 2$	2006.0	2001'9	1997×7	$1993 \cdot 6$	$1989{ }^{\circ} 4$	1985.3	1981.2	1977 ${ }^{1}$
300	1973*	$1968 \cdot 9$	1964*8	$1960 \cdot 7$	$1956 \cdot 7$	1952.6	$1948 \cdot 6$	$1944^{\circ} 6$	1940'5	1936.5
400	1932.5	1928.5	1924.5	$1920 \cdot 5$	1916.6	1912.6	$1908 \cdot 7$	19047	1900*	1896.9
1600	1511.3	1508	1505.2	$1502 \cdot 2$	1499.2	$1496 \cdot 2$	1493.2	1490'2	1487.2	$1484{ }^{\circ} 2$
1700	$1481 \cdot 2$	1478.3	$1475{ }^{\circ} 3$	$1472 \cdot 3$	14694	1466.4	1463.5	$1460 \cdot 6$	$1457^{\circ} 7$	1454.8
1800	1451×9	1449 ${ }^{\circ}$	1446' 1	$1443{ }^{\circ} 2$	$1440 \cdot 3$	1437.5	1434.6	$143{ }^{1} 7$	$1428 \cdot 9$	1426. 1
1900	1423.2	$1420{ }^{4}$	1417.6	$1414^{\circ} 8$	1412.0	1409^{2}	1406.4	$1403 \cdot 6$	$1400 \cdot 8$	$1398 \cdot 1$
2000	$1395{ }^{\circ}$	1392.6	1389.8	13871	1384.4	1381.6	$1378 \cdot 9$	$1376 \cdot 2$	1373.5	$1370 \cdot 8$
4900	878.6	877.5	876.5	$875 * 4$	874.3	873.3	872.2	$871 \cdot 2$	$870 \cdot 1$	$869^{\circ} \mathrm{I}$

108. "A General Table for facilitating the Calculation of "the Range corresponding to a given loss of Velocity of any "Elongated Shot (Ogival Head)2." 1871.

Distance	\bigcirc	. 10	20	30	40	50	60	70	80	90
feet	f.s.									
0	$1700{ }^{\circ}$	1697.5	1695 ${ }^{\text {I }}$	$1692 \cdot 7$	$1690 \cdot 3$	16879	1685.5	1683.2	$1680 \cdot 8$	$1678 \cdot 4$
100	1676*	1673.7	1671.3	$1668 \cdot 9$	$1666 \cdot 6$	$1664^{\circ} 2$	$1661^{\circ} 9$	1659.5	$1657^{\circ} 2$	$1654{ }^{\circ} 8$
200	1652.5	$1650 \cdot 2$	1647*9	$1645 \cdot 6$	$1643 \cdot 3$	1640'9	$1638 \cdot 6$	$1636 \cdot 3$	1634*0	$1631^{\circ} 7$
300	$1629^{\circ} 4$	$1627 \cdot 1$	1624.8	1622.5	1620'2	1617*9	1615.6	1613.3	1611'1	$1608 \cdot 8$
400	$1606 \cdot 5$	1604.2	1601.9	$1599{ }^{\circ} 7$	$1597 * 4$	1595 ${ }^{\text {I }}$	1592.8	$1590 \cdot 6$	$1588 \cdot 3$	$1586 \cdot 0$
2000	1275	1274* 1	1272.3	$1270 \cdot 6$	1268.8	1267.1	$1265^{\circ} 3$	1263.6	1261.9	1260 1
2100	$1258{ }^{\circ} 4$	1256.7	$1255^{\circ} \mathrm{O}$	1253.3	1251.6	$1249^{\circ} 9$	$1248 \cdot 2$	1246.5	$1244{ }^{\circ} 8$	1243' 1
2200	1241.5	1239.8	1238.1	$1236{ }^{4}$	1234*	$1233^{\circ} \mathrm{I}$	1231.5	1229.8	1228.2	1226.5
2300	$1224^{\circ} 9$	1223.3	1221.6	1220°	1218.4	$1216{ }^{\circ} 8$	$1215^{\circ} 2$	1213.6	$1212^{\circ} \mathrm{O}$	$1210{ }^{4}$
2400	1208 -8	$1207 \cdot 2$	$1205 \cdot 6$	$1204{ }^{\circ}$	1202.4	$1200 \cdot 9$	11993	1197	1196.2	$1194 * 6$
	-....7	92I'I		20	$910 \cdot 5$	…‥	…1.	-17.8	917.2	
5400	921'7	921'1	920.6	$920{ }^{\circ}$	919.5	918.9	918.3	917.8	917.2	$916 \cdot 7$
5700	$905 \cdot 4$	904*8	9043	$903 \cdot 8$	903.3	902.7	902.2	901.7	901'I	900'7

The above Tables were to be used as follows. "Let an "elongated projectile of 400 lbs . be fired from a 10 -inch gun with

[^19]" an initial velocity of 1270 f.s., and let it be required to find what "would be the velocity at a distance of 1000 yards $=3000$ feet. "Here $d^{2} \div w=0.246$ and the reduced range $=3000 \times 0.246=738$ "feet. Referring to General Table, the initial velocity 1270 f. s. is "found corresponding to a distance 2033 feet, to which, adding " the reduced range 738 feet, we get 2771 feet, and at this distance "the velocity $=1152.6 \mathrm{f}$. s., which is the velocity which the 400 - lb . "shot would have at 1000 yards from the gun ${ }^{\text {² }}$."
109. "A General Table for facilitating the Calculation of the "Time corresponding to a given loss of Velocity of any Spherical "Shot²." 1572.

v	9	8	7	6	5	4	3	2	I	\bigcirc
f.s.										
189	0.0013	-0027	-0040	.0054	'0067	${ }^{\circ} 0081$	-0094	-0108	-012	-0135
185	. 0148	-0162	-0175	-0189	-203	-0216	-0230	-0244	-0257	-0271
123	1/4056	-4090	4125	4160	4195	4230	-4265	4300	-4336	4371
122	4407	4442	4478	4513	4549	4585	-4620	4656	4692	4728
1	-4764	4800	4836	4873	4909	4945	4982	'5018	-5055	-5092
120	-5129	-5166	5203	-5240	- 5277	-5315	- 5352	- 5390	-542S	- 5465
go	3.3280	-3377	-3474	3571	-366S	- 3766	3864	. 3962	-4060	4159

110. "A General Table for facilitating the Calculation of the " Time corresponding to a given loss of Velocity of any Elongatel "Shot (Ogival Hearl) ${ }^{3}$." 1872.

${ }^{\prime \prime}$)	S	7	6	5	4	3	2	1	\bigcirc
f, 16.										
169	0.0024	-0049	-0073	-0098	-0122	.0146	.0178	-0195	-0220	-2144
167	-0269	-0294	-0318	-0343	-0368	-0393	${ }^{\circ} \mathrm{O} 118$	-0443	-0468	-0493
				- 059	.0619	.0644	-0669	-0695	. 0720	-0745
136	-9861	-9598	-9935	-9972	-0009	-0047	$\cdots 0 \mathrm{~S}_{4}$. 0121	. 0159	-0!96
135	1.0234	-0272	- 0309	- 0347	. 0385	-0423	-0461	-0499	-0537	
134	. 0614	. 0652	-0690	-0729	-0707	-0806	-0844	-0583	-0922	-0960
113	$2 \cdot 0827$	-0590	. 0953	- 1016	-1079				-1335	
112	$\cdot 1464$	-1528	-1593	-1658	-1723	-1143	-1207	$\cdot 1271$	- 1335	- 1399
111	- 2120	-2187	- 2254	-2321	- 23 S 8	- 2456	-1855 -2524	-1921	-1957	- 2053
						2456	2524	'2592	'2661	- 2729
70	10-8975	9412	'9850	-0290	-0732	11176	-1622	-2070	-2520	$\cdot 2972$

[^20]The following instructions were given for the use of the above Tables, 1872.

Example. "Suppose it was required to find by the help "of the General Table in what time the velocity of a 700-1b. "elongated shot would be reduced from 1344 to 1129 f . s. "Here $d=11 \cdot 52$ inches and $d^{2} \div w=\cdot 1896$. By Table we find " 1 ". 0806 corresponding to a velocity 1344 f . s., and $2^{\prime \prime} \cdot 1464$ "to a velocity $1129 \mathrm{f} . \mathrm{s}$. Hence (time required) $\times d^{2} \div w$ $"=2^{\prime \prime} \cdot 1464-1^{\prime \prime} \cdot 0806=1^{\prime \prime} \cdot 0658$, which gives the required time $"=1^{\prime \prime} \cdot 0658 \div \cdot 1896=5^{\prime \prime} \cdot 621$."
111. My mathematical Treatise On the Motion of Projectiles under the Action of Gravity and the Resistance of the Air, published in 1873, contained General Tables of values of $\left(d^{2} \div w\right) s$ and ($d^{2} \div w$) t, connecting velocity and space, and velocity and time, which were recalculated for both spherical and ogival-headed projectiles. The Tables for spherical projectiles extended from velocity 500 to 1900 f.s. (Tables X. and xI.), and those for ogivalheaded projectiles from 540 to 1700 f.s. (Tables viri. and ix.). These four Tables were reprinted in the Government Treatise on the Construction of Ordnance ${ }^{1}, 1877$. The two Tables for ogivalheaded shot were reprinted in the Proceedings of the R.A. Institution ${ }^{2}, 1878$; also in the R.A. Handbook for Field Service ${ }^{8}$, 1878; and in Major Sladen's Principles of Gunnery ${ }^{4}$, 1879.
112. Professor Niven communicated a paper to the Royal Society ${ }^{5}$ in 1877 on the approximate calculation of Trajectories of Projectiles, in which he made use of my two General Tables

$$
\frac{d^{2}}{w} s \text {, and } \frac{d^{2}}{w} t \text {, }
$$

or S_{v} and T_{v} as he named them, for space and time, and gave a third Table D_{v} of his own.
113. The experiments of 1878,9 extended the coefficients of resistance to ogival-headed projectiles to all velocities between 400 and 2500 f.s. New General Tables for S_{v} and T_{v} were calculated by the help of these coefficients, and for the above men-

${ }^{1}$ pp. 359-366.	${ }^{2}$ x. pp. 250-253.
${ }^{4}$ pp. 55-58.	${ }^{3}$ Proceedings, No. 181.

tioned limits of velocity which were printed as an Appendix to the Report on those experiments made with my Chronograph ${ }^{1}$. Immediately afterwards these two Tables were reprinted in the Manual of Gumnery for H.M. Fleet, 1880 ; and also in an abridged form in the article "Gunnery" in the new edition of the Encyclopeedia Britamica, 1880.
114. Lastly, the coefficients given in the Final Report of 1880, euabled me to extend my Gencral Tables for ogival-headed projectiles to all velocities between 100 and 2800 f. s. These General Tables were first printed as an Appendix to the "Final Report," 1880. They were subsequently reprinted in the Manual of Gunnery for H.M. Flect, 1880; also in the Text Book of Gumery by Major Mackinlay, R.A., 1883 and 1887; and in the Treatise on Small Arms by Colonel Bond, R.A., 1884 and 1888.
115. Although my coefficients of resistance were derived from experiments made with guns of 3 to 9 -inch calibre, Major McClintock, R.A., has found by careful experiment that they hold good for small-arm bullets, for he remarks "The accuracy of rifle"bullet trajectories calculated by means of Professor Bashforth's " Tables has been tested by firing a large number of rounds through " paper screens placed at different points along the range....The "screens were crected at intervals along a 500 yards and a " 1000 yards range. The result of the experiments was most "satisfactory, the mean heights of the bullet-holes in the screens "agreeing closely with the heights found by calculation"."

[^21]
CHAPTER V.

CALCULATION OF TRAJECTORIES OF PROJECTILES.

116. The following is an explanation of the principal symbols used- g denotes the accelerating force of gravity and equals $32: 191 \mathrm{f}$. s. in the Latitude of Greenwich. g (French measure) $=9.809 \mathrm{~m} . \mathrm{s} ., w$ the weight of the shot in pounds, p the weight in kilogrammes, d the diameter of the shot in inches, a the diameter in centimetres. f the retarding effect of the air for a velocity of v feet per second $=-2 b v^{3}$ when supposed to vary as the cube of the velocity; or $=-2 c v^{2}$ when supposed to vary as the square of the velocity; or $=-2 e v^{n}$ when supposed to vary as the $n^{\text {th }}$ power of the velocity of the projectile.

$$
K=2 b \frac{w}{d^{2}}(1000)^{3} ; k=2 c \frac{w}{d^{2}}(1000)^{2} ; k=K \frac{v}{1000} .
$$

x, y are the horizontal and vertical coordinates of the centre of gravity of the projectile, at the time t, when the shot has described an arc s. ϕ is the inclination to the horizon of the tangent to the trajectory at the point $x, y . \quad v_{\phi}$ denotes the velocity of the shot in the ascending branch of the trajectory, when moving in a direction inclined to the horizon at an angle ϕ, and u_{ϕ} is corresponding horizontal velocity so that $u_{\phi}=v_{\phi} \cos \phi . \quad v_{\phi}{ }^{\prime}$ and $u_{\phi}{ }^{\prime}$ denote similar quantities in the descending branch of the trajectory. ω denotes the weight of a cubic foot of ${ }^{\circ}$ air in grains. Π denotes the weight of a cubic metre of air in kilogrammes. When ogival-headed shot are mentioned in this treatise without any further particulars, it may be assumed that the heads are struck with a radius of one diameter and a half, which was the form used in the chief experiments. Elongated projectiles are all supposed to have a righthand rotation about their own axes.
117. Suppose a projectile to be fired in a direction inclined at an angle α above the horizontal plane through the muzzle, to be acted upon by gravity g in parallel lines, and by a retarding force $2 e$ (velocity) ${ }^{n}$ acting at every point in the direction of the tangent to the trajectory of the projectile at that point which is assumed to pass through the centre of gravity of the shot, then there will be 110 force tending to draw the projectile out of the vertical plane of projection. Let the point of projection be taken for the origin, and let the axes of coordinates x and y be respectively horizontal and vertical, and in the vertical plane of projection. Let x, y be the coordinates of the centre of gravity of the shot at the time t, when the shot has described an arc s of its trajectory.

The equations of motion are
and

$$
\frac{d^{2} x}{d t^{3}}=-2 e\left(\frac{d s}{d t}\right)^{n} \frac{d x}{d s}=-2 e\left(\frac{d s}{d t}\right)^{n-1} \frac{d x}{d t},
$$

$$
\frac{d^{2} y}{d t^{s}}=-2 e\left(\frac{d s}{d t}\right)^{n} \frac{d y}{d s}-g=-2 e\left(\frac{d s}{d t}\right)^{n-1} \frac{d y}{d t}-g
$$

therefore

$$
\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}=-g \frac{d x}{d t}
$$

As usual suppose

$$
p=\frac{d y}{d x}
$$

then

$$
\frac{d p}{d t}=\frac{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d^{2} x}{d t^{2}} \frac{d y}{d t}}{\left(\frac{d x}{d t}\right)^{2}}=-\frac{g}{\frac{d x}{d t}},
$$

or

$$
\frac{d p}{d t} \frac{d x}{d t}=-g, \text { and also } \frac{d p}{d x}\left(\frac{d x}{d t}\right)^{2}=-g
$$

or

$$
\begin{equation*}
\frac{d t}{d p}=-\frac{u}{g} ; \text { and } \frac{d x}{d p}=-\frac{u^{2}}{g} . \tag{1}
\end{equation*}
$$

118. Again $\frac{d^{2} x}{d t^{n}}=-2 e\left(\frac{d s}{d t}\right)^{n} \frac{d x}{d s}=-2 e\left(\frac{d s}{d . x}\right)^{n-1}\left(\frac{d x}{d t}\right)^{n}$,
or

$$
\frac{d u}{d t}=-2 e\left(1+p^{2}\right)^{\frac{n-1}{-2}} u^{u} .
$$

Therefore

$$
\frac{1}{u^{n+1}} \frac{d u}{d t}=-2 c\left(1+p^{2}\right)^{\frac{n-1}{2}} \frac{1}{u}=\frac{2 e}{g}\left(1+p^{2}\right)^{\frac{n-1}{2}} \frac{d p}{d t} b y(1
$$

Integrating $\quad-\frac{1}{n u^{n}}=C+\frac{2 e}{g} \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d_{l}$.
At the vertex, let $u=u_{0}$.
Then we have

$$
\begin{align*}
\frac{1}{u^{n}} & =\frac{1}{u_{0}^{n}}-\frac{2 e}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p \quad \ldots \ldots . \tag{2}\\
& =\frac{1}{u_{0}^{n}}\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\},
\end{align*}
$$

therefore

$$
\begin{equation*}
v=u \sec \phi=\frac{u_{0} \sec \phi}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{1}{n}}} \tag{3}
\end{equation*}
$$

From (1) we have

$$
\begin{equation*}
\frac{d t}{d p}=-\frac{u}{g}=-\frac{u_{n}}{g} \cdot \frac{1}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{1}{n}}} \tag{4}
\end{equation*}
$$

Now $\quad \frac{2 e u_{0}{ }^{n}}{g}=\frac{\dot{M} \times 2 e u_{0}{ }^{n}}{M g}$

$$
\begin{equation*}
=\frac{\text { Resistance of the air at the vertex to the shot }}{\text { weight of the shot }} \tag{5}
\end{equation*}
$$

$\therefore t=-\frac{u_{0}}{g} \int^{\phi^{\prime}} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{1}{n}}} \cdots \cdots$
since

$$
d p=d \tan \phi=\sec ^{2} \phi d \phi=\left(1+p^{2}\right) d \phi
$$

Again by (1) we have

$$
\frac{d x}{d p}=-\frac{u^{2}}{g}=-\frac{u_{0}^{2}}{g} \frac{1}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{2}{n}}}
$$

or

$$
\begin{equation*}
x=-\frac{u_{0}^{2}}{g} \phi \int^{\phi^{\prime}} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{2}{n}}} \tag{7}
\end{equation*}
$$

and since

$$
\frac{d y}{d x}=p, \quad \frac{d y}{d p}=p \frac{d x}{d p}
$$

Hence $\quad y=-\frac{u_{n}{ }^{2}}{g} \int^{\phi} \frac{\left(p+p^{3}\right) d \phi}{\left\{1-\frac{2 e u_{0}^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{2}{n}}}$
So also $s=-\frac{u_{0}{ }^{2}}{g} \phi \int^{\phi} \frac{\left(1+p^{2}\right)^{\frac{1}{2}} d \phi}{\left\{1-\frac{2 e u_{0}{ }^{n}}{g} n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p\right\}^{\frac{2}{n}}}$
119. Suppose that the retarding force varies as the square of the velocity, then

$$
\begin{equation*}
n=2 ; \quad 2 e=2 c=k \frac{d^{2}}{w} \frac{1}{(1000)^{2}} ; \tag{10}
\end{equation*}
$$

and by (5) $\quad \frac{2 e u_{0}^{n}}{g}=\frac{2 c u_{0}^{2}}{g}=\frac{k}{g} \frac{d^{2}}{w}\left(\frac{u_{0}}{1000}\right)^{2}=\lambda$ suppose
also $\quad n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p=2 \int\left(1+p^{2}\right)^{\frac{1}{2}} d p$

$$
=\tan \phi \sec \phi+\log _{\mathrm{e}} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)=Q_{\phi} \text { (see Table viI.), }
$$

and by (2)

$$
\begin{equation*}
\left(\frac{1000}{u}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k}{g} \frac{d^{2}}{w} Q_{\phi} \ldots \tag{11}
\end{equation*}
$$

Therefore
by (3)

$$
\begin{equation*}
\frac{v}{u_{0}}=\frac{\sec \phi}{\left\{1-\lambda Q_{\phi}\right\}^{\frac{1}{2}}}=\frac{1}{10^{5}}(v) . \tag{12}
\end{equation*}
$$

by (6)

$$
\begin{equation*}
t=-\frac{u_{0} \phi}{g} \int^{\phi} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\lambda Q_{\phi}\right\}^{\frac{1}{2}}}=-\frac{u_{0}}{10^{\prime} g}\left({ }^{\phi} t_{\lambda} \phi^{\phi}\right) \tag{13}
\end{equation*}
$$

by (7)

$$
\begin{equation*}
x=-\frac{u_{0}^{2} \phi}{g} \int^{\phi} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\lambda Q_{\phi}\right\}}=-\frac{u_{0}^{2}}{10^{4} g}\left({ }^{\phi} x_{\lambda^{\prime}}{ }^{\phi}\right) . \tag{14}
\end{equation*}
$$

by (8)

$$
\begin{equation*}
y=-\frac{u_{0}^{2} \phi}{g} \int_{\phi}^{\phi}\left(p+p^{3}\right) d \phi, \frac{u_{0}^{2}}{\left\{1-\lambda Q_{\phi}\right\}}=-\frac{0^{2}}{10^{\dagger} g}\left(y_{\lambda^{\prime}}\right) . \tag{15}
\end{equation*}
$$

ly (9)

$$
\begin{align*}
& s=-\frac{u_{0}^{2}}{g} \int^{\phi^{\prime}} \frac{\left(1+p^{2}\right)^{\frac{2}{2}} d \phi}{\left\{1-\lambda Q_{\phi}\right\}} \\
& =-\frac{u_{0}^{2}}{g} \int^{p^{\prime}} \frac{\left(1+p^{2}\right)^{\frac{1}{2}} d p}{\left\{1-\lambda Q_{\phi}\right\}} \tag{i}
\end{align*}
$$

Here s the length of the are of the trajectory is the only quantity that can be found by integration. The values of $(t),(x)$ and (y) calculated by quadratures and also of (v), for useful values of λ and ϕ, will be found in Table Ix.
120. Suppose next that the retarding force varies as the cube of the velocity, then

$$
n=3 ; 2 e=2 b=K \frac{d^{2}}{w}\left(\frac{1}{1000}\right)^{3},
$$

and by (5)

$$
\frac{2 e u_{0}^{n}}{g}=\frac{2 b u_{0}^{3}}{g}=\frac{K}{g} \frac{d^{2}}{w}\left(\frac{u_{0}}{1000}\right)^{3}=\gamma \text { suppose (17), }
$$

also $\quad n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p=3 \int\left(1+p^{2}\right) d p$

$$
=3 \tan \phi+\tan ^{3} \phi=P_{\phi} \text { (see Table xv.). }
$$

By (2)

$$
\begin{equation*}
\left(\frac{1000}{u}\right)^{3}=\left(\frac{1000}{u_{0}}\right)^{3}-\frac{K}{g} \frac{d^{3}}{w} P_{\phi} . \tag{18}
\end{equation*}
$$

by (3)

$$
\begin{equation*}
\frac{v}{u_{0}}=\frac{\sec \phi}{\left\{1-\gamma P_{\phi}\right\}^{\frac{1}{3}}}=\frac{1}{10^{3}}(\mathrm{v}) . . \tag{19}
\end{equation*}
$$

by (6)

$$
t=-\frac{u_{0}}{g} \int^{\phi} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\gamma P_{\phi}\right\}^{\frac{1}{3}}}=-\frac{u_{0}}{10^{4} g}\left({ }^{\left(T_{\gamma}\right.}{ }^{\phi}\right) \ldots \ldots .(20),
$$

by (7)

$$
\left.x=-\frac{u_{0}^{2} \phi}{g} \int^{\phi^{\prime}} \frac{\left(1+p^{2}\right) d \phi}{\left\{1-\gamma P_{\phi}\right\}^{\frac{2}{3}}}=-\frac{u_{0}^{2}}{10^{4} g}{ }^{(\phi} \mathbf{x}^{\gamma^{\phi}}\right) \ldots \ldots .(21),
$$

by (8)

$$
\left.y=-\frac{u_{0}^{2} \phi}{g} \int^{\phi^{\prime}} \frac{\left(p+p^{3}\right) d \phi}{\left\{1-\gamma P_{\phi}\right\}^{\frac{2}{3}}}=-\frac{u_{0}^{2}}{10^{4} g}{ }^{\dagger}{ }^{\phi} \mathrm{Y}_{\gamma^{\phi}}{ }^{\phi}\right) \ldots \ldots(22) ;
$$

(x), (y) and (T) have been calculated by quadratures for useful values of γ and ϕ. These results and corresponding values of (v) will be found in Table xvi. Intermediate values of these quantities must be found by proportional parts or, where greater accuracy is required, by interpolation.
121. Lastly, suppose that the retarding force arising from the resistance of the air varies as the $6^{\text {th }}$ power of the velocity, then

$$
n=6
$$

and

$$
\begin{align*}
& \text { and } \begin{aligned}
& n \int\left(1+p^{2}\right)^{\frac{n-1}{2}} d p=6 \int\left(1+p^{2}\right)^{\frac{6}{4}} d p \\
&=\tan \phi\left\{\sec ^{5} \phi\right.\left.+\frac{5}{4} \sec ^{3} \phi+\frac{15}{8} \sec \phi\right\}+\frac{15}{8} \log _{\varepsilon} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right) \\
&=W_{\phi}(\text { see Table xvili. }) \ldots \ldots \ldots \ldots \ldots \ldots(23),
\end{aligned} \\
& \text { and by (2) } \begin{aligned}
\left(\frac{1000}{u}\right)^{\circ} & =\left(\frac{1000}{u_{0}}\right)^{6}-\frac{2 e^{\prime}}{g}(1000)^{6} W_{\phi} \\
& =\left(\frac{1000}{u_{0}}\right)^{6}-\frac{L}{g} \frac{d^{2}}{w} W_{\phi} \ldots \ldots \ldots \ldots \ldots \ldots(24) .
\end{aligned}
\end{align*}
$$

Tables for calculating the values of x, y and t have not been prepared for this case. Hence it will be necessary to use those prepared for the cubic or Newtonian Law or the General Tables after the velocity has been calculated.

Professor Greenhill has published some elaborate papers on the Motion of a Projectile in a resisting medium ${ }^{1}$. He also effects a complete solution when the resistance is supposed to rary as the cube of the velocity'. Professor Greenhill has also published papers on the Rotation required for the stability of an elongated projectile', and on "Drift"."

Examples of the Calculation of 'Trajectories.

122. We now proceed to give various examples of the use of this treatise in calculating trajectories of projectiles.

For the purpose of testing my coefficients we will make use of Range Tables, which have been carefully derived from actual experiment and where the muzzle velocity and "jump" have been measured. One of these Range Tables is that for the 63 -inch Howitzer where the muzzle velocity is 751 f .s. These Range Tables were originally sent to me to show that my coefficients of 1879 did not give satisfactory results when tested by them. Certainly my general Tables could not be expected to apply to trajectories so much curved. But when the trajectory was broken up into short arcs and so properly calculated, the results agreed

[^22]extremely well with the Range Tables ${ }^{1}$. For examples of heavy shot I have used the Range Table recently prepared with great care by Captain H. J. May, R.N., for 12 -inch shot fired at elevations of 0° to $4^{\circ}{ }^{\circ}$ Further, I have used the Range Table of the 4 -inch B.L. gun, in order to secure great variation of velocity. After the publication of Krupp's Tables this was the gun selected by Government in 1887 to be used in testing my coefficients of Resistance (K) on a long range, when they were found to be quite satisfactory, although originally obtained from experiments on short ranges.
$6 \cdot 3$-inch Howitzer. Ranges calculated on a horizontal plane 6.5 feet below the muzzle, $d=6.27$ incbes, $w=70$ lbs., no allowance for "jump." Angles of departure $5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}, 30^{\circ}$ and 35°.

Muzzle velocity 751 f. s. Range Table derived from instructions for the service of field guns, 1879.
(1) $\alpha=5^{\circ}, V \cos 5^{\circ}=748^{\circ} 1$.

By (11) we have $\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{748 \cdot 1}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} Q_{5}$.

$$
\begin{aligned}
& \log \frac{k}{g}=0 \cdot 27402 \quad \text { Table Iv. } \\
& \log \frac{d^{2}}{w}=9 \cdot 74944
\end{aligned}
$$

$$
\log \frac{k}{g} \frac{d^{2}}{w}=\overline{0.02346}
$$

$$
\log Q_{5}=9 \cdot 24353
$$

9-26699
therefore
and

$$
\left(\frac{1000}{u_{0}}\right)^{2}=1.7868+0.1849=1.9717
$$

By Table x.

$$
u_{0}=712 \cdot 16 \mathrm{f} . \mathrm{s} .
$$

$$
\begin{equation*}
\lambda=\frac{k}{g} \frac{d^{2}}{w}\left(\frac{u_{0}}{1000}\right)^{2}=0: 5353 . \tag{10}
\end{equation*}
$$

Now

$$
\log \frac{1}{g}=8 \cdot 49227
$$

and

$$
\log u_{0}=2 \cdot 8525 \mathrm{~S}
$$

therefore

$$
\log \frac{u_{0}}{g}=1 \cdot 34485
$$

and

$$
\log \frac{u_{0}^{2}}{g}=4 \cdot 19743
$$

From Table Ix., we obtain

$$
\begin{aligned}
& { }_{\delta} x_{0}=919 \times \frac{u_{0}{ }^{2}}{10^{2} g} ;{ }_{s} y_{0}=40.9 \times \frac{u_{0}{ }^{2}}{10^{4} g} ;{ }_{5} t_{0}=896 \times \frac{u_{0}}{10^{\dagger} g} ; v_{5}=7.51 .0 \mathrm{f.s} . \\
& =1448 \text { feet } ; \quad=64 \cdot 4 \text { feet } ; \quad=1^{\prime \prime} \cdot 982 \text {. }
\end{aligned}
$$

We have to limit the descending branch by the consideration that the shot has to fall 6.5 feet more than it rose. Or the value of $\left(y^{\prime}\right)$ for the descending branch must be as before $40 \cdot 9$, increased by

$$
10^{4} \times 6 \cdot 5 \div \frac{u_{0}^{2}}{!}=4 \cdot 13
$$

or the value of (y^{\prime}) for the descending branch must be

$$
40 \cdot 9+4 \cdot 1=45 \cdot 0
$$

On referring to Table IX. for $\lambda=0.5$ and $\lambda=0.6$ it will be found that $\left(y^{\prime}\right)=45^{\circ} 0$ for some value of ϕ between -5° and -6°. Hence we must calculate the values of $\left(x^{\prime}\right),\left(y^{\prime}\right),\left(t^{\prime}\right)$ and $\left(v^{\prime}\right)$ for -5° and -6° for $\lambda=0.5353$; and then by proportional parts we can find the value of $\phi,\left(x^{\prime}\right),\left(t^{\prime}\right)$ and $\left(v^{\prime}\right)$ corresponding to

$$
\left(y^{\prime}\right)=45 \cdot 0,
$$

 gives.

But
${ }_{s} x_{0}=\underline{1448} \quad \Rightarrow \quad{ }_{5} y_{0}=+\underline{64 \cdot 4} \quad \Rightarrow \quad{ }_{s} t_{0}=\underline{1^{\prime \prime} \cdot 982}$
therefore

By Range Table

$X=\underline{978}$ yards; $Y=-\underline{6 \cdot 5} \quad, \quad T^{\prime}=\underline{4^{\prime \prime} \cdot 29}$
difference

$$
\underline{-7} \text { yards } \quad 0 \quad \underline{\underline{0} \cdot 20}
$$

(2) $\quad \alpha=10^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=1.8281+0.3742=2.2023$.

By Table X., $\quad u_{0}=673.8$ f. s. and $\lambda=0.4793$.
For the ascending branch by Table Ix.,
$\phi \quad \lambda$
(x)
(y)
(t)
(v)
$\begin{array}{llllll}10^{\circ} & 0.4793 & 1932 & 1756 & 1845 & 1115\end{array}$
which give
${ }_{10} x_{0}=2725 \cdot 3$ feet ; ${ }_{10} y_{0}=247 \cdot 7$ feet; ${ }_{10} t_{0}=3^{\prime \prime} \cdot 862 ; v_{10}=751 \cdot 3 \mathrm{f}$. s.
For the descending branch
ϕ^{\prime}
$-11^{\circ} 39$
$\underset{0 \cdot 4793}{\boldsymbol{\lambda}}$
(x^{\prime})
(y^{\prime})
(t^{\prime})
(v^{\prime})
which give
${ }_{0} x_{1139}=2596.9 \mathrm{ft} . ; y_{11 \text { '39 }}=-254 \cdot 2 \mathrm{ft} . ; t_{1139}=4^{\prime \prime} \cdot 030 ; v_{1139}^{\prime}=629 \cdot 2 \mathrm{f.s}$.
But

$$
\begin{aligned}
& { }_{10} x_{0}=2725 \cdot 3 \mathrm{ft} . ;{ }_{10} y_{0}=247 \cdot 7 \mathrm{ft} . ; \quad{ }_{10} t_{0}=3^{\prime \prime} .862 \\
& { }_{10} X_{1139}=\overline{1774 y} \text { ards } ;{ }_{10} Y_{1139}=-6.5 \mathrm{ft} \cdot ;{ }_{10} T_{1139}=\overline{7}^{\prime \prime} .892
\end{aligned}
$$

and by Range Table

Difference

$-\quad 15$ yards
$0 \quad-\underline{\underline{0^{\prime \prime} \cdot 148}}$
(3) $\alpha=15^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=1.9004+0.5724=2.4728$,
and by Table x .

$$
\begin{aligned}
u_{0} & =635 \cdot 92 \mathrm{f} . \mathrm{s} ., \\
\lambda & =0 \cdot 4269 .
\end{aligned}
$$

and hence

And by Table ix.,

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
$+15^{\circ}$	$0 \cdot 4269$	+3047	$+425 \cdot 9$	+2855	
$-17^{\circ} 69$	\prime	+2818	$-431 \cdot 1$	+2995	928.5

 and by Range Table

$$
X=\underline{2467} \text { yards } ; \quad Y=-\underline{6.5} \mathrm{ft} . ; \quad T^{\prime}=\underline{11^{\prime \prime} \cdot 700}
$$

Difference

$$
-11 \text { yards } \quad \xlongequal{0,} \quad-\underline{\underline{0^{\prime \prime}} \cdot 143}
$$

(4) $\quad \alpha=20^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=2.0077+0.7850=2.7927$.

Hence

$$
\begin{aligned}
u_{0} & =598.39 \mathrm{f} . \mathrm{s} . \\
\lambda & =0.378 .
\end{aligned}
$$

and by Range Table

$$
X=3000 \text { yards } ; Y=-6 \cdot 5 \mathrm{ft} . ; \quad T=15^{\prime \prime \prime} \cdot 20
$$

Difference

$$
\underline{\underline{+15} \text { yards } \quad 0} \quad \underline{\underline{-0^{\prime \prime}} 14}
$$

(5) $\alpha=25^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=2 \cdot 1585+1.0190=3 \cdot 1775$.

Hence $\quad u_{0}=561.0 \mathrm{f}$. s. and $\lambda=0.332$.

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
25°	0.332	5613	1392.9	5106	
$-30^{\circ} .73$	0.332	4994	-1399.6	5443	978

${ }_{28} \lambda_{3074}^{\prime}=3456 \mathrm{yards} ;{ }_{98} Y_{3074}=-6.5 \mathrm{ft}$; ${ }_{28} T_{3074}=18^{\prime \prime} \cdot 383 ; v_{3074}^{\prime}=549 \mathrm{f} . \mathrm{s}$.
By Range Table

$$
X=\underline{3467} \text { yards; } Y=-6.5 \mathrm{ft} . ; \quad T=\underline{18^{\prime \prime} \cdot 530}
$$

Difference

$$
\underline{-11 \text { yards } \quad \underline{\underline{0}} \quad \underline{\underline{-0^{\prime \prime}} 147}}
$$

$$
\begin{equation*}
\alpha=30^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=2 \cdot 3641+1 \cdot 2834=3 \cdot 6475 . \tag{6}
\end{equation*}
$$

Hence

$$
\dot{u}_{0}=523 \cdot 6 \mathrm{f} . \mathrm{s} . ; \text { and } \lambda=0.2894
$$

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
30°	0.2894	7083	2192.0	6381	
$-37^{\circ} 0.5$	$"$	6226	-2199.6	6845	1032

therefore

By Range Table

$$
X=3813 \mathrm{yards} ; \underline{Y}=-6.5 \mathrm{ft} . ; \underline{T}=21^{\prime \prime} \cdot 750
$$

Difference

$$
\underline{\underline{-35}} \text { yards } ; \quad \underline{\underline{0}} \quad \underline{\underline{-0 \prime \prime} \cdot 239}
$$

(7) $\quad \alpha=35^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=2 \cdot 6424+1 \cdot 5913=4 \cdot 2337$.

Hence

$$
u_{0}=486.0 \mathrm{f}: \mathrm{s} . ; \text { and } \lambda=0.2493
$$

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
$3 \tilde{5}^{\circ}$	0.2493	8744	3305.8	7802	
$-43^{\circ} \cdot 14$	η	7607	-3314.9	8429	1107.5

therefore
${ }_{35} X_{43 \cdot 14}=3999$ yards; ${ }_{35} I_{43 \cdot 44}=-6 \cdot 5 \mathrm{ft} ;{ }_{35} T_{4314}=244^{\prime \prime} \cdot 505 ; v^{\prime}{ }_{4314}=538$ f.s.
By Range Table

$$
X=4000 \text { yards } ; \quad Y=-6.5 \mathrm{ft} ; \quad T=24^{\prime \prime} \cdot 90
$$

Difference

$$
\underline{\underline{-1} \text { yard } ; \quad \xlongequal{0} \quad \underline{\underline{0}} \quad \underline{0} 395}
$$

123. We will now give some examples with heavy shot and high muzzle velocities, and for comparison of results we will use the Range Table ${ }^{1}$ of Captain H. J. May, R.N., as already stated for elevations up to 4°, the limit of the table. Here the "jump" was found to be 6 minutes. Hence the results obtained by calculation for elevations of $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4° must be compared with similar results derived from the Range Table for elevations of $0^{\circ} 54^{\prime}, 1^{\circ} 54^{\prime}, 2^{\circ} 54^{\prime}$ and $3^{\circ} 54^{\prime}$. Here $d=12$ inches, $w=714 \mathrm{lbs}$,,

[^23]B.
and muzzle velocity $=1892$ f.s. The Newtonian Law holds approximately between this velocity and 1300 f. s., where
$$
\log \frac{k}{g}=0.64211
$$

The Range \&c. are calculated for the horizontal plane passing through the muzzle of the gun.

$$
\begin{aligned}
& \text { (1) } \alpha=1^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{1891 \cdot 7}\right)^{2}+\frac{k}{g} \frac{d^{2}}{v} Q_{1} \text { by (11) } \\
& =0.27945+0.03088=0.31033 \text {. } \\
& \text { Hence } u_{0}=1795 \cdot 1 \text { f.s., and } \lambda=2851 \text {. } \\
& \begin{array}{cccccc}
\phi & \lambda & (x) & (y) & (t) & \left(v^{\prime}\right) \\
+1^{\circ} & 2 \cdot 851 & 184 & 1.6 & 179 & \\
-1^{\circ} \cdot 05 & " & \underline{174} & -1 \cdot 6 & \underline{178} & \underline{951} \\
{ }_{1,} X_{100}= & 1195 & \text { yards; }{ }_{1} Y_{105}=0 ; & { }_{1} T_{105}=1^{\prime \prime} \cdot 99 ; & \underline{v_{120}^{\prime}}=1707 \cdot 1 \mathrm{f} . \mathrm{s} .
\end{array}
\end{aligned}
$$

and by Range Table

$$
X=\underline{1200} \text { yards } ; \quad Y=\underline{0} ; \quad T=\underline{2^{\prime \prime} .01} ;
$$

Difference - 5 yards $\quad \underline{\underline{0}}$

$$
\text { (2) } \alpha=2^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.27968+0.06180=0.34148 \text {. }
$$

Hence $u_{0}=171128$ f.s.; and $\lambda=2: 591$.

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
2°	$2^{2} 591$	385	7.0	867	
$-2^{\rho} \cdot 25$	$"$	356.6	-7.0	374	912.2

 and by Range Table

$$
X=\underline{2267} \text { yards } ; \quad Y=\underline{0} ; \quad T^{\prime}=\underline{3^{\prime \prime} \cdot 977}
$$

Difference-18 yards
(3) $a=3^{\circ} ; \quad\left(\frac{1000}{u_{0}}\right)^{2}=0.28012+0.09277=0.37289$.

Hence $u_{0}=1637 \cdot 6 \mathrm{f}$. s.; and $\lambda=2.372$.

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
$+3^{\circ}$	$2: 372$	603	16.54	561.4	
$-3^{\circ} 57$	$"$	546.5	-16.54	584.0	880.5

${ }_{3} X_{30}=3192$ yards $;{ }_{3} I_{3 \sigma}=0 ; \quad{ }_{3} T_{3 \bar{\sigma}}^{\prime}=5^{\prime \prime} \cdot 827 ; \quad v_{3 \pi}^{\prime}=1442 \mathrm{f} . \mathrm{s}$.
and by Range Table

$$
X=\underline{3200} \text { yards } ; \quad Y=\underline{0} ; \quad T=\underline{5^{\prime \prime}} \cdot 86
$$

Difference $\underline{\underline{-8}}$ yards $\underline{\underline{0}}$
(4) $\alpha=4^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.28072+0.12382=0.40454$.

Hence $u_{0}=1572 \cdot 2$ f. s.; and $\lambda=2 \cdot 187$.

$$
\begin{aligned}
& \begin{array}{ccccc}
\phi & \lambda & (x) & (y) & (t) \\
+4^{\circ} & 2 \cdot 187 & 835 & 30.9 & 762 .
\end{array} \\
& -50.02 \text { " } 743-30.9 \quad 807.7 \quad 853.3 \\
& { }_{\star} X_{5 v 2}=4039 \text { yards; } \quad{ }_{\wedge} Y_{5 v 2}=0 ; \quad{ }^{\prime} T_{5 v 2}=7^{\prime \prime} \cdot 667 ; \quad v_{5 v 2}^{\prime}=1341 \cdot 6 \mathrm{f} \text {. s. }
\end{aligned}
$$

and by Range Table

$$
\begin{array}{rrr}
\quad X=\underline{4057} \text { yards; } \quad Y=\underline{0 ;} ; & \quad T^{\prime}=\underline{7^{\prime \prime} \cdot 742} \\
\text { Difference } \underline{\underline{-18} \text { yards }} \quad \underline{\underline{0}} \quad \underline{\underline{0^{\prime \prime} \cdot 075}}
\end{array}
$$

The calculated time of flight over

$$
\begin{aligned}
40.57 \mathrm{yds} & =\text { time over } 4039+\text { time over } 18 \text { yards } \\
& =7^{\prime \prime} \cdot 667+0^{\prime \prime} \cdot 040=7^{\prime \prime} \cdot 707
\end{aligned}
$$

which is $0^{\prime \prime} \cdot 035$ less than $7^{\prime \prime} .742$ the time given by the Range Table.
124. Using the horizontal muzzle velocities, the following have been found to be the times of flight by the General Tables, for the distances and elevations specified for the 12 -inch B. L. gun.

	Elevations	$0^{\circ} 54^{\prime}$	$1^{\circ} 54{ }^{\prime}$	$2^{\circ} 54{ }^{\prime}$	nd $3^{\circ} 54^{\prime}$
By	Range	1200	2267	3200	4057 yards
Range Table	Time of Flight	2".010	$3^{\prime \prime} \cdot 977$	$5 "$ '860	$7{ }^{\prime \prime} \cdot 742$
$\left.\begin{array}{c} \text { Calculated } \\ \text { Time of Flight } \end{array}\right\}$		$2^{\prime \prime} .002$	$3^{\prime \prime} \cdot 967$	5"845	7"715
Difference $-0^{\prime \prime} .008$			$-\overline{0.010}$	-0".015	-0".027

125. Next we will calculate several rounds for shot fired from the 4 -inch B. L. gun and compare the results with those given in the Range Table. Here $d=4$ inches ; $w=25 \mathrm{lbs}$.; muzzle velocity $=1900 \mathrm{f}$. s. The "jump" is 6 minutes. The range is calculated on

$$
7-2
$$

the horizontal plane passing through the muzzle, as we have no information on this point.

$$
\text { (1) } \begin{aligned}
\alpha=1^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2} & =\left(\frac{1000}{u_{1}}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} Q_{1} \\
& =0.27709+0.09801=0.37510 .
\end{aligned}
$$

Hence $\quad u_{0}=1632 \cdot 8$ f.s. and $\lambda=7 \cdot 484=75$ nearly.

	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
$+1^{\circ}$	7.5	202	+1.9	188	
$-1^{\circ} \cdot 184$	$"$	$\underline{178}$	$-\underline{1.9}$	$\underline{191.8}$	$\underline{875.3}$

and ${ }_{1} X_{1184}=1049$ yards; ${ }_{1} Y_{1184}=0 ;{ }_{1} T_{1184}=1^{\prime \prime} \cdot 927 ; \quad v_{1144}^{\prime}=1429$ f.s. and by the Range Table

$$
\begin{array}{crr}
X=1083 \text { yards; } & Y=\underline{0} ; & T=\underline{1^{\prime \prime} \cdot 970} \\
\text { ace } & \underline{\underline{0}} \text { yards } & \underline{\underline{0^{\prime \prime}} \cdot 043}
\end{array}
$$

Where the tabular values of (v) or (v) change rapidly it will be necessary to use formula (19) or (12) when precision is required.
(2) $\alpha=2^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.27735+0.19611=0.47346$

Hence

$$
u_{0}=1453.3 \mathrm{f.} \mathrm{s.} \mathrm{and} \lambda=5.929 .
$$

ϕ	λ	(x)	(y)	(t)	$\left(v^{\prime}\right)$
$+2^{\circ}$	5.929	$450 \cdot 7$	8.61	$395 \cdot 4$	
$-2^{\circ} .764$	$"$	$\underline{380.3}$	$-\underline{8.61}$	$\underline{427.3}$	$\underline{799 \cdot 3}$

and ${ }_{2} X_{7,64}=1817$ yards; ${ }_{2} Y_{274}=0 ;{ }_{2} T_{274}=3^{\prime \prime} \cdot 714 ; v_{774}^{\prime}=1162 \mathrm{f.s}$. By Range Table

$$
\left.X=\underline{\underline{1811} \text { yards; } ;} \quad Y=\underline{0 ;} \quad T^{\prime}=\underline{3^{\prime \prime} \cdot 72}\right)
$$

Difference
(3) $a=8^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.27777+0.29439=0.57216$.

Hence $u_{0}=1322 \cdot 0$ f.s. and $\lambda=4 \cdot 906=4.9$ nearly.

ϕ	λ	(x)	(y)	(t)
3°	4.9	735	$21 \cdot 6$	$61 \cdot 7$

or $\quad s^{x_{0}}=3991$ feet $; \quad y_{0}=117 \cdot 3$ feet ; $\quad{ }_{3} t_{0}=2^{\prime \prime}: 534$.

As the law changes from the Newtonian to the cubic at a velocity of about 1300 f .s. it will be convenient to change the law at the vertex; then
and

$$
{ }_{0} x_{4 i z 3}=3227 \cdot 5 \text { feet } ;{ }_{0} y_{4 \times 3}=-117 \cdot 3 \text { feet; } ; t_{4 \times 3}=2^{\prime \prime} \cdot 805 .
$$

But

$$
\begin{aligned}
& { }_{3} x_{0} \\
& { }_{3} X_{433}=3991 \text { feet } ; \quad{ }^{2} y_{0}=+\frac{117 \cdot 3 \text { feet; } ;{ }_{3} t_{0}=2^{\prime \prime} \cdot 534}{0}{ }_{3} T_{4 * 3}=5^{\prime \prime} \cdot 339 ; v_{4 \times 3}^{\prime}=1023 \mathrm{f} . \mathrm{s} .
\end{aligned}
$$

By Range Table

| $X=\underline{2400}$ yards; $\quad Y=\underline{0}=\underline{5^{\prime \prime} \cdot 340}$ | |
| :---: | :---: | :---: | :---: |
| Difference+6 yards; | $\underline{\underline{0}} \quad \underline{\underline{0^{\prime \prime} .001}}$ |

The same example may be solved by the use of French
Measures,

$$
\begin{aligned}
& \mathfrak{b}=1900 \text { f. s. }=579 \cdot 11 \mathrm{~m} . \mathrm{s} . \\
& \mathfrak{u}=\mathfrak{b} \cos \phi=578 \cdot 3 \mathrm{~m} . \mathrm{s} . \\
& d=4 \cdot \mathrm{in} .=10 \cdot 16 \mathrm{c} . \mathrm{m} . \\
& \mathrm{g}=9 \cdot 809 \mathrm{~m} . \mathrm{s} . ; \mathrm{p}=11 \cdot 34 \mathrm{kgs.}
\end{aligned}
$$

$$
\log \frac{\mathrm{a}^{2}}{\mathrm{p}}=0.95917
$$

$$
\log \tau=\log \frac{534 \cdot 22}{5.27}=0.00591 ;
$$

$$
\log \frac{k}{g}=0: 51518 \text { (Table xxix.). }
$$

$$
\begin{aligned}
& \left(\frac{1000}{\mathfrak{u}_{0}}\right)^{2}=\left(\frac{1000}{\mathfrak{u}_{3}}\right)^{2}+\frac{k}{g} \frac{\mathrm{a}^{2}}{\mathrm{p}} \tau Q_{3} \\
& =2 \cdot 9902+3 \cdot 1688=6 \cdot 1590 \text {. } \\
& \log \frac{1}{g}=9.00838 \\
& \log \mathrm{u}_{0}=2 \cdot 60525 \\
& \text { Hence } \mathrm{t}_{0}=402.94 \mathrm{~m} . \mathrm{s} \text {. } \\
& \log \frac{\mathbf{u}_{0}}{\mathrm{~g}}=1.61363 \\
& \lambda=\frac{k}{g} \frac{\mathrm{a}^{2}}{\mathrm{p}} \tau\left(\frac{\mathrm{t}_{0}}{1000}\right)^{2}=4 \cdot 906=4.9 \text { nearl } y \text {. } \\
& \log \frac{\mathrm{u}_{0}{ }^{2}}{\mathrm{~g}}=4.21888
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\frac{K}{g} \frac{d^{2}}{w}\left(\frac{u_{0}}{1000}\right)^{3}=3.3891 \times 0.64 \times(1.322)^{3}=5.012=5.0 \text { nearly } . \\
& \phi \quad \gamma \\
& \gamma \text { (x) } \\
& \text { (y) } \\
& \text { (т) } \\
& -4^{\circ} \cdot 512 \quad 5 \cdot 0 \\
& 59.4-216
\end{aligned}
$$

ϕ	λ	(x)	(y)	(t)
3°	$4 \cdot 9$	735	$21 \cdot 6$	617

gives

$$
{ }_{s_{0}}^{x_{0}}=1216.6 \mathrm{~m} \cdot ;{ }_{3} y_{0}=35.76 \mathrm{~m} \cdot ;{ }_{s} t_{0}=2^{\prime \prime} \cdot 5.35
$$

The law of Resistance changes to the cubic law at the vertex, and $\gamma=5.011=5.0$ nearly.

ϕ	γ	(x)	(y)	(T)	$\left(\mathrm{v}^{\prime}\right)$
$-4^{\circ} \cdot 51$	5.0	594	$-21 \cdot 6$	682.5	774.2

gives
${ }_{0} x_{451}=983.3 \mathrm{~m} . ; \quad y_{451}=-35 \cdot 76 \mathrm{~m} . ;{ }_{{ }^{4} t_{451}}=2^{\prime \prime} \cdot 804 ; \quad v_{4 \cdot 51}^{\prime}=312 \mathrm{~m} . \mathrm{s}$. But

$$
\begin{aligned}
{ }_{3} x_{0} & =1216.6 \mathrm{~m} \cdot ; \quad{ }_{3} y_{0}=+35 \cdot 76 \mathrm{~m} \cdot ;{ }_{3} t_{0}=2^{\prime \prime} \cdot 535 \\
{ }_{3} X_{451} & =2199 \cdot 9 \mathrm{~m} \cdot ;{ }_{3} Y_{551}=0 \\
& =2406 \text { yards; }
\end{aligned}
$$

By Range Table

$$
X=\underline{2400} \text { yards; } Y=\underline{0} \quad T=5^{\prime \prime} \cdot 340
$$

Difference

$$
+6 \text { yards } ; \quad \underline{\underline{0}}
$$

(4) $\alpha=4^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.27836+0.39293=0.07129$.

Hence $u_{0}=1220 \cdot 6$ and $\lambda=4 \cdot 182$.
The Newtonian Law holds up to a velocity of 1300 f.s. To find the value of ϕ corresponding approximately to this velocity we have $(v)=10^{3} v \div u_{0}=1300 \div 1 \cdot 22056=1064$. From the table it will be found that $\phi=+1^{\circ}$.

$$
\begin{aligned}
& \begin{array}{lll}
\phi & \lambda & (x)
\end{array} \\
& +4^{\circ} \quad 4 \cdot 182 \quad 10520 \\
& +1^{\circ} \quad \frac{188 \cdot 4}{863 \cdot 6} \\
& +1^{\circ} \quad n \quad \frac{188 \cdot 4}{863 \cdot 6} \\
& \text { (y) } \\
& \text { (} t \text {) } \\
& \text { (v) } \\
& 42 \cdot 1 \\
& 8.505 \\
& x_{1}=\overline{3997} \mathrm{ft} ;{ }_{\iota} y_{1}=\overline{187 \cdot 0} \mathrm{ft} ; t_{1}=\frac{2^{\prime \prime} \cdot 537}{5} ; v_{1}=1321 \mathrm{f} . \mathrm{s} . \\
& \left(\frac{1000}{u_{1}}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k}{J} \frac{d^{2}}{w} Q_{1}=0.67129-0.09801=0.57328 .
\end{aligned}
$$

Hence $u_{s}=1320.7 \mathrm{f}$. .

We must now use the cubic law

$$
\begin{aligned}
\left(\frac{1000}{u_{0}}\right)^{3} & =\left(\frac{1000}{u_{1}}\right)^{3}+\frac{K}{g} \frac{d^{3}}{w} P_{1} \\
& =0.4341+0 \cdot 1136=0.5477 .
\end{aligned}
$$

Hence $u_{0}=1222 \cdot 3$ f. s. and $\gamma=3.961=4.0$ nearly.
This law is to continue till the velocity is reduced to 1050 f.s. Now

$$
(v)=10^{3} \times 1050 \div 1222 \cdot 3=859,
$$

which on referring to the table for $\gamma=4.0$ will give $\phi=-3^{\circ}$.

ϕ		(x)	(Y)	(T)	(v)
$+1^{\circ}$	$4 \cdot 0$	188	+ 17	181	
-3°		442	$-10 \cdot 9$	481	851
		630	$-9 \cdot 2$	662	
	92	${ }_{1} y_{3}=$	ft.; t_{3}	$v_{3}^{\prime}=$	

The law still remains the cubic as before but with reduced coefficient of resistance. The shot has to fall
$187 \cdot 0-42 \cdot 72=144 \cdot 28 \mathrm{ft}$. vertically.

$$
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{3}^{\prime}}\right)^{3}-\frac{K}{g} \frac{d^{2}}{w} P_{3}=0.8890-0.2303=0.6587,
$$

which gives

$$
u_{0}=1149 \cdot 3 \text { and } \gamma=2 \cdot 221 .
$$

The required value of (y) is

$$
10^{4} \times 144 \cdot 28 \div \frac{u_{0}^{2}}{g}=35 \cdot 16
$$

$$
\begin{array}{cccccc}
\phi & \gamma & (\mathrm{x}) & (\mathrm{y}) & (\mathrm{T}) & \\
-3^{\circ} & 2 \cdot 221 & 472 \cdot 6 & -11 \cdot 99 & 497 \cdot 8 & \\
& & & -\underline{35 \cdot 16} & & \\
& & & -47 \cdot 15 & & \\
& & & (\mathrm{x}) & (\mathrm{Y}) & (\mathrm{T}) \\
\hline \boldsymbol{\gamma} & \boldsymbol{\gamma} & & \left(\mathrm{v}^{\prime}\right) \\
-6^{\circ} & 2 \cdot 221 & 871 \cdot 7 & -43 \cdot 12 & 955 \cdot 4 & 842 \cdot 0 \\
-7^{\circ} & " & \underline{992 \cdot 4} & -56 \cdot 88 & \underline{1102 \cdot 2} & -824 \cdot 8 \\
\text { Hence }-6^{\circ} 29 & " & 906 \cdot 9 & -47 \cdot 15 & 998 \cdot 0 & 837 \cdot 0 \\
-3^{\circ} & & \underline{472 \cdot 6} & -\underline{11.99} & \underline{497 \cdot 8} &
\end{array}
$$

By Range Table

$$
X=\underline{2917} \text { yards; } \quad Y=0 ; \quad T=\underline{6^{\prime \prime} .93}
$$

Difference

$$
\underline{\underline{-16} \text { yards } \quad+0.06 \mathrm{ft} \quad \underline{-0^{\prime \prime} .09}}
$$

$$
\left(\frac{1000}{u_{6 \cdot 20}^{\prime}}\right)^{3}=0 \cdot 6587+0 \cdot 4858=1 \cdot 1445
$$

gives

$$
u_{\mathrm{\sigma} 7 \mathrm{~g}}^{\prime}=956.0 \mathrm{f} . \mathrm{s} .=318.7 \mathrm{y} . \mathrm{s} .
$$

(5) $\quad \alpha=5^{\circ} ;\left(\frac{1000}{u_{0}}\right)^{2}=0.27915+0.49184=0.77099$.

Hence

$$
u_{0}=1138: 88 \mathrm{f.s.} \text { and } \lambda=3.641 .
$$

To find where this law must be discontinued, we have

$$
(v)=10^{3} v_{\phi} \div u_{0}=1300 \div 1 \cdot 13888=1140,
$$

which gives $\phi=+2^{\circ}$ nearly.

ϕ	λ	(x)	(y)	(t)	(v)
$+5^{\circ}$	$3 \cdot 641$	1394	$71 \cdot 10$	1092.4	
$+2^{\circ}$		403	$7 \cdot 37$	$374 \cdot 7$	1158.7
		991	68.73	$717 \cdot 7$	
$\left(\frac{1000}{u_{3}}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k}{g} \frac{d^{2}}{w} Q_{2}=0.77099-0.19611=0.57488 .$					

Hence

$$
u_{3}=1319 \cdot 0 \mathrm{f.s} .
$$

Here we change to the cubic law.

$$
\begin{aligned}
\left(\frac{1000}{u_{0}}\right)^{8} & =\left(\frac{1000}{u_{2}}\right)^{8}+\frac{K}{g} \frac{d^{2}}{w} P_{2} \text { by equation (18) } \\
& =0 \cdot 4358+0 \cdot 2273=0 \cdot 6631 \text { by Table xviI. }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1} x_{3}=2924 \mathrm{ft} . ; \quad y_{3}=-42.72 \mathrm{ft} ;{ }_{2} t_{3}=2^{\prime \prime} \cdot 514 \\
& x_{1}=\underline{3997} \mathrm{ft} . ; \quad y_{1}=+187 \cdot 00 \mathrm{ft} . ; \quad t_{1}=\underline{2^{\prime \prime} \cdot 537}
\end{aligned}
$$

$$
\begin{aligned}
& =2901 \text { yards }
\end{aligned}
$$

Hence $u_{0}=1146.8$ f. s., and $\gamma=3.271$ by equation (17).

ϕ	
2°	3.271

(x)
(Y)
(T)
$399 \quad 7 \cdot 3 \quad 373$ by Table xvi.
which give

$$
{ }_{2} x_{0}=1632 \cdot 0 \text { feet } ; \quad{ }_{2} y_{0}=29 \cdot 8 \text { feet ; } \quad{ }_{2} t_{0}=1^{\prime \prime} \cdot 329
$$

But ${ }_{s} x_{2}=\underline{3993 \cdot 0 ~} \quad ; \quad{ }_{s} y_{2}=\underline{256 \cdot 8}$ "; ${ }_{8} t_{2}=\underline{2^{\prime \prime} \cdot 539}$
Therefore

$$
{ }_{s} x_{0}=5625 \cdot 0 \quad, \quad ; \quad{ }_{\mathrm{s}} y_{0}=286.6 \quad, \quad{ }_{s} t_{0}=3^{\prime \prime} \cdot 868
$$

The cubic law ends when
(v) $=10^{3} v_{\phi} \div u_{0}=1100 \div 1 \cdot 147=959$, which gives $\phi=-1^{\circ}$.
$\begin{array}{ccccccc} & \phi & \gamma & (\mathrm{x}) & \text { (Y) } & \text { (T) } & \text { (v) } \\ \text { and } & -1^{\circ} & 3.271 & 165.6 & -1.4 & 170 & 950\end{array}$
give

$$
{ }_{0} x_{1}=676 \cdot 5 \text { feet } ; \quad{ }_{0} y_{1}=-5 \cdot 72 \text { feet } ; \quad t_{1}=0^{\prime \prime} \cdot 605 ; \quad v_{1}^{\prime}=1088 \cdot 1 \text {. }
$$

To find u_{1}^{\prime} more correctly, we have

$$
\left(\frac{1000}{u_{1}^{\prime}}\right)^{3}=0.6631+0.1136=0.7767
$$

Hence

$$
u_{1}^{\prime}=1087 \cdot 9 \mathrm{f.} \mathrm{s.}
$$

To find ϕ where the velocity is approximately 1000 f. s., we have

$$
\left(\mathrm{v}^{\prime}\right)=10^{3} v_{\phi} \div u_{0}=1000 \div 1 \cdot 1468=872
$$

and the Table for $\gamma=3.271$ gives $\phi=-3^{\circ}$.
The resistance of the air $\propto v^{6}$ for velocities 1100 to 1000 f . s.

$$
\begin{aligned}
\left(\frac{1000}{u_{3}^{\prime}}\right)^{6} & =\left(\frac{1000}{u_{1}^{\prime}}\right)^{6}+\frac{L}{g} \frac{d^{2}}{w}\left(W_{3}-W_{1}\right) \text { by equation }(24) \\
& =0.6031+0.3221=0.9252 \text { by Table xix. }
\end{aligned}
$$

which gives $u_{3}^{\prime}=1013.0 \mathrm{f}$. s.
As we have no Tables calculated to give the values of x, y, and t for a resistance varying as the 6th power of the velocity, we must use the Tables already calculated. We will use the Cubic Law and then we have

$$
\frac{K}{g} \frac{d^{2}}{w}\left(P_{3}-P_{1}^{3}\right)=\left(\frac{1000}{u_{3}^{\prime}}\right)^{3}-\left(\frac{1000}{u_{1}^{\prime}}\right)^{3}=\left(\frac{1000}{1013 \cdot 0}\right)^{3}-\left(\frac{1000}{1087 \cdot 9}\right)^{3},
$$

which gives

$$
\frac{K^{x}}{g} \frac{d^{2}}{w}=\frac{1854}{1050}
$$

Therefore

$$
u_{0}=1134 \cdot 9 \text { and } \gamma=2: 581 .
$$

ϕ	γ	(x)	(y)	(T)	$\left(\mathrm{V}^{\prime}\right)$
-1°	2.581	167	$-1 \cdot 4$	171	
-3°	$"$	466	$-11 \cdot 7$	494	894

give

$$
{ }_{1} x_{3}=1196 \cdot 4 \mathrm{ft} . ; \quad y_{3}=-41 \cdot 21 \mathrm{ft} . ; \quad t_{3}=1^{\prime \prime} \cdot 139 ; \quad v_{3}^{\prime}=1014 \cdot 6 \mathrm{f.s.}
$$

The cubic law with a reduced coefficient holds now to the end of the range

$$
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{s}^{\prime}}\right)^{3}-\frac{K}{g} \frac{d^{2}}{w} P_{3}=0.9620-0.2303=0.7317 .
$$

This gives $\quad u_{0}=1109.8 \mathrm{f}$. s. and $\gamma=2.0$.
The shot has to fall a vertical height

$$
=286 \cdot 6-5 \cdot 72-41 \cdot 21=239 \cdot 67 \text { feet, }
$$

and

$$
10^{4} \times 230.67 \div \frac{u_{0}^{2}}{g}=62 \cdot 66
$$

ϕ	γ	(x)	(Y)	(T)	(v)
-3°	2.0	477	- $12 \cdot 1$	500	
$-8^{\circ} 04$		1135	-74.76	1264	822.4
${ }_{1} x_{3}{ }^{*}=11$		$y_{1} y_{3}=-41 \cdot 2 \mathrm{ft}$.; $t_{s}=1^{\prime \prime} \cdot 139$			
${ }_{\sigma^{r_{1}}}=$	6.5	${ }_{0} y_{1}=-5 \cdot 7 \mathrm{ft} . ; \quad{ }_{0} t_{1}=0^{\prime \prime} \cdot 605$			
${ }_{0} x_{801}=4$	0.2,	$y_{\text {gin }}=-286 \cdot 6 \mathrm{ft}. ; \quad \mathrm{o}_{\text {8ix }}=4^{\prime \prime} \cdot 378$			
${ }_{8} x_{0}=5$	23.0 ,	${ }_{8} y_{0}=+286.6 \mathrm{ft} . ; \quad{ }_{5} t_{0}=3^{\prime \prime} .865$			
$X_{801}=3$	38 yd	$Y_{804}=0{ }_{5} T_{804} \overline{8^{\prime \prime} \cdot 243}$			

By Range Table
$X=3392$ yds. $\quad Y=\underline{0} \quad T^{\prime}=\underline{8^{\prime \prime} \cdot 440}$

Difference

$$
-54 \text { yards }
$$

$$
\underline{0} \quad \underline{\underline{0^{\prime \prime}} \cdot 197}
$$

In this descending branch we might have neglected to introduce the law of resistance $\propto v^{8}$ from $v=1100$ to 1000 f . s. and instead of that changed the coefficient of the cubic law at the velocity 1050 f . s. We must on this supposition make the change at $\phi=-2^{\circ}$.
$\begin{array}{cc}\phi & \gamma \\ -2^{\circ} & 3 \cdot 271\end{array}$
(x)
(Y)
(T)
3316 -
907
gives ${ }_{0} x_{2}=1288 \mathrm{ft} . ; \quad a_{2}=-21 \cdot 9 \mathrm{ft} . ; \quad t_{2}=1^{\prime \prime} \cdot 181 ; \quad v_{2}^{\prime}=1040 \cdot 1$.

$$
\left(\frac{1000}{u_{2}^{\prime}}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} P_{2}=0.6631+0.2273=0.8904
$$

gives

$$
u_{2}^{\prime}=1039 \cdot 5 \mathrm{f} . \mathrm{s} .
$$

For the remainder of the trajectory we use

$$
\begin{gathered}
\log \frac{K}{g}=0.3591 \check{ } \\
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{2}^{\prime}}\right)^{3}-\frac{K}{g} \frac{d^{2}}{w} P_{2}=0.8904-0.1534=0.7370
\end{gathered}
$$

gives

$$
u_{0}=1107 \cdot 1 \mathrm{f.s} . \quad \text { and } \gamma=1.985=2.0 \text { nearly. }
$$

The vertical height of the shot when $\phi=-2^{\circ}$ is

$$
286 \cdot 6-21 \cdot 9=264 \cdot 7 \text { feet, }
$$

which gives

$$
\left(\mathrm{y}^{\prime}\right)=10^{4} \times 264 \cdot 7 \div \frac{u_{0}{ }^{2}}{g}=69 \cdot 5 .
$$

ϕ	γ	(x)	(y)	(T)	$\left(\mathrm{v}^{\prime}\right)$
-2°	$2^{\circ} 0$	327	-5.6	338	
$-8^{\circ} .06$	$"$	$\underline{1137}$	$-\underline{75.1}$	$\underline{1267}$	822

give

$$
\begin{aligned}
& { }_{2} x_{8 \odot 8}=3084 \cdot 0 \mathrm{ft} . ; \quad{ }_{2} y_{806}=-264 \cdot 61 \mathrm{ft} . ;{ }_{2} t_{806}=3^{\prime \prime} \cdot 195 ; v_{806}^{\prime}=910 \cdot 0 \mathrm{f} . \mathrm{s} . \\
& { }_{0} x_{2}=1288 \mathrm{ft} . ; \quad{ }_{0} y_{2}=-21 \cdot 9 \mathrm{ft} ; \quad t_{2}=1^{\prime \prime} \cdot 181 \\
& { }_{0} x_{816}=4372 \mathrm{ft} . ; \quad{ }_{0} y_{806}=-286.5 \mathrm{ft} ; \quad{ }_{0} t_{806}=\overline{4^{\prime \prime} \cdot 376} \\
& { }_{5} x_{0}=5625 \mathrm{ft} . ; \quad{ }_{s} y_{0}=+286 \cdot 6 \mathrm{ft} . ; \quad{ }_{s} t_{0}=3^{\prime \prime} \cdot 865 \\
& { }_{{ }^{\prime}} X_{806}=3332 \text { yards }{ }_{5} Y_{s 00}=+0.1 \mathrm{ft} \text {; }{ }_{5} T_{806}=8^{\prime \prime} \cdot 243
\end{aligned}
$$

By Range Table

$$
X=\underline{3392} \text { yards } ; Y=\underline{0.0} \mathrm{ft} . ; T=\underline{8^{\prime \prime} \cdot 44}
$$

Difference

$$
=-60 \text { yards } \quad=+\underline{\underline{0 \cdot 1} \mathrm{ft}} \quad \underline{\underline{-0^{\prime \prime} \cdot 197}}
$$

126. The General Tables have also been used to calculate the times of flight over the ranges given by the Range Table for the following elevations of the 4 -inch B.L. gun.

Elevation	$0^{\circ} .54^{\prime}$	$1^{\circ} .54{ }^{\prime}$	$2^{\circ} .54{ }^{\prime}$	$3^{\circ} .54^{\prime}$	$4^{\circ} .54^{\prime}$
Range Table. Ranges..	1083	1811	2400	2917	3392 yds.
,. Times of Flight	1"•97	$3^{\prime \prime} \cdot 72$	$5^{\prime \prime} \cdot 34$	$6^{\prime \prime} \cdot 93$	$8^{\prime \prime \prime} \cdot 4$
Calculated Time of Flight ...	$1^{\prime \prime} \cdot 997$	$3^{\prime \prime} \cdot 704$	$5^{\prime \prime} \cdot 336$	$6^{\prime \prime} \cdot 909$	$8^{\prime \prime} \cdot 459$
Difference	$+0^{\prime \prime} 027$	-0 $0^{\prime \prime} \cdot 016$	$-0^{\prime \prime} .001$	-0".021	+ $0^{\prime \prime} \cdot 019$

The close agreement between calculation and experiment for ranges up to near two miles affords conclusive evidence of the correctness of the coefficients of resistance adopted.
127. Taking now the 4 -inch B.L. gun of $13 \frac{1}{2} \mathrm{cwt}$. fired at an elevation of 10° with a muzzle-velocity of 1180 f . s.

$$
\begin{aligned}
& d=4 \text { inches ; } w=25 \mathrm{lbs} ; \quad \text { "jump" }=6 \text { minutes, } \\
& \qquad \begin{aligned}
\left(\frac{1000}{u_{0}}\right)^{3} & =\left(\frac{1000}{u_{10}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} P_{10} \\
& =0.6372+1.1593=1.7965 .
\end{aligned}
\end{aligned}
$$

Hence

$$
u_{0}=822 \cdot 6 \text { f. s. and } \gamma=1 \cdot 207 .
$$

We will neglect the consideration of the resistance varying as v^{8} between the velocities 1100 and 1000 f . s., and suppose that a sudden change takes place at 1050 f.s. at which velocity the value of $\log \frac{K}{g}$ falls from 0.53009 to 0.35915 , but the cubic law holds on both above and below that velocity.

Here $\quad 10^{3} v_{\phi} \div u_{0}=10^{3} \times 1050 \div 822.6=1276$,
which gives

$$
\phi=8^{\circ},
$$

ϕ	$\stackrel{\gamma}{ }$	(x)	(y)	(T)	(v)
10°	$1 \cdot 207$	2391	234.5	2043	
8°	"	1750	$132 \cdot 7$	1565	1283
or 10° to 8°		641	$\overline{101 \cdot 8}$	478	
${ }_{10} 0^{r}=1347 \cdot 4 \mathrm{ft} . ; \quad{ }_{10} y_{8}=214 \cdot 0 \mathrm{ft} . ;{ }_{10} t_{\mathrm{s}}=1^{\prime \prime} \cdot 222 ; v_{8}=1055 \cdot 4 \mathrm{f} . s.$. $\left(\frac{1000}{u_{0}}\right)^{3}=1.7965-0.9206=0.8759$.					
Hence		$4{ }^{\circ} 1$			

We now use the value

$$
\begin{gathered}
\frac{K}{g}=0.35915 \\
\left(\frac{1000}{u_{0}}\right)^{3}=0.8759+0.6210=1 \cdot 4969
\end{gathered}
$$

Hence $\quad u_{0}=874 \cdot 18$ f. s. and $\gamma=0.9775$.
$\begin{array}{llll}\phi & \gamma & (\mathrm{x}) & (\mathrm{y})\end{array}$
$8^{\circ} \quad 0.977501662 \quad 123.7 \quad 1526 \quad 1208$
${ }_{\varepsilon} r_{0}=3945 \cdot 5 \mathrm{ft} . ;{ }_{8} y_{0}=2 \overline{93 \cdot 7} \mathrm{ft} . ; \quad{ }_{\mathrm{s}} t_{0}=4^{\prime \prime} \cdot 144 ; \quad v_{\mathrm{s}}=1056 \mathrm{f} . \mathrm{s}$.

But

$$
{ }_{10} x_{8}=\underline{1347 \cdot 4} \Rightarrow \quad{ }_{10} y_{8}=214 \cdot 0 \quad „ \quad{ }_{10} t_{8}=1^{\prime \prime} \cdot 222
$$

therefore

$$
{ }_{10} x_{0}=5292 \cdot 9 \quad, \quad{ }_{10} y_{0}=507 \cdot 7 \quad „ \quad{ }_{10} t_{0}=5^{\prime \prime} \cdot 366
$$

The law changes at the velocity 820 f. s. Now

$$
10^{3} \times v_{\phi} \div u_{0}=10^{3} \times 820 \div 874 \cdot 18=938=(\mathrm{Y})
$$

which gives $\phi=-4^{\circ}$. We must therefore continue the same law to -4°.

$$
\begin{array}{cccccc}
\phi & \gamma & (\mathrm{x}) & (\mathrm{Y}) & (\mathrm{T}) & \left(\mathrm{v}^{\prime}\right) \\
-4^{\circ} & 0.9775 & \underline{656} & -\underline{22 \cdot 45} & \underline{677 \cdot 5} & \underline{942} \\
\hline
\end{array}
$$

therefore

$$
\begin{gathered}
{ }_{0}^{x_{4}=1557 \cdot 3 \mathrm{ft} . ; \quad{ }_{o} y_{4}=53 \cdot 3 \mathrm{ft} . ; \quad{ }_{0} t_{4}=1^{\prime \prime} \cdot 840 ; \quad v_{4}^{\prime}=823 \cdot 5 \mathrm{f} . \mathrm{s.}} \\
\left(\frac{1000}{u_{4}^{\prime}}\right)^{3}=1 \cdot 4969+0 \cdot 3075=1 \cdot 8044,
\end{gathered}
$$

which gives

$$
u_{4}^{\prime}=821 \cdot 42 \mathrm{f.s.}
$$

We now pass to the Newtonian Law.

$$
\begin{aligned}
\left(\frac{1000}{u_{0}}\right)^{2} & =\left(\frac{1000}{u_{4}^{\prime}}\right)^{2}-\frac{k}{g} \frac{d^{2}}{w} Q_{4} \\
& =1 \cdot 4821-0 \cdot 1684=1 \cdot 3137
\end{aligned}
$$

Hence

$$
u_{0}=872 \cdot 47 \text { f.s. and } \lambda=0.9156 .
$$

$$
\begin{array}{cccccc}
\phi & \lambda & (x) & (y) & (t) & (v) \\
-13^{\circ} \cdot 19 & 0.9156 & 1949 & -214.8 & 2134 & 858 \\
-4^{\circ} \cdot 00 & \prime & \underline{658} & -\underline{22.6} & \underline{678} & \\
-4^{\circ} & \text { to } & -13^{\circ} \cdot 19 & \underline{1291} & -\underline{192 \cdot 2} & \underline{1456}
\end{array}
$$

$$
\begin{aligned}
& x_{18 \cdot 19}=3052 \cdot 8 \mathrm{ft} . ; \quad{ }^{2} y_{1310}=-454 \cdot 5 \mathrm{ft} . ; \quad t_{18 \cdot 19}=3^{\prime \prime} \cdot 946 ; v_{13}^{\prime}{ }_{13 \cdot 19}=748 \mathrm{f} . \mathrm{s} . \\
& \sigma_{4} \quad=15.57 \cdot 3, \quad a y_{4}=-\underline{53 \cdot 3} \Rightarrow \quad o_{4}=\underline{1^{\prime \prime} \cdot 840}
\end{aligned}
$$

therefore

$$
{ }_{0} x_{1379}=4610 \cdot 1, \quad a_{13919}=-507 \cdot 8, \quad{ }_{0} t_{1319}=5^{\prime \prime} \cdot 786 .
$$

But
${ }_{10} x_{0}=\underline{52929}, \quad{ }_{10} \%_{0}=+\underline{507 \cdot 7},{ }_{10} t_{0}=\underline{5^{\prime \prime} \cdot 366}$

Hence

${ }_{10} X_{1379}=3301$ yards ${ }_{10} Y_{19399}=-0 \cdot 1 \quad{ }_{10}{ }_{10} T_{1319}=11^{\prime \prime} \cdot 1.52$
by Range Table
$X=\underline{3414 \text { yards; } \quad Y=\underline{0.0 ;} \quad T=\underline{11^{\prime \prime} \cdot 43}}$
Difference
128. We will now calculate the range, \&c. of the 4 -inch B.L. gun fired at an elevation of 15°, taking into account the variation in the density of the air, supposing that at the gun the readings of the barometer and thermometer were respectively 30 inches and $67^{\circ} \mathrm{F}$. Referring to Table xx , we find the corresponding value of $\log \tau$ to be 9.9935 . This corresponds to a height 5100 feet in 'I'able xxi. It will be found by trial that the rise for the arc 1900 to $1300 \mathrm{f} . \mathrm{s}$. is about 1000 feet, or the mean height would be 500 feet, which added to 5100 feet equals 5600 feet, which gives $\log \tau=9.9856$ by Table xxi. Muzzle velocity 1900 f. s. as before.

$$
\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{18: 35 \cdot 2}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} \tau Q_{15}=0 \cdot 2969+1 \cdot 4726=1 \cdot 7695
$$

which gives $\quad u_{0}=751.75$ f.s. and $\lambda=1 \cdot 535$.
The law of resistance changes at the velocity 1300 f.s. To find the corresponding value of ϕ we have $(v)=1000 v_{\phi} \div u_{0}=1730$, which gives $\phi=12^{\circ}$.

$$
\begin{array}{cccccc}
\phi & \lambda & (x) & (y) & (t) \\
15^{\circ} & 1 \cdot 535 & 5749 & 989 \cdot 8 & 3798 & (v) \\
12^{\circ} & \prime \prime & 3460 & 432 \cdot 2 & 2680 & 1749 \\
{ }_{13} 5_{13}=4018 & \text { feet } ;{ }_{13} y_{13}=978 \cdot 9 \text { fect; }{ }_{13} t_{13}=2^{\prime \prime} \cdot 611 ; & v_{12}=1314 \cdot 8 . \\
\left(\frac{1000}{u_{12}}\right)^{8}= & =\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k}{g} \frac{d^{2}}{w} \tau Q_{18}=1 \cdot 7695-1 \cdot 1631=0 \cdot 6064,
\end{array}
$$

which gives

$$
u_{12}=1284 \cdot 22 \mathrm{f.s} .
$$

We will omit the law of resistance varying as v^{6} and suppose the cubic law extends from 1300 to 1050 f.s. Using the above law we may find approximately the value of ϕ corresponding to 1050 f . s. for $(v)=1000 \times 1050 \div 751.75=1306$, which gives $\phi=8^{\circ}$. Then $\left({ }^{12} y^{8}\right)=432 \cdot 2-141 \cdot 5$ gives approximately ${ }_{12} y_{8}=510$ feet. And $5100+979+\frac{1}{2} 510=6334$ feet gives $\log \tau=9.9741$ by Table xxi. From $\phi=12^{\circ}$ to $\phi=8^{\circ}$ the cubic law holds and $\log \frac{K}{g}=0.53009$ by Table Iv. And

$$
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{12}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{12}=0.4722+1.3227=1.7949,
$$

which gives

$$
u_{0}=822 \cdot 82 \text { f. s. and } \gamma=1 \cdot 139 .
$$

ϕ	γ	(x)	(Y)	(T)	(V)
12°	$1 \cdot 139$	3104	$377 \cdot 5$	2548	
8°	$"$	1723	129.9	1553	1259

$$
\begin{gathered}
{ }_{12} x_{8}=2.905 \text { feet } ;{ }_{12} y_{8}=520.8 \text { feet } ;{ }_{12} t_{8}=2^{\prime \prime} \cdot 543 ; v_{8}=10.36 \text { f. s. }, \\
\left(\frac{1000}{u_{8}}\right)^{3}=\left(\frac{1000}{u_{0}}\right)^{3}-\frac{K}{g} \frac{d^{2}}{w} \tau P_{8}=1.7949-0.8672=0.9277,
\end{gathered}
$$

which gives

$$
u_{8}=1025 \cdot 4 \mathrm{f.s.}
$$

Suppose the above law to hold up to $\phi=0$, the shot has to rise $129.9 \times 10^{-4} \times\left(u_{0}{ }^{2} \div g\right)=273$ feet. Now

$$
5100+979+521+\frac{1}{2} 273=6737 \text { feet, }
$$

which gives $\log \tau=9.9678$ approximately for next are.
The cubic law of resistance still holds but the coefficient is reduced to $\log \frac{K}{g}=0.35915$.

$$
\left.\begin{array}{c}
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{8}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{8}=0.9277+0.5766=1.5043, \\
\therefore u_{0}=872.75 \text { f. s. and } \gamma=0.9032=0.9 \text { nearly. } \\
\phi \\
\gamma
\end{array} \quad \text { (x) } \quad \text { (y) } \quad \text { (T) } \quad \text { (v) }\right) .
$$

or ${ }_{8} r_{0}=3869 \mathrm{ft} . ;{ }_{8} y_{0}=286.3 \mathrm{ft} . ;{ }_{8} t_{0}=4^{\prime \prime} \cdot 105, v_{8}=1035 \cdot 1 \mathrm{f} . \mathrm{s}$.
${ }_{12} x_{8}=2905 \mathrm{ft} . ;{ }_{12} y_{8}=520 \cdot 8 \mathrm{ft} . ;{ }_{12} t_{8}=2^{\prime \prime} \cdot 543$
${ }_{15} r_{12}=4018 \mathrm{ft} . ;{ }_{15} y_{12}=978.9 \mathrm{ft} . ;{ }_{15} t_{12}=2^{\prime \prime} \cdot 611$
${ }_{15} r_{0}=\underline{10792 \mathrm{ft}} ;{ }_{15} y_{0}=\overline{1786 \cdot 0} \mathrm{ft} ;{ }_{15} t_{0}=\underline{9^{\prime \prime} \cdot 259}$

The law changes at the velocity 820 f . s. and

$$
1000 \times 820 \div u_{0}=940
$$

which gives $\phi=-5^{\circ}$ and $(y)=34 \cdot 8$, so that $34.8 \div 10^{4} \times u_{0}{ }^{2} \div g=82.35$ feet. So that the mean height for the next arc will approximately be $5100+1786-\frac{1}{2} 82=6845$ feet, which gives $\log \tau=9 \cdot 9661$. This gives $\boldsymbol{\gamma}=0.900$.

$$
\left.\begin{array}{ccccc}
\phi & \gamma & (\mathrm{x}) & (\mathrm{Y}) & (\mathrm{T}) \\
-5^{\circ} & 0.9 & 814 & -34 \cdot 8 & 844 \\
935
\end{array}\right)
$$

The law now changes to the Newtonian, where $\log \frac{k}{g}=0 \cdot 27402$, and the mean height of the shot is $5100+\frac{1}{2}(1716-82)=5952$ which gives $\log \tau=9.9801$.

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{u_{s}^{\prime}}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} \tau Q_{5}=1 \cdot 5126-0.2013=1.3113, \\
\therefore u_{0}=873 \cdot 27 \text { f.s. and } \lambda=0.8762 .
\end{gathered}
$$

129. I have calculated the preceding example according to the laws of resistance given in Table IV, from which I obtained the following results.

Ascending Branch.

$$
\begin{aligned}
& { }_{15} x_{12}=3982 \text { feet; }{ }_{15} y_{12}=970 \cdot 1 \text { feet; }{ }_{15} t_{12}=2^{\prime \prime} \cdot 600 \\
& { }_{12} x_{9}=2253 \text { feet; }{ }_{12} y_{9}=418 \cdot 8 \text { fect; }{ }_{12} t_{9}=1^{\prime \prime} \cdot 928 \\
& { }_{9} x_{0}=4425 \text { feet; }{ }_{9} y_{0}=373 \cdot 8 \text { feet; }{ }_{9} t_{0}=\underline{4^{\prime \prime} \cdot 660} \\
& { }_{15} x_{0}=10660 \text { feet } ; \quad{ }_{15} y_{0}=1762 \cdot 7 \text { feet; }{ }_{15} t_{0}=9^{\prime \prime} \cdot 188
\end{aligned}
$$

Descending Branch.

$$
\begin{aligned}
& { }_{0} x_{5}=1881 \text { feet; } 0_{5}=-80 \cdot 2 \text { feet; }{ }_{0} t_{5}=2^{\prime \prime} \cdot 263 \\
& { }_{5} x_{26 \cdot 3}=6205 \text { feet; }{ }_{5} y_{2603}=-1682 \cdot 9 \text { feet; } \quad{ }_{5} t_{\text {2е门оз }}=8^{\prime \prime} \cdot 768 \\
& { }_{0} x_{\text {eqios }}=\overline{8086} \text { feet; }{ }_{0} y_{26 \cdot 03}=-1763 \cdot 1 \text { feet; } \quad{ }_{0} t_{2503}=\overline{11^{\prime \prime} \cdot 031} \\
& { }_{15} x_{0}=\underline{10660} \text { feet; }{ }_{15} y_{0}=+\underline{1762 \cdot 7} \text { feet; }{ }_{15} t_{0}=\underline{9^{\prime \prime} \cdot 188}
\end{aligned}
$$

By Range Table

$$
X=\underline{6608} \text { yards; } Y=\underline{0} \quad T^{\prime}=\underline{21^{\prime \prime} .340}
$$

Difference

$$
\begin{aligned}
& \text { - } 359 \text { yards } \\
& -0 \cdot 4 \text { feet } \\
& -1^{\prime \prime} \cdot 121
\end{aligned}
$$

I have also calculated the above example for an ogival head struck with a radius of two diameters, using $\kappa \frac{d^{2}}{w}=0.97 \frac{d^{2}}{w}$ instead of $\frac{d^{2}}{w}$ throughout, from which I obtained a range 6448 yards.

Where the coefficients of resistance, \&c. are correct, the calculated times of flight and range ought to agree with experiment, when the air is still. But a wind might not affect the time of flight sensibly, and yet disturb the range considerably. See a paper by Colonel Maitland, R.A., "On the influence of the wind on the motion of projectiles.". My calculated angles of descent and terminal velocities have not been compared with those given in the Range Tables, because as these latter were not measured quantities they afforded no test of the accuracy of my coefficionts.

[^24]
The Jubilee Rounds.

130. When the "Jubilee" experiment was first spoken of a rough calculation was made by me, neglecting the variation of the density of the air, which gave a range of 16,709 yards for an elevation of 40°, and I then expressed an opinion that the actual range would probably be a mile or two more. But when it was resolved to carry out the experiment, I decided to calculate the range and time of flight by Bernoulli's method, using the values of the coefficients of resistance given in Table 1v, and allowing for the variation in the density of the air. The muzzle velocity was supposed to be 2360 f . s.; the diameter of the shot 9.2 inches; its weight 380 lbs ; and the elevation 40°. The atmosphere was supposed to be undisturbed, and the force of gravity and the temperature of the air were assumed to be constant. This calculation was made with very great care, and to secure accuracy steps of a single degree were taken from 40° to 30°, and steps of two degrees from 30° to 18°. The range on a horizontal plane passing through the muzzle was thus found to be 19,436 yards and the time of flight $62^{\prime \prime} \cdot 15$. These results were communicated to the Ordnance Committee, March 31, 1888. In the following month two rounds were fired at an clevation of 40°, and the ranges obtained were 21,048 and 21,358 yards with a "fresh favorable wind ${ }^{1}$." On this I expressed an opinion to the Ordnance Committee that "the calculated range falls so much below the experimental range that there must be some error either in the calculation or in the measurements." The nature of the error was apparent when in the following July two more rounds were fired at an elevation of 40°, which gave ranges of 20,236 and 20,210 yards, being about 1000 yards less than those obtained before. It was also found that the actual muzzle velocity was 2375 f.s. instead of $2360 \mathrm{f} . \mathrm{s}$. which was used in the calculation. The long range ubtained in April appeared to be due chiefly to the "fresh favorable wind" which had a much greater effect than was expected.
[^25]But it should be remembered that in the case of a steady wind, its velocity at a height of 16,000 feet would be at least three times its velocity on the surface of the earth, and that the wind would be acting upon the shot for at least sixty seconds. The wind, at the time the expcriments were made, was generally favourable, but in no case unfavourable to a long range.
131. Afterwards the same data were used with muzzle velocity 2360 f.s. to calculate a complete Range Table for all elevations up to 45°; but the Range, Time of Flight, \&c. were calculated for a horizontal plane 27 feet below the muzzle of the gun. The air was supposed.to be at rest. This Range Table was communicated to the Ordnance Committee, Aug. 7, 1888; and it was published in "Nature" as follows, with the exception of some small corrections for elevations 1° to 4°.

Elevation	Range	Height of Vertex	$\begin{aligned} & \text { Time } \\ & \text { of } \\ & \text { Flight } \end{aligned}$	Angle Descent	Striking Velocity	Horizontal Striking Velocity
\bigcirc	Yards 969	Feet 0	Seconds 1•3	$\bigcirc{ }^{\circ} 14$	$\underset{2,154}{\int . s .}$	y15.
1	2,108	25	$3 \cdot 2$	135	1,931	643
2	3.419	94	$5 \cdot 1$	247	1,708	569
3	4,574	201	73	414	1,534	508
4	5.586	343	9.4	553	1,399	464
5	6,475	517	11.4	738	1,291	426
6	7,271	716	13.4	930	1,200	395
7	7,999	937	$15 \cdot 3$	1128	1,128	368
8	8,669	1,180	$17 \cdot 1$	1328	1,075	349
9	9,291	1,445	18.9	1528	1,040	334
10	9,876	1,731	$20 \cdot 6$	1723	1,022	325
11	10,430	2,036	$22 \cdot 3$	199	1,015	320
12	10,952	2,360	23.9	2054	1,009	314
13	11,448	2,703	25.5	2238	1,003	309
14	11,922	3,065	$27^{\circ} \mathrm{O}$	2421	998	303
15	12,379	3,443	$28 \cdot 5$	$26 \quad 2$	993	297
16	12,804	3,835	$30 \cdot 0$	2740	990	292
17	13,217	4,242	31.5	2915	987	287
18	13,618	4,663	33°	3048	985	282
19	14,007	5,099	34.4	$\begin{array}{lll}32 & 19\end{array}$	984	277
20	14,385	5.550	$35 \cdot 9$	3348	984	273
21	14,750	6,015	$37 \cdot 3$	3515	985	268
22	15,103	6,489	$38 \cdot 8$	3640	987	264
23	15,445	6,970	$40 \cdot 2$	$38 \quad 3$	990	260
24	15,775	7,459	41•6	3924	993	256
25	16,092	7,956	43°	4041	996	252
26	16,398	8,461	444	4154	1,000	248
27	16,691	8,974	$45 \cdot 7$	432	1,004	245
28	16,973	9.494	471	446	1,009	242
29	17,242	10,022	$48 \cdot 4$	457	1,014	239
30	17.501	10,558	$49^{\circ} 7$	$46 \quad 5$	1,019	236
31	17,747	11,102	$51^{\circ} \mathrm{O}$	47 1	1,025	233
32	17.981	11,654	52.2	4756	1,031	230
33	18,203	12,214	53.5	4 S 50	1,037	228
34	18,413	12,782	$54^{\circ} 7$	4943	1,044	225
35	18,612	13.357	56.0	5035	1,051	222
36	18,799	13,94 I	57.2	5127	1,058	220
37	18,973	14.534	$58 \cdot 5$	52 IS	1,065	217
3 S	19,136	15,136	59.7	538	1,072	214
39	19,2S7	15.747	61.0	535^{8}	1,079	212
40	19,426	16,368	$62 \cdot 2$	5447	1,086	209
41	19.553	17,001	63.4	$55 \quad 36$	1,092	206
42	19,668	17,646	$64 \cdot 7$	5624	1,099	203
43	19.772	18,302	65.9	5711	1,105	200
44	19.864	18,969	$67 \cdot 1$	5757	1,111	197
45	19.944	19,648	$68 \cdot 3$	5843	1,117	193

"It will be seen that the ranges go on increasing up to an
"elevation of 45°, and would probably go on beyond an elevation " of 50° before reaching a maximum."-"Nature," Sept. 13, 1888, p. 468.
132. In July, 1888, two rounds were fired at an elevation of 30° which gave ranges of 17,500 and 18,344 yards, differing by 844 yards, although the wind appears to have been the same in both cases ${ }^{3}$. Again two rounds fired at an elevation of 35° gave ranges of 18,936 and 19,420 yards, which differ by 484 yards. Four rounds in all were fired at an elevation of 40° which gave ranges of $20,210,20,236,21,048$ and 21,358 yards; so that the extreme difference of the ranges fired at this elevation was 1148 yards, fully justifying my suspicion of an error in range. A single round was fired at an elevation of 45° which gave a range of 21,800 yards, with a "favorable moderate" wind. This range is plainly far too great. In order to carry out experiments of this kind in a satisfactory manner it would be necessary to select a time when the atmosphere was at rest, and also to test the state of affairs in the upper regions of the air by sending up trial balloons ${ }^{2}$. Other experiments might be made to test the effect of the wind blowing both up and down the range. It is clear that no theoretical calculations could agree with the above discordant results of experiment.
133. Taking rounds fired in July, 1888^{3}, we have

Elevation	30°	35°	40°	45°
Ranges	17,500	19,420	20,236	21,800
"	18,344	18,936	20,210	-
Mean Ranges	17,922	19,178	20,223	21,800
Difference of Ranges	$\text { Mean }\}$			yards.

We are tolerably certain that as the elevation of the gun approaches 45°, the range must be approaching a maximum in a still atmosphere, and therefore that the difference of ranges corre-

[^26]spouding to every increment of 5° in the elevation must be a decreasing quantity, and very different from the results stated above. In order to bring these results into something like order it will be necessary to apply corrections say of -200 and -1200 yds . respectively to the above mean ranges for elevations of 40° and 45° to allow for the effect of wind.

Elevatious	30°	35°	40°	45°
Observed Mean Ranges	17,922	19,178	20,223	21,800 yds.
Corrections	0 ?	0 ?	- 200	- 1,200
	17,922	19,178	20,023	20,600
Differences of rected Rang	$\left.\begin{array}{l} \text { Cor- } \\ \text { es } \end{array}\right\}$			yds.

Calculated Ranges $\text { (m.v. } 2360 \text { f.s.) }$	17,501	18,612	19,426	19,944
Correction for m.v. Ranges (m.v. 2375 f.s.)	+174	+185	+193	+198
	17,675	18,797	19,619	20,142

Differences of above Ranges	247	381	404	458 yds .
or Difference per cent.	1.4	2.0	2.0	2.2

These deficiencies in the calculated ranges will be accounted for by the "jump", vertical "drift", wind, more pointed form of shot used in experiment, and perhaps a slight increase of the muzzle velocity due to increased elevation.
134. The calculation of the Range Table for the $9 \cdot 2$-iuch wire gun up to an elevation of 45° with a muzzle velocity of $2360 \mathrm{f.s}$. was undertaken with a view to show the exact results given by the coefficients of resistance derived from my experiments with ogivalheaded projectiles struck with a radius of $1 \frac{1}{2}$ diameter. Any needful allowance can afterwards be made for wind, a more pointed form of projectile, "jump", vertical "drift", \&c.; but I have failed to obtain any evidence that my coefficients of resistance require to be reduced, as before explained. I much regret that the times of flight have not been published, because they are not nearly so much affected by the wind as ranges are.

All things considered I submit my calculated range table when there is no wind as a document far more instructive than the results of actual experiment made in windy weather, which was generally favourable to a long range.
135. The following is given as an example of the improved method pursued in the calculation of the Jubilee rounds, but in this case the muzzle velocity is 2375 instead of 2360 f.s., and the diameter of the shot is supposed to be 9.15 instead of 9.2 inches ${ }^{1}$. The elevation of the gun is 40°. Although the resistance of the air varies as the square of the velocity from 2375 to 1300 f.s., it seems desirable to divide the corresponding trajectory into two ares at least, in order to take account of the decreasing density of the air. Suppose that at the gun the Barometer stands at 30 inches and the Thermometer at $60^{\circ} \mathrm{F}$. Table xx . gives $\log \tau=9.9998$. This value is found corresponding to a height 4680 feet in Table xxr. We will suppose that the first arc rises to a height of 7800 feet above the gun. $w=380 \mathrm{lbs}$. Then

$$
4680+\frac{1}{2} \times 7800=8580 \text { feet }
$$

gives

$$
\log \tau=9 \cdot 9391 \text { by Table xxı. }
$$

and

$$
\begin{aligned}
& \log d^{2} \div w=9 \cdot 34306 ; \\
& u_{40}=2375 \cos 40^{\circ}=1819 \cdot 3 \mathrm{f} . \mathrm{s} .
\end{aligned}
$$

$$
\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{u_{40}}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} \tau Q_{40}=0.30212+1 \cdot 56092=1.86304
$$

This gives $\quad u_{0}=732.66$ f.s.; and $\lambda=0.4509$.

$$
\begin{array}{cccccc}
\phi & \lambda & (x) & (y) & (t) & (v) \\
40^{\circ} & 0.4509 & 17494 & 9429 & 11726 & 3258
\end{array}
$$

We must now find the value of ϕ for the upper end of the are when the shot has risen a height of 7800 feet. Here

$$
\begin{gathered}
\left.\left\{{ }^{40} y^{0}\right)-\left({ }^{\phi} y^{0}\right)\right\} \frac{u_{0}^{2}}{10^{4} g}=7800, \\
\left({ }^{\phi} y^{0}\right)=4751
\end{gathered}
$$

or
which gives $\phi=35^{\circ}$ nearly by the Table.

$$
\begin{array}{cccccc}
\phi & \lambda & (x) & (y) & (t) & (v) \\
35^{\circ} & 0.4509 & 11499 & 4767 & 8857 & 2159
\end{array}
$$

[^27]and therefore
$$
{ }_{\text {A0 }} x_{\mathrm{sn}}=9996 \mathrm{ft} . ;{ }_{40} y_{\mathrm{ss}}=7773 \cdot 6 \mathrm{ft} \cdot ;{ }_{40} t_{35}=6^{\prime \prime} \cdot 530 ; v_{35}=1581 \cdot 8 \mathrm{f} . \mathrm{s} . ;
$$
or $\left(\frac{1000}{u_{35}}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k \cdot d^{2}}{g} \tau Q_{35}=1 \cdot 86 \cdot 30-1 \cdot 2664=0 \cdot 5966$;
$$
\therefore u_{25}=1204.7 \mathrm{f} . \mathrm{s} .
$$

The next arc of the trajectory must be made to terminate where the velocity is about $1300 \mathrm{f} . \mathrm{s}$. In order to obtain an approximate value of ϕ for this point, we may use the same value of $\log \tau$ as before, then $\left(v_{\phi}\right)=10^{8} \times 1300 \div u_{0}=1774$ and we obtain $\phi=30^{\circ}$, and $\left({ }^{35} y^{\circ}\right)-\left({ }^{30} y^{\circ}\right)=2063$, which gives ${ }_{35} y_{30}=3440$ fect. But as τ will be really less than we have supposed we may assume that ${ }_{80} y_{80}$ will be 3540 feet. Then

$$
\begin{gathered}
4680+7774+\frac{1}{2} \times 3540=14224 \text { feet } \\
\log \tau=9 \cdot 8510,
\end{gathered}
$$

gives

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{2}=\left(\frac{1000}{u_{25}}\right)^{2}+\frac{k}{g} \frac{d^{2}}{w} \tau Q_{35}=0.5966+1.0339=1.6305 ; \\
\therefore u_{0}=783 \cdot 14 \text { f.s.; and } \lambda=0.4206=0.42 \text { nearly. }
\end{gathered}
$$

ϕ	λ	(x)	(y)	(t)	(v)
:35 ${ }^{\circ}$	$0 \cdot 42$	10893	4435	8646	
30°	,	8007	2583	6765	1651

Also $\left(\frac{1000}{u_{30}}\right)^{2}=\left(\frac{1000}{u_{0}}\right)^{2}-\frac{k}{g} \frac{d^{2}}{w} \tau Q_{30}=1.6305-0.8339=0.7966$;

$$
\therefore u_{80}=1120 \cdot 4 \mathrm{f.s} .
$$

(3) The cubic law holds from velocity 1300 to 1100 f.s., but as we have no means of calculating x, y and t for the case where the resistance varies as the sixth power of the velocity, we will suppose the change in the coefficient of resistance to take place at a velocity near 1050 f .s.

$$
\left(v_{\phi}\right)=10^{2} \times 1050 \div u_{0}=1341,
$$

which gives $\phi=22^{\circ}$, supposing the last arc to be continued so far. But as the resistance will be less than we have supposed it to be, we will next take the arc 30° to 21°, then

$$
\left\{\left({ }^{\infty} y^{0}\right)-\left({ }^{21} y^{0}\right)\right\} \times \frac{u_{0}^{2}}{g} \times 10^{-4}=3126 \text { feet. }
$$

But as the resistance would be less than we have supposed it we may assume the rise in this arc to be a little more, say 3160 feet. Then $4680+7774+3529+\frac{1}{2} 3160=17563$ gives $\log \tau=977989$.

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{\mathrm{so}}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{30}=0.71105+0.90442=1.61547 ; \\
\therefore u_{0}=8.52 \cdot 25 \text { f.s. and } \gamma=0.2909 .
\end{gathered}
$$

If we produced the above are to where $\phi=0$ the vertex would be reached at a height $=882.6 \times \frac{u_{0}^{2}}{g} \div 10^{4}=1991$ feet, or as the resistance will be lower than we have supposed we may assume the height to be 2060 feet. Then

$$
4680+7774+3529+3186+\frac{1}{2} \times 2060=20199 \text { feet },
$$

which gives $\log \tau=9 \cdot 7578$.

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{21}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{21}=1 \cdot 04770+0 \cdot 34844=1 \cdot 39614 ; \\
\therefore u_{0}=894 \cdot 72 \text { f.s. and } \gamma=0 \cdot 2066 .
\end{gathered}
$$

ϕ	γ	(x)	(Y)	($)^{\text {) }}$
21°	$0 \cdot 2066$	4202	832.0	4015
But	${ }_{21} x_{0}=\overline{10450} \mathrm{ft} . ;{ }_{21} y_{0}=2069 \cdot 0 \mathrm{ft}$; ${ }_{21} t_{0}=11^{\prime \prime} \cdot 160$			
	${ }_{30} x$	6575	3186.9	$6 \cdot 282$
	${ }_{35}{ }^{x_{30}}$	5499	3528.5	$4 \cdot 576$
	${ }_{40} x_{55}$	9996	7773.6	6.530
or		32520	16558.0 f	$8 \cdot 548$

Suppose the next arc to be taken from $\phi=0$ to -20°.

$$
\left({ }^{0} \mathrm{x}^{20}\right) \frac{u_{0}{ }^{2}}{g} \times 10^{-4}=604.2 \times \frac{u_{0}{ }^{2}}{g} 10^{-4}=1503 \text { feet. }
$$

Then to find $\log \tau$ we have

$$
4680+16558-\frac{1}{2} 1504=20486 \text { feet }
$$

which gives $\log \tau=9.7534$ by Table xxi.;

$$
\therefore \gamma=0.2045 ; \text { and } u_{0}=894.22 \text { f.s. as before. }
$$

$$
\begin{aligned}
& \phi \quad \gamma \quad(\mathrm{x}) \quad(\mathrm{Y}) \quad \text { (} \mathrm{T}) \quad \text { (v) } \\
& -20^{\circ} 0 \cdot 20453393-603.3 \quad 3514 \quad 992 \cdot 7 \\
& { }_{0} x_{20}=8438 \mathrm{ft} . ;{ }_{0} y_{20}=-1500 \cdot 3 \mathrm{ft} . ; t t_{20}=9^{\prime \prime} \cdot 767 ; v_{20}^{\prime}=888 \cdot 2 \mathrm{f} . \mathrm{s} . \\
& \left(\frac{1000}{u_{20}^{\prime}}\right)^{3}=\left(\frac{1000}{u_{0}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{20}=1.39614+0.32551=1.72165 \text {; } \\
& \therefore u_{20}^{\prime}=834: 35 \text { f.s. }
\end{aligned}
$$

Assuming that the same law holds for the next are -20° to -40°,

$$
\left({ }^{20} \mathrm{Y}^{40}\right) \times \frac{u_{0}^{2}}{g} 10^{-4}=2252 \times \frac{u_{0}^{2}}{g} 10^{-4}=5600 \text { feet. }
$$

In order to find $\log \tau$, we have

$$
4680+16558-1500-\frac{1}{2} 5600=16938
$$

which gives $\log \tau=9.8087$.

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{8}=\left(\frac{1000}{u_{m}^{\prime}}\right)^{3}-\frac{K}{g} \frac{d^{3}}{w} \tau P_{20}=1 \cdot 72165-0.36971=1.35194 ; \\
\therefore u_{0}=904 \cdot 4 \text { f. s. and } \gamma=0.2399 .
\end{gathered}
$$

ϕ	γ	(x)	(Y)	(T)	(v)
-40°	0.2399	7020	-2767	7663	1086
-20°	,	3357	- 594.8	3494	

and $\left(\frac{1000}{u^{\prime}}\right)^{3}=\left(\frac{1000}{u_{0}}\right)^{3}+\frac{K}{g} \frac{d^{2}}{w} \tau P_{80}=1 \cdot 35194+1 \cdot 00789=2 \cdot 35983$;

$$
\therefore u_{80}^{\prime}=751 \cdot 12 \mathrm{f.s.}
$$

The shot is now $+16558 \cdot 0-1500 \cdot 3-5519 \cdot 1=9538 \cdot 6$ feet above the level of the muzzle, and therefore the mean height above muzzle will be 4769 feet which must be diminished by 13 feet, because the arc we intend to calculate extends to 27 feet below the level of the muzzle. Therefore

$$
\begin{gathered}
4769-13+4680=94: 36 \text { feet } \\
\log \tau=9.9257 .
\end{gathered}
$$

which gives

$$
\begin{gathered}
\left(\frac{1000}{u_{0}}\right)^{3}=\left(\frac{1000}{u_{40}^{\prime}}\right)^{3}-\frac{K}{g} \frac{d^{2}}{w} \tau P_{40}=2.3598-1.3195=1.0403 \\
\therefore u_{0}=986.9 \mathrm{f.} \text { s. and } \gamma=0.4081
\end{gathered}
$$

ϕ	γ	(x)	(Y)	(T)
-40°	0.4081	6391	-2442	7300

The shot has to fall vertically $9538 \cdot 6+27=9565 \cdot 6$ feet. And

$$
9565.6 \times 10^{4} \div \frac{u_{0}^{2}}{g}=3161
$$

which being added to 2442 the value of $\left({ }^{\circ} \mathrm{X}^{40}\right)$ gives $\left({ }^{\circ} \mathrm{Y}^{\phi}\right)=5603$, and referring to the Table it will be found that ϕ falls between -54° and -55°.

ϕ	γ	(x)	(y)	(T)	(V)
-54°	0.4081	9039	-5337	11069	1096
-55°	$"$	$\underline{9251}$	$-\underline{5634}$	$\underline{11399}$	$\underline{1105}$

which gives

$$
\begin{aligned}
& -54^{\circ} 9 \quad \text {, } 9230-5603 \quad 11366 \quad 1106 \\
& \text { But }-40^{\circ} .0 \quad \text {, } 6391 \text { - } 2442 \quad 7300 \\
& { }_{40} x_{\text {st9 }}=8587 \mathrm{ft} . ;{ }_{{ }_{2}} y_{849}=-9565 \cdot 6 \mathrm{ft} . ;{ }_{40} t_{549}=12^{\prime \prime} \cdot 463 ; v_{5,9}^{\prime}=1091 \mathrm{f} . \mathrm{s} . \\
& \text { But }{ }_{20} x_{40}=9307,{ }_{20} y_{50}=-5519 \cdot 1,{ }_{20} t_{40}=11 \cdot 713 \\
& { }_{0} x_{20}=8438,, \quad{ }_{0} y_{20}=-\underline{1500 \cdot 3}, \quad o_{20}=\underline{9} \cdot 767 \\
& { }_{0} x_{549}=\overline{26332 \mathrm{ft}}{ }_{40} y_{549}=-1 \overline{6585 \cdot 0 \mathrm{ft}} \text {; }{ }_{40} t_{549}=\overline{33 \cdot 943} \\
& \text { And }{ }_{40} x_{0}=32520 \text {, }{ }_{40} y_{0}=+16558 \cdot 0 \text {, }{ }_{\text {ot }} t_{0}=28 \cdot 548 \\
& { }_{40} X_{549}=19617 \mathrm{yds}_{40} Y_{549}=-27 \cdot 0 \mathrm{ft} .{ }_{40} T_{549}=62 \cdot 491
\end{aligned}
$$

CHAPTER VI.

ON THE MOVEMENT OF ELONGATED PROJECTILES.

"La détermination du mouvement des projectiles oblongs, "laucés par les armes à feu rayées, est un problème tres-complexe "qui pris dans toute sa généralité, présente de grandes difficultés." St-Robert.
136. In the preceding calculations it has been supposed that the projectile moved in the vertical plane of projection. This would be the case very nearly, if the projectile was spherical and had its centre of gravity coincident with the centre of its figure, the air being at rest. But when an elongated projectile is fired from a rifled gun, the combined action of gravity and of the resistance of the air acting upon it, causes what is called a lateral "drift." The original explanation of this drift was made to depend upon a supposed greater pressure of the air upon the elungated projectile from below than from above, so that the greater friction of the air on the underside of the rotating projectile caused it to deviate to the right or left, according to the direction of its rotation. This difference of friction above and under the projectile may have some slight effect, but it would not be sufficient to produce the amount of lateral "drift" commonly observed. Even if we adopted this explanation we should have a vertical drift also caused by the excess of the pressure of the air upwards on the projectite.
137. Magnus gave the true explanation of all drift in 1852, which he illustrated by experiments with the gyroscope. He says: "From these experiments, we may conclude that the "deviation of elongated projectiles is caused by the resistance of "the air seeking to elevate the apex. The elevation thereby "produced is, however, scarcely perceptible, for during rotation "the forces acting on the mass of the projectile so combine them"selves, that the apex, instead of being elevated, is moved side"ways, and indeed, towards the right when the projectile rotates "to the right. In consequence of this motion to the right, the "resistance of the air presses the projectile's centre of gravity "towards the same side, and thus produces the deviation. At "the same time the apex sinks, and thus it appears as if the "pressure of the air against the hinder part of the projectile was "greater than that against the fore part, whereas, in fact, this "pressure is greatest on that part of the axis which is placed "between the centre of gravity and the apex ${ }^{1}$."
138. St-Robert published a mathematical treatise on the motion of elongated projectiles ${ }^{2}$, in which he confirmed the explanation of drift given by Magnus. He expressed the result of his investigations in the following words: "Tandis que le "centre de gravité du projectile parcourt la trajectoire, celui-ci "tourne uniformément sur son axe de figure, qui reste immobile "dans son intérieur et qui tourne lentement dans l'espace autour "de la tangente à la trajectoire ${ }^{\text {s.". }}$
139. Mayevski also published a long paper, De linfluence du mouvement de rotation sur la trajectoire des projectiles oblongs dans lair ${ }^{4}$, in which he in a great measure followed St-Robert, and attempted to apply his results to a particular example, where the velocity of projection was low. But he was in error as he explained afterwards ${ }^{5}$ when he supposed that the axis of the projectile made several complete revolutions about the tangent. The axis really made oscillations about the tangent whose ampli-

[^28]tude did not exceed π for the low velocity of this projectile. Mayevski has stated the result he arrived at as follows: "Tandis "que le centre de gravité du projectile décrit une certaine trajec"toire dans l'air, le projectile tourne autour de son axe de figure "avec une vitesse angulaire sensiblement égale à la vitesse an"gulaire initiale, et l'axe de figure a un mouvement de rotation "autour de la tangente qui s'abaisse pendant toute la durée du "mouvement ${ }^{1}$." He resolves the resistance of the air as follows: "Décomposons la résultante ρ de la résistance en trois autres "résistances: l'une dirigée en sens contraire de la tangente, "l'autre perpendiculaire à la tangente dans le plan horizontal "et la troisième perpendiculaire à la tangente dans le plan "vertical." And then Mayevski explains this latter force would raise or depress the centre of gravity of the projectile according as its apex was above or below the tangent.
140. Suppose that at any instant the plane of the paper passes through the axis of the projectile $b a$, and the tangent to the trajectory ot at the point G, drawu in the direction of the

Fig. 10.

motion of the projectile. Then by what goes before, it appears that the resistance of the air will impart to the centre of gravity G of the projectile a motion of translation from the tangent ot in the plane of the paper, and towards that side, where the apex of the projectile is fuund. Also the resultant pressure of the air on the projectile will cut the axis between G and the apex of the shot. This will tend to increase the angle tGa, which however it will nut affect sensibly, but will cause the axis $G u$ to rotate about the tangent $G t$, in the same direction as the projectile rotates about its own axis.

[^29]= Ib. p. 239.
141. The attention of Magnus seems to have been confined to the explanation of lateral drift of elongated projectiles. But his explanation of that phenomenon requires in addition the consideration of a drift in the vertical direction. It also appears to be a common notion that, if an elongated projectile is perfectly steady when it leaves a rifled gun, it will continue to move on steadily in the direction of its axis. It is not so, however, for suppose OT, Fig. 11, to be the direction of projection, the rapid

Fig. 11.

rotation of the projectile about its axis will tend to keep that axis $a b$ parallel to OT. But the action of gravity upon the projectile will cause G, its centre of gravity, to move in a curve, so that the axis $b a$ will become inclined to $G t$ the direction of motion of G. The resistance of the air will thus impart a motion of translation to the projectile upwards, and will also cause $G a$ to begin to describe a conical surface about $G t$, as already explained. This vertical drift is the origin of all drift in a steady projectile.
142. Didion noticed a drift of elongated projectiles in a vertical direction, and in a practical case remarked it was equivalent to a reduction in the force of gravity in the ratio of 9.809 to $7 \cdot 72$, and then he adds the remark "Outre cette dérivation "verticale il en existe une autre, qui est horizontale, et du même "genre, et qu'il importe aussi de connaître, afin de diriger le tir "en conséquence ${ }^{1}$."
143. Various successive positions assumed by an elongated projectile shortly after it leaves the rifled gun are shown by the

[^30]Fig. 12. diagrams A, B, C, D and E, Fig. 12, when viewed by an eye looking in a direction parallel to the tangent to the trajectory in each case. The curved arrows denote the direction of rotation of the projectile about its own axis, and the straight arrows show the direction in which the resistance of the air acting on the side of the projectile produces a motion of translation of the projectile. When a steady projectile has just left the gun, its base only would be seen, as in diagrain A. After a short time the Figure B would represent the appearance of the projectile, where the drift would be entirely in a vertical direction, and upwards as denoted by the arrow : and the resistance of the air would cause the point of the projectile to begin to turn to the right. In a short time after, Figure C would represent the state of the case. Here the drift would be in the direction denoted by the arrow. If $a b$ be taken to represent the drift in magnitude and direction at this time, then it may be resolved into a horizontal drift $a c$ to the right, and a vertical drift $c b$ upwards. The axis of the projectile will go on rotating about the tangent to the trajectory till the projectile comes into the position D , where the drift is entirely horizontal and to the right as indicated by the arrow. When the projectile has come to the pusition D the circumstances of the case will change slowly, for the tangent Gt to the trajectory is always dipping downwards, and the action of the resistance of the air in this case will cause the axis of the shot $G a$ also to dip downwards. If the tangent $G t$ dips more rapidly than the axis $G a$, then the projectile will tend to return to the position shown in Figure C, and the motion will becone oscillatory as in the case mentioned by Mayevski (139). This will be likely to happen when the trajectory is much curved, that is, when the velocity of the projectile is low as in the case referred to. But if the axis $G a$ dips faster than the tangent $G t$, then the projectile will take the position represented by Figure E, where the drift will be in the direction indicated by the arrow. And if $a b$ represent the drift in magnitude and direction, it may be resolved into a drift ac vertically downwards, and cb horizontally to the right. And afterwards the axis Ga may go on rotating about the tangent Gt and complete one or more revo-
lutions. It should be observed that when the point of the shot is to the right of the vertical plane passing through the tangent, the tangent $G t$ to the trajectory and the axis $G a$ of the projectile are both dipping downwards, the rotation of the shot about its own axis being right handed as we have supposed. But when the apex of the projectile is to the left of the vertical plane through the tangent, the tangent Gt is dipping downwards but the axis $G a$ is rising upwards. Hence we may conclude that the drift will be in operation a much longer time to the right than to the left, when the projectile has a right-handed rotation about its own axis.
144. We thus find that the drift upwards is the beginning of all drift, and continues in operation from A to B. After passing the position B the drift upwards gradually decreases and vanishes at the position D. But the horizontal drift begins to make its appearance as soon as the projectile leaves the position B and gradually increases till it comes to the position D .
145. There can therefore no longer be any doubt that an elongated projectile, although it may leave the gun with perfect steadiness, soon begins to acquire the gyratory motion described by Magnus, St-Robert and Mayevski. At any instant the resistance of the air endeavours to push the projectile bodily from the tangent to its trajectory towards that side on which the apex of the projectile is situated (140). If the axis of the projectile makes one or more complete revolutions about the tangent to the trajectory then there will be a drift in every direction as seen from the gun. But we have no reason to assume that the sum of the vertical drift will vanish, so that the resultant drift will be entirely horizontal. With a right-hand rotation of the projectile, although there may be at times a drift to the left, that is very much exceeded by the drift to the right. So also there may be a drift downwards as well as upwards, but it seems to me that the total drift both in a vertical and horizontal direction will be in a great measure determined by what takes place near the gun, or while the projectile passes at a high velocity from position A to D, Fig. 12, and consequently that the projectile will be lifted up and made to move as if it had been fired at a somewhat higher elevation.
146. From what has been said, it appears to be necessary in calculating trajectories to allow an increase of elevation on account of the vertical drift, just in the same manner as the "jump" of the gun is allowed for. But this correction will not be quite so satisfactory, because the vertical drift does not act instantaneously at the muzzle, but goes on accumulating gradually while the projectile is moving in its trajectory, as already explained (143).
147. As the diagrams A, B, C, D and E, Fig. 12, represent the cross sections of the path swept out by the elongated projectile in its passage through the air, it is evident that, strictly speaking, the sectional area of the projectile at A will afterwards require to be increased, or that the coefficients of resistance must be increased, and not diminished according to Krupp's doctrine. It may also be remarked that as the projectile rises, the density of the air and therefore its resistance will diminish, and Tables Xx. and xxi. have been prepared to assist in introducing the necessary corrections. But when the projectile rises only to a moderate height, the reduced resistance on this account may be supposed to balance the increased resistance arising from the inclination of the axis of the projectile to the direction of its motion. In such a case, however, a small reduction in the coefficients of resistance will be proper, if the head of the projectile be more pointed than an ogival struck with a radius of one diameter and a half.
148. I have calculated the following ranges for comparison with the Range Tables of the 4 -inch B.L. gun, making $d=4 \mathrm{in}$.; $v=25$ lbs.; muzzle velocity $=1900$ f.s.; jump 6 minutes. In the first Table I have arranged the results so as to show the comparative ranges and times of flight, given by calculation and experiment for elevations of 1° to 15°. In these calculations the coefficients of Table iv. were used, which were obtained from experiments with ogival-headed shot struck with a radius of one diameter and a half, and no allowance was made for the decreasing density of the air, or for a more acutely pointed shot.

Elevation	Range			Time of Flight		
	By R. Table	By Calculation	Difference	By R. Table	By Calculation	Difference
	yards	yards	yards			
I°	1083	1049	-34	$1^{\prime \prime} \cdot 97$	I'*93	- 0 " ${ }^{\prime \prime} 04$
2	1811	1817	+6	$3^{\prime \prime} \cdot 72$	$3^{\prime \prime} \cdot 71$	- $\mathrm{O}^{\prime \prime \prime} \cdot \mathrm{OI}$
3	2400	2406	+6	$5^{\prime \prime} \cdot 34$	$5^{\prime \prime} \cdot 34$	0"'00
4	2917	2901	- 16	$6^{\prime \prime} \cdot 93$	$6^{\prime \prime} \cdot 84$	$-0^{\prime \prime} \cdot 09$
5	3392	3338	- 54	$8^{\prime \prime} \cdot 44$	$8^{\prime \prime} \cdot 24$	$-0^{\prime \prime} \cdot 20$
6	3820	3738	-82	$9^{\prime \prime} \cdot 85$	$9^{\prime \prime} \cdot 58$	$-0^{\prime \prime \prime} \cdot 27$
7	4213	4074	- 139	$11^{\prime \prime} \cdot 28$	$10^{\prime \prime} 90$	$-0^{\prime \prime} \cdot 38$
8	4576	4432	-144	$12^{\prime \prime} \cdot 65$	$12^{\prime \prime} \cdot 14$	-0"10.51
9	4905	4741	- 164	$13^{\prime \prime} \cdot 93$	$13^{\prime \prime} \cdot 36$	-0".57
10	5215	5027	- 188	${ }^{1} 5^{\prime \prime} \cdot 16$	$14^{\prime \prime}{ }^{\prime \prime} 55$	- 0 "10.61
11	5514	5307	- 207	$16^{\prime \prime} \cdot 39$	$15^{\prime \prime} \cdot 73$	- $0^{\prime \prime} \cdot 66$
12	5800	5562	-238	$17^{\prime \prime \prime} \cdot 50$	16"'86	- 0 "'6.64
13	6086	5804	-282	$18^{\prime \prime \prime} \cdot 84$	1 $7^{\prime \prime} \cdot 99$	--0'18.85
14						
15	6608	6249	-359	$2 \mathrm{I}^{\prime \prime} \cdot 34$	$20^{\prime \prime} \cdot 22$	$-1^{\prime \prime} \cdot 12$

149. I have taken from the Range Table the elevations and times of flight corresponding to the above ranges obtained by calculation. I have also used the horizontal muzzle velocities in calculating by the General Tables the times over the same ranges, and the remaining velocities. The results are stated in the following Table:

Range	Elevation			Time of Flight			Calc. Horizontal Striking Velocity	General Tables	
	By R. Table	By Calculation	Difference	By R. Table	By Calculation	Difference		Time	Horizontal Velocity
yards 1049							y.s. 476		y. s.
1049	$0^{\circ} 58^{\prime}$	$\stackrel{1}{\circ}^{\circ}$	$+0^{\circ} \mathbf{2}^{\prime}$	$\mathrm{I}^{\prime \prime} \times 90$	$1^{\prime \prime} \cdot 93$	+0'10.03	476	$\mathrm{I}^{\prime \prime \prime} \cdot 92$	474
1817	$2^{\circ} \mathrm{I}^{\prime}$	2°	$-0^{\circ} \mathbf{I}^{\prime}$	3"'73	$3^{\prime \prime} \cdot 71$	-0" $0^{\prime \prime} \cdot 02$	386	$3^{\prime \prime \prime} \cdot 72$	386
2406	$3^{\circ} \mathrm{I}^{\prime}$	$3{ }^{\circ}$	$-0^{\circ} \mathbf{1}^{\prime}$	$5^{\prime \prime} \cdot 36$	$5^{\prime \prime} \cdot 34$	-0"'02	340	$5^{\prime \prime} \cdot 35$	342
2901	$3^{\circ} 5^{\prime \prime}$	$4{ }^{\circ}$	$+0^{\circ} 2^{\prime}$	$6^{\prime \prime} .86$	$6^{\prime \prime} \cdot 84$	$-0^{\prime \prime} \cdot 02$	319	$6^{\prime \prime} \cdot 85$	319
3338	$4^{\circ} 53^{\prime}$	5	$+0^{\circ} 7^{\prime}$	$8^{\prime \prime} \cdot 26$	$8^{\prime \prime} \cdot 24$	-0'0.02	302	$8^{\prime \prime} \cdot 28$	301
3738	$5^{\circ} 4 \delta^{\prime}$	6°	$+0^{\circ} 12^{\prime}$	$9 \prime \prime \cdot 57$	$9^{\prime \prime} .58$	+0'0'01	289	$9^{\prime \prime} \cdot 65$	286
4074	$6^{\circ} 38^{\prime}$	7°	$+0^{\circ} 22^{\prime}$	10"'76	10"'90	$+0^{\prime \prime \prime} 14$	274	$10^{\prime \prime} \cdot 86$	275
4432	$7^{\circ} 35^{\prime}$	8°	$+0^{\circ} 25^{\prime}$	12 ${ }^{\prime \prime}$ ' 10	$12{ }^{\prime \prime} 14$	+0" $0^{\prime \prime} 04$	265	$12^{\prime \prime} \cdot 22$	263
4741	$8^{\circ} 29^{\prime}$	9°	$+0^{\circ} 3{ }^{\prime}{ }^{\prime}$	$13^{\prime \prime} \cdot 29$	$13^{\prime \prime} \cdot 36$	+0" ${ }^{\prime \prime} \cdot 07$	255	$13^{\prime \prime} .44$	254
5027	$9^{\circ} 23^{\prime}$	10°	$+0^{\circ} 37^{\prime}$	$14^{\prime \prime} \cdot 41$	$14^{\prime \prime} \cdot 55$	+0"'14	246	$14^{\prime \prime} \cdot 61$	246
5307	$10^{\circ} 18^{\prime}$	11°	$+0^{\circ} 42^{\prime}$	$15^{\prime \prime} \cdot 53$	$15^{\prime \prime} \cdot 73$	$+0^{\prime \prime} \cdot 20$	238	$15^{\prime \prime} .80$	237
5562	$11^{\circ} 10^{\prime}$	12°	$+0^{\circ} 50^{\prime}$	16"'. 67	16".86	$+0^{\prime \prime} \cdot 19$	231	$16^{\prime \prime} \cdot 94$	230
5804	$12^{\circ} \mathrm{I}^{\prime}$	13°	$+0^{\circ} 59^{\prime}$	$17^{\prime \prime} \cdot 5^{2}$	17'99	$+0^{\prime \prime} \cdot 47$	225	$18^{\prime \prime} \cdot 04$	223
6249	$13^{\circ} 36^{\prime}$	15°	+ $\mathrm{I}^{\circ} 24^{\prime}$	$19^{\prime \prime} \cdot 55$	$20^{\prime \prime} \cdot 22$	$+0^{\prime \prime} \cdot 67$	208	20" 19	211

Here the difference of elevations in each case seems to be
the correction required for vertical drift, inasmuch as that correction gives both ranges and times of flight satisfactorily.
150. It must be borne in mind that my coefficients of resistance were mostly derived from the motion of ogival-headed projectiles fircd through ten screens placed 50 yards apart, at elevations calculated to give ranges of 600 or 700 yards. Those projectiles, which passed through all the ten screens, must in general have been steady in their flight. The $\check{5}$-inch gun was a remarkably good one, which by its accurate shooting gave many records, and consequently many values of the coefficient K for velocities between 1000 and 1650 f.s. But those projectiles, which were unsteady, passed through only a few screens giving very few records, and therefore they could have only a very limited effect on the final results. The coefficients of resistance for velocities 1000 to 1650 f.s. were derived from experiments made with ogival-headed projectilcs in 1867, 8 by the use of $3,5,7$ and 9 -inch M.L. guns. This variation in the calibres of the guns was adopted because it was necessary to ascertain in the first place, whether the resistance of the air did really vary as the square of the diameter of the projectile. That law having been found satisfactory, the cocfficients of resistance for velocities 1650 to 2250 f.s. were obtained by experiments in 1878,9 with a new 6 -inch B.L. Armstrong gun, and in 1880 these coefficients were extended to velocity 2780 f.s. by experiments made with a new 8 -inch B.L. Armstrong gun. The results given by these two guns proved perfectly consistent, as will be found by comparing the Report of Experiments printed in 1879 with the Final Report of 1880. I have the best authority for stating that no English guns constructed since 1880 have hitherto given evidence of any marked improvement in the centering of their projectiles. Numerous examples have been worked out to explain the use of the Tables, and to show how well the calculated agrec with the experimental results of recent guns, so long as the clevation of the gun is low, for in that case the projectiles move nearly in the direction of their axes, and much as they did when my experiments were made. These comparisons of calculated and experimental results have been found perfectly satisfactory for relocities 1900 to 960 f.s. and for ranges up to 3000 yards. That is full and complete evidence of the accuracy of my coefficients of resistance.
151. As the elevation of the 4 -inch gun goes on increasing above 4°, the calculated ranges and times of flight gradually fall short more and more of these values given in the Range Table for the specified elevation (148), but they are consistent with those given for a somewhat lower elevation (149). There is no reason for supposing that the resistance of the air to an elongated projectile fired at an elevation greater than 4° is less than that to the same projectile fired at a lower elevation, excepting for the decreasing density of the air for which special provision has to be made (92). Certainly this discrepancy cannot be corrected by simply reducing the coefficients of resistance as Captain May, R.N., has discovered. For he has observed that "...when the "coefficients used in calculating the time of flight are the same "as those which were found to give results agreeing with practice "when used for the calculation of the range, it has often been "found that the calculated time falls short of the observed time; "this would seem to point to the range being prolonged by a "kite-like action of the shell, and if this is so, it may be that "the coefficients which give bad results when applied to the cal" culation of the range may not be so erroneous as they appear ${ }^{1}$."

If the experiments here referred to were good, and if my coefficients had been reduced 5,10 or 15 per cent. ${ }^{2}$ to make the calculated agree with the observed range, it might naturally be expected that the calculated time of flight would fall short of the observed time of flight-because the resistance of the air to the projectile had been unduly reduced. But if my coefficients of resistance had been properly used, I feel satisfied that, if not fur the given elevation, then for some slightly reduced elevation the calculated range and time of flight would have been found consistent with experiment as in (149). And the proper way to bring calculation into agreement with experiment will be, to make the necessary addition to the elevation, which is accounted for by the vertical drift or "the kite-like action" of the shell (143).

1כั2. From the note Captain May appends, I fear he has also made use of some faulty methods of calculation, for he remarks :-"Curiously enough it is usually at comparatively short "ranges, where the trajectory is but little curved that the ob-

[^31]"served time of flight has been found to differ most from the "calculated time. At longer ranges with the same gun they "often agree well1". Now I have calculated ranges and times of flight for Captain May's own model Range Table ${ }^{2}$ for elevations of $1^{\circ}, 2^{\circ}, 3^{\circ}$ and 4° the full extent of his Table, and found throughout a most precise agreement between calculation and experiment up to a range of 4000 yards (123). This being the case for low elevations, confirmed by the General Tables (124), I cannot suppose that projectiles fired at higher elevations would require any reduction in the coefficients of resistance, except as above observed so far as the density of the air becomes reduced, and for that I have prepared special corrections.
153. Special experiments were made with the 4 -inch B.L. gun in 1887 to test my coefficients of resistance on a long range. I have no confidence in velocities measured by galvanic chronographs at considerable distances from the gun. Therefore the initial velocity of each round and the time of flight over a range of 2000 to 3000 yards were measured by the same chronograph, and afterwards the mean experimental and mean calculated times of flight were compared. The results showed that the coefficients were quite satisfactory, as we have found them to be by the use of the Range Table of the same gun for even longer Ranges (125) and (126).

[^32]
CHAPTER VII.

PROPOSED LAWS OF THE RESISTANCE OF THE AIR to Elongated projectiles.

154. MY method of experimenting gave the coefficients of resistance in a form directly applicable to the calculation of General Tables and trajectories. The expression of the law of resistance of the air in terms of the velocity of the projectile was not therefore required for my own purposes. But as such laws seemed to be desired, I endeavoured to give them from time to time for ogival-headed projectiles. The average of the times at which the equidistant screens were passed in the trial of the instrument in 1865 gave a value of $\Delta^{2} t$ nearly constant, and thence it was inferred that the resistance varied approximately as the cube of the velocity (38$)^{1}$.
155. As there have been many laws of resistance published for ogival-headed projectiles since the commencement of my ballistic experiments, I now propose to state them in the order in which the principal of them appeared and also to apply them, as far as possible, to calculate a standard example, which has been already used for a similar purpose by Major Mackinlay, R.A. ${ }^{2}$. The problem will be to find in each case, by the General Tables, in what Range a 10 -inch, or $25.4 \mathrm{c} . \mathrm{m}$. ogival-headed projectile would have its velocity reduced :
(i) from 1700 to 1300 f.s.; or from $518 \cdot 15$ to $396 \cdot 23$ m.s., and
(ii) from 1300 to 1100 f.s. ; or from $396 \cdot 23$ to $335 \cdot 27 \mathrm{~m} . \mathrm{s}$. where $w=412 \cdot 54 \mathrm{lbs}$., or $187 \cdot 12 \mathrm{kgs}$. which give

$$
d^{2} \div w=0.2424
$$

[^33]The ranges calculated by the English Tables will be reduced to the French standard, where $\omega=527$ grains.
156. We have seen, (106), that my Tables published in 1868, when applied to the 10 -inch ogival-headed shell, gave a reduction
(i) from 1700 to 1300 f.s. in velocity in a range of 2534 yards, when reduced to the French standard. And
(ii) from 1300 to 1100 f.s. in a range of 1781 yards......(a).

In 1871, from the results of my experiments in $1867,8^{1}$, I stated that for ogival-headed projectiles, the resistance of the air might be taken to vary roughly as follows :

$$
\begin{align*}
& v>13500 \text { f.s. ; } f \propto v^{2} \text {) } \\
& \left.v<1350>1100 \text { f.s.; } f \propto v^{3}\right\} \tag{b}\\
& v<1100>900 \text { f.s.; } f \propto v^{6} \text {) }
\end{align*}
$$

My General Table, 1871, gave ranges
(i) of 2584 yards,
and
(ii) of 1789 yards.
157. The formulæ deduced by Mayevski ${ }^{2}$ from the so-called "résultats des expériences russes et anglaises" 1872 were $v<510>360 \mathrm{~m} . \mathrm{s}$; ; or $<1673>1181$ f.s. ; $f \propto v^{2}$ $v<360>280 \mathrm{~m} . \mathrm{S}$; or $<1181>919$ f.s. ; $f \propto v^{6}$
$v<280>0 \quad ;$ or $\left.<919>0 ; f x v^{2}\left\{1+\left(\frac{v}{488}\right)^{2}\right\}\right\}$
158. My General Tables recalculated in 1873^{3} gave ranges
(i) of 2583 yards,
and
(ii) of 1790 yards.

The experiments made with my chronograph $1878,9^{4}$ gave in addition to the laws (b),
and

$$
\left.\begin{array}{ll}
v<1010>830 \text { f.S. } ; & f \propto v^{3} \tag{d}\\
v<830>430 \text { f.S. } ; & f \propto v^{2}
\end{array}\right\}
$$

[^34]and the General Table founded on these experiments gave ranges
(i) of 2584 yards,
and
(ii) of 1785 yards.
159. When Siacci published his Ballistic Tables, (1880), he professed to have founded them upon the so-called "russe ed "inglesi" results, but he modified Mayevski's laws ${ }^{1}$ (c), and brought them more nearly into agreement with my laws (b) and (d), except for low velocities, as follows:
$v<520>420 \mathrm{~m} . \mathrm{s}$. ; or $<1706>1378$ f.s. ; $f \propto v^{2}$
$v<420>343$ m.s. ; or $<1378>1125$ f.s.; $f \propto v^{3}$
$v<343>280 \mathrm{~m} . \mathrm{s}$; \quad or $<1125>919$ f.s. ; $f \propto v^{6}$
$v<280>0$ m.s. $;$ or $<919>0$ f.s. $\left.; f \propto v^{2}\left\{1+\left(\frac{v}{495 \cdot 1}\right)^{2}\right\}\right\}$
Siacci's Table $D(v), 1880$, gives ranges
(i) of 2522 yards,
and
(ii) of 1814 yards.
160. Krupp did not attempt to assign any laws of resistance, but they differed little from my own, when my coefficients were reduced 9 or 10 per cent. His Table (1881), gives ranges
(i) of 2847 yards,
and
(ii) of 2209 yards.
161. Mayevski (1883), professes to have deduced certain laws from Krupp's Meppen experiments which Ingalls has expressed as follows in English measure ${ }^{2}$:
\[

\left.$$
\begin{array}{l}
v<2300>1370 \text { f.s. } ; f \propto v^{2} \\
v<1370>1230 \text { f.s. } ; f \propto v^{3} \\
v<1230>970 \text { f.s. } ; f \propto v^{5} \tag{f}\\
v<970>790 \text { f.s. } ; f \propto v^{3} \\
v<790>\quad 0 \text { f.s. } ; f \propto v^{2}
\end{array}
$$\right\}
\]

The Mayevski-Krupp Table (1873), gives ranges
(i) of 2819 yards,
and
(ii) of 2176 yards.

Here it is manifest that Mayevski completely abandons his original laws (c) and approximates to my laws (b) and (d).
162. Hojel professes to have deduced similar laws from the same experiments, upon which Ingalls remarks", that "Hojel has " considered it necessary to employ fractional exponents, thereby "sacrificing simplicity without apparently gaining in accuracy." He afterwards compared the results given by the formulæ of Mayevski and Hojel, and by the "Table de Krupp" for velocities 2300 to 400 f.s. and found they agreed 2, so that we may take the law expressed by Mayevski to represent all three.
163. From my Final Report (1880), I deduced the following laws ${ }^{3}$:

$$
\begin{array}{ll}
v \quad>1300 \text { f.s. } ; & f \propto v^{2}, \\
v<1300>1100 \text { f.s. } ; & f \propto v^{3}, \\
v<1100>1040 \text { f.s. } ; & f \propto v^{8}, \\
v<1040>850 \text { f.s. } ; & f \propto v^{3}, \\
v<850>100 \text { f.s. } ; & f \propto v^{2} .
\end{array}
$$

164. Ingalls ${ }^{4}$ has deduced the following laws from the same Report, 1880 :

$$
\left.\begin{array}{l}
v \quad>1330 \text { f.s. } ; f \propto v^{2} \\
v<1330>1120 \text { f.s. } ; f \propto v^{3} \\
v<1120>990 \text { f.s. } ; f \propto v^{6} \tag{g}\\
v<990>790 \text { f.s. } ; f \propto v^{3} \\
v<790>100 \text { f.s. } ; f \propto v^{2}
\end{array}\right\}
$$

Ingalls employed these results when he calculated his 'Tables, which give ranges
(i) of 2595 yards,
and
(ii) of 1775 yards.

My own General Tables, (1889), give ranges
(i) of 2566 yards,
and
(ii) of 1781 yards.

[^35]= Ib. p. 31.

- Exterior Ballistics, 1886, p. 36 .

My Laws of Resistance (1889), finally adopted after the recent revision of all my experiments, will be found in Tables (III) and (IV).
165. The following is a summary of the results above obtained:

$\left\{\begin{array}{l} (\mathrm{I}) \\ \text { from } 1700 \text { f.s. } \\ \text { to } 1300 \text { f.s. } \end{array}\right.$					$\left\{\begin{array}{c} \text { (II) } \\ \left\{\begin{array}{r} \text { from } 1300 \text { f.s. } \\ \text { to } 1100 \text { f.s. } \end{array}\right. \end{array}\right.$		$\text { or }\left\{\begin{array}{l} \text { (fiII) } \\ \text { from } 1700 \text { f.s. } \\ \text { to } 1100 \text { f.s. } \end{array}\right.$		
hfo	1868,	2534			1781	rds;		43	yards
"	1871,	2584	"		1789	" ;		4373	
	1873,	2583			1790		or	4373	
	1879,	2584			1785		or	4369	
Siacci	1880,	2522			1814		or	4336	
Krupp	1881,	2847			2209		or	5056	
Mayevski	1883,	2819			2176	"	or	4995	
Ingalls	1886,	2595			1775	"		4370	
Bashforth	1889,	2566			1781	" ;	or	4347	

I have now noticed in chronological order the works of those writers on Ballistics mentioned by Ingalls as the authors of Ballistic Tables or of Laws of Resistance of the air to the Motion of Projectiles.

CHAPTER VIII.

CONCLUDING REMARKS.

166. As the accuracy of my coefficients of resistance has been questioned, I have gone carefully over all my experimental rounds (53)-(72) and given full particulars of the values of K so obtained (73)-(81). I have also used the means of these coefficients to calculate by Bernoulli's exact method the ranges and times of flight of projectiles fired from the 4 -inch B.L. gun (125). The General Tables have also been used to calculate the times of flight of projectiles fired from the same gun (126).

And similar calculations have been made for the 12 -inch B.L. gun (123). In every case the agreement between calculation and experiment has been found to be far closer than could reasonably have been expected. The natural conclusion seems to be that my coofficients are well adapted for the calculation of the motion of elongated projectiles fired from recent guns for ranges of these guns up to 3000 or 4000 yards, and therefore for all ranges so long as the motion of the projectile in practice corresponds to the motion of the projectiles in my experiments, that is, so long as the projectile moves nearly in the direction of its axis.
167. But as the elevation of the gun increases above 4° or 5° the vertical drift (141) coming into action raises up the elongated projectile so as to give an increased range and time of flight. In such cases my proposal is to correct the elevation so that the calculated range and time of flight may agree with those observed quantities. By the careful calculation of good Range Tables it is probable that the law of vertical drift might be
ascertained for elongated projectiles. On the other hand it has been proposed by the Krupp party to reduce my coefficients of resistance. But this mode of correcting for range has been found to give too short a time of flight (151), and consequently an erroneous striking velocity. We may now proceed to consider on what authority this proposed reduction of my coefficients depends.
168. Mayevski published the results of some few rounds in 1872, for both spherical and ogival-headed shot ${ }^{1}$ accompanied by a statement that these experiments were made in 1868, 9 . "Les "expériences de St Pétersbourg sur la résistance de l'air au "mouvement des projectiles sphériques et oblongs ont été faites "par nous en 1868 et 1869 et leurs résultats sont pour la première " fois publiés dans notre traite" (1872). "Afin que les expressions "de la résistance représentent, avec une approximation suffisante, "les résultats de nos expériences et ceux des expériences anglaises, "faites avec des appareils perfectionnés...pour les projectiles sphé"riques...pour les projectiles oblongs.".

Thus Mayevski both here in his preface and in his work fully acknowledges the use he had made of my published results, for he remarks "Aussi pour compléter les données se rapportant "aux projectiles de forts calibres nous avons profité des tableaux

\footnotetext{
${ }^{1}$ Note. The following is a statement of all the results of experiments given by Mayevski for both spherical and oblong projectiles in his Balistique Extérieure, 1872, p. 39.

$\begin{gathered} v \\ \mathrm{~m} . \mathrm{s} . \end{gathered}$	ρ^{\prime}	$\begin{gathered} v \\ \mathrm{~m} . \mathrm{s} . \end{gathered}$	ρ^{\prime}	v m. s.	ρ^{\prime}	m. y .	p^{\prime}	v m. s.	ρ^{\prime}
Spherical Projectiles.									
227	0,0295	278	0,0424	341	0,0519	384	0,0602	457	0,0598
234	0,0267	287	0,04II	342	0,0582	408	0,0587	463	0,0611
262	0,0361	330	0,0491	380	0,0554	415	0,0625	475 527	0,0625 0,0619
Oblong Projectiles.									
172	0,0151	247	0,01 70		0,022 I	319	0,0174	337	0,034 I
207	o,or 37	266	0,0160	307	0,0158	320	0,0299	360	0,0384
239	0,0148	282	0,0163	317	0,02.59	329	0,0338	401	0,0450
								409	0,0430

[^36]"des vitesses décroissantes ${ }^{1}$ déduites par M. Bashforth de ses ex"périences faites en 1868 au moyen de son chronographe...Nous "avons calculé d’après les résultats insérés dans ces tableaux les "valeurs de la résistance correspondantes à différentes vitesses?."
169. Afterwards Mayevski gives in a tabular form some values of Didion's ρ^{\prime} derived from the published results of my labours, as well as those he had deduced from his own experiments ${ }^{3}$, the former being more numerous than the latter. So far everything was as it should be. But unfortunately, immediately afterwards Mayevski spoke of this compound as "les ré"sultats des expériences russes et anglaises." And Siacci in publishing his Ballistic Tables (1880), copied the above-mentioned 'Table, saying "ecco i resultati dell' esperienze russe ed inglesi." And again Siacci in his Balistica (1884), gives a second copy of this precious Table of "esperienze russe ed inglesi ${ }^{4}$." Siacci ought to have known that the English experiments were complete in themselves and were published long before Mayevski concocted his Law of Resistance. But to show clearly the value of the Russian element, I have used Siacci's own Table $\mathrm{D}(v)$, said to have been derived from the results "russe ed inglesi" to recalculate one of my Tables of decreasing velocities published in 1868, which Mayeuski avowedly made use of and which has already been reprinted in full (104).

Distances	Decreasing Velocities		
Feet	Lashforth's Report, 1868	Mayevski, 1872, by Siacci's Table	Differences
100	1706 f. s.	$1706 f . s$.	o f. s.
1100	1603	1605	$+2$
2100	1509	1509	0
3100	1419	1420	+1
4100	1336	1336	0
5100	1259	1261	$+2$
6100	1189	1194	+5
7100	1129	1134	$+5$
8100	1076	1082	+6
9100	1034	1040	+6
10100	1002	1005	$+3$

${ }^{1}$ Proceedings of the 1R. A. Inst. Notes, 1868.
${ }^{2}$ Mayevski, Traité de Balistique, 1872, p. $38 . \quad{ }^{3}$ Ib. p. 41, and Note (168).

+ Balistica, III. p. 4.

This shows clearly that the effect of the Russian experiments was nil, and consequently that Mayevski merely adopted in 1872 my results published in 1868. When experimenters publish the results of their laborious investigations, they know that their results are always open to be tested and examined by any one qualified for such work, but in no case have I met with such a flagrant attempt to appropriate the chief share in the already published work of another.
170. We will now proceed to test Mayevski's experiments with spherical projectiles (1872) in the same manner. In the Report on my experiments with spherical projectiles (1869) a Table of decreasing velocities was given for all the service spherical projectiles (105), just as in the case of the ogival-headed shot above referred to. As Captain Ingalls has used Mayevski's results in preparing Tables for his edition of Siacci's method of calculating trajectories of spherical projectiles, I am thus enabled to give a Table of decreasing velocities calculated after Mayevski's results for spherical projectiles (1872) for the $100-\mathrm{Pr}$. gun at intervals of 1000 feet ($d^{2} \div w=0.7766$) for comparison with my own Table published in 1869 as follows:

Distances	Decreasing Velocities		
Feet	Bashforth's Report, 1869	Mayevski, ${ }^{1872}$, by Ingall's Table	Differences
400	1970 f. s.	1970 f. s.	of.s.
1400	1680	1682	$+2$
2400	1437	1436	- I
3400	1236	1226	- 10
4400	1078	1066	- 12
5400	962	950	-12
6000	906	893	-13

Here again we have very trifling differences, showing that Mayevski's experiments with spherical shot published in 1872, gave just the same results for all practical purposes as my coefficients gave which were published in 1870.

Hence it appears that the only value of Mayevski's experiments is, so far as they go, to confirm my previously published coefficients for both spherical and ogival-headed projectiles.
171. Major Siacci inserted the following note in his Balistica (1884), "La prima tavola balistica fu calcolata sulla base delle "formole (2) della Nota I. dal maggiore Siacci, pubblicando il "Nuovo Metodo (Giornale d' Artiglieria e Genio P. II. 1880). Un' "altra tavola balistica fondata sulle stesse formole, ma con unitì "inglesi, fu calcolata dal tenente Mitcham degli S.U. d' America "(Ordnance Note n. 152). Una terza tavola colle stesse formole "è dovuta al Capitano M. Ingalls degli S.U., il quale ha calco"lato anche una tavola balistica sui proietti sferici (Ballistics, "Fort Monroe Virginia, 1883). La casa Krupp ha pubblicato " anche una estesa tavola balistica sulla base delle formole (3) "della Nota I (Ballistische Formeln von Mayevski, nach Siacci, "Essen, 1883), \&c."
172. Here we find no reference to similar Tables published in England in 1871, 2, 3, 7 \&c. for both spherical and ogivalheaded projectiles (106)-(110). The simple fact is that Major Siacci uses four Tables in his approximate method of calculating trajectories, three of which had been previously in use in this country, and were well known.

Siacci's Table D $(u) 1880$ is the same as my Table $\frac{d^{2}}{w} s, 1871$,

My two General Tables were adapted by me for use when the path of the projectile approximated to a straight line. And Professor Niven afterwards applied these two tables, with the help of a third table D_{v} of his own to the calculation of flat trajectories in 1877. ${ }^{2}$ These simple matters of fact ought to lave been mentioned by Major Siacci, as he pretended to give a history of the tables, for his statement of the case as above quoted is misleading.
173. Captain Ingalls has pointed out certain grave difficulties in the use of Siacci's Equations for Direct Fire, as follows: "As

[^37]"already stated, α is some mean value of the secants of the in"clinations of the extremities of the arc of the trajectory over "which we integrate, and consequently if we take the whole "trajectory lying above the level of the gun, α will be greater "than 1 and less than $\sec \omega$. To illustrate, suppose we have for "our data a given projectile fired with a certain known initial "velocity and angle of projection, and we wish to calculate the "angle of fall, terminal velocity, range and time of flight. If "we calculate these elements by means of (75), (72), (76) and " (77) making $\alpha=1$, they will be too great; while if α is made "equal to $\sec \omega$, or even $\sec \phi$ they will be too small; and the "correct value of each element would be found by giving to a "some value intermediate to the two. Moreover, the value of α, "which would give the exact range would not give the exact time of "flight or terminal velocity " ${ }^{1}$! It must be very evident that the approximate calculation of trajectories by Siacci's method as above described, or any similar method involving the use of an arbitrary value of " α," cannot be recognised by me as any test whatever of the correctness of my coefficients.
174. It appears ${ }^{2}$ that in a recent edition of his Tables, Siacci has given up what he was pleased to name "esperienze russe ed "inglesi" and has adopted the laws of resistance which Mayevski professes to have deduced from Krupp's experiments, although he has confessed that "Io non conosco i particolari d' esecuzione "delle sperienze Krupp, nè il metodo con cui furono calcolate le "due tabelles."
175. The late Mr Krupp was famous for his method of employing steel in the construction of big guns, but he appeared in quite a new character as the nominal author of Ballistic Tables in 1881. The second part of the Reports on experiments made by my chronograph, with the help of the first part, 1868, 9, gave coefficients of resistance to ogival-headed projectiles for all velocities between 430 and 2250 f.s., or between 131 and 686 m.s., which were made use of in calculating General Tables 1879. In 1881 Krupp printed in French and German some Ballistic Tables

[^38]of the same kind as my own which extended from velocity 140 to $700 \mathrm{~m} . \mathrm{s}$. But no particulars were given of the experiments, from which he professed to derive materials for his Tables. He merely stated that his Table "a été établi par l'usine Krupp au com"mencement de l'aunée 1880," but he did not condescend to particulars, neither did he refer to my results printed two years previously. Having stated that it had been found that no satisfactory general law of resistance of the air as function of the velocity could be found, he then remarked "Cette expérience "devait le faire paraître utile de trouver une nouvelle méthode "pour le calcul des vitesses restantes. Cette méthode a été "trouvée de la manière suivante." This is quite erroneous as explained (89). For the same method had been previously discovered in a different manner and published, and lad been in regular use in England during the preceding ten years 18711881. Early copies of these Tables of Krupp were sent over to the United States, America, where they were at once translated, but I was not able to obtain a sight of the precious work till Dec. 1883, and that copy arrived in this country viâ America. I then found that Krupp's Tables were based on my Laws of Resistance (Fig. 13), but with the coefficients reduced about $9 \cdot 3$ per cent. ${ }^{1}$ Afterwards it appears to have been felt that these Tables lacked support from experiment, for in the following year (1882) ant "Annexe", which contained a statement of 37 rounds, apparently selected from old note books 1875 to 1881, was put forward to support the correctuess of the so-called "Talle de Krupp" (1881). But in no case was the time of flight given, and so there was wanting a most important test of accuracy. The chief particulars of the experiments will be found in the accompanying Table (see next page), which also gives the results obtained by Captain Ingalls who recalculated each round of the "Annexe" (1) by Krupp's Table ; (2) by his own table based on my results, reduced 0.3 per cent. ; and (3) by formule of resistance which Mayevski professes to have deduced from Krupp's Meppen experinents.
176. On these results Captain Ingalls has remarked that " The only discrepancies of any account between the calculated "velocities in this column (his own) and the observed velocities

[^39]| No. | Dates | Projectiles | | Poids de l'air en kilogrammes par m^{3} | Différences entre distances x_{1} et x_{3} auxquelles la vitesse fut mesurée en mètres | Vitesses mesures des
 Projectiles v_{1} et v_{s} en mètres | | Calculated Velocities | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Calibre en mm. | $\begin{gathered} \text { Poids } \\ \text { en kilo- } \\ \text { grammes } \end{gathered}$ | | | | | Computed by Krupp m. s. | $\begin{gathered} v \\ \text { Computed } \\ \text { bable I. } \\ \text { m. s. } \\ c=0^{\circ} 907 \end{gathered}$ | v
 Computed
 by
 Mayevski's
 Formulas
 m. s. |
| 1 | 16/11/75 | 240 | 125 | 17245 | 1450 | 467 | 380 | $379{ }^{\circ} 9$ | $380 \cdot 7$ | $380 \cdot 6$ |
| 2 | | "\%. | 161 | \cdots | | 454.5 | 390 | $388 \cdot 3$ | $387 \cdot 7$ | $387 \cdot 5$ |
| 3 | 18/3/76 | 172.6 | 61.5 | I ${ }^{2} 26$ | 1389 | 477 | 388 | $388 \cdot 7$ | 389.3 | $388 \cdot 7$ |
| 4 | 24/3/76 | " | " | - | 1429 | 514.7 | 416.6 | 4179 | 417.6 | $415 \cdot 7$ |
| 5 | 2/3/76 | 149.1 | $39^{\prime} 3$ | I 260 | " | 518 | 401.6 | 402.I | 403 - | $401 \cdot 2$ |
| 6 | 3/ 3/76 | , | 33.5 | I 1240 | ", | $507 \cdot 7$ | 380 | $380 \cdot 7$ | $379{ }^{\circ} 9$ | $379{ }^{1} 1$ |
| | 30/11/76 | " | $3{ }^{1} 3$ | I 265 | 924 | 475.8 | $387 \cdot 8$ | $388 \cdot 2$ | 387.7 | $387 \cdot 3$ |
| 8 | 2/7/78 | 355 | 525 | $1 \cdot 200$ | 1884 | 495.9 | 432.7 | $433 \cdot 1$ | $433 \cdot 8$ | $432 \cdot 6$ |
| 9 | II/ 6/79 | ,, | ," | I 200 | 2384 | 490 | 415 | 411*8 | 414.4 | 412.3 |
| 10 | 20/ 6/79 | " | , | $1 \cdot 200$ | 2389 | $488 \cdot 5$ | $409 \cdot 6$ | $410 \cdot 4$ | 412.3 | 410*9 |
| II | 17/12/78 | 149.1 | 31.3 | I 265 | 1950 | 609 | 394 | $393 * 9$ | $395 \cdot 4$ | $392 \cdot 7$ |
| 12 | $718 / 79$ | , | 51 | I '206 | 1929 | $505^{\circ} 2$ | $394{ }^{\circ} 6$ | 393.3 | 393.4 | $392 \cdot 3$ |
| 13 | 9/ $8 / 78$ | 152.4 | 51.5 | I 205 | 1450 | 472.4 | 391*3 | $389 \cdot 3$ | 389.1 | $388 \cdot 6$ |
| 14 | | " | 32.5 | " | " | 577 | 422 | $422{ }^{\circ} \mathrm{O}$ | 424.2 | 421.5 |
| 15 | 13/12/78 | 149.1 | 31.3 | I 230 | ,, | 6324 | $460 \cdot 9$ | $460 \cdot 3$ | 462.8 | $459 \cdot 8$ |
| 16 | 25/ 6/79 | 240 | 215 | 1-208 | 1904 | $480 \cdot 4$ | 412.8 | $412^{\circ} \mathrm{O}$ | 412.4 | 4II'I |
| 17 | $518 / 79$ | 400 | 777 | I 180 | 2384 | 499.4 | $433 \cdot 7$ | $432 \cdot 1$ | 4330 | 431×7 |
| 18 | 6/ 8/79 | " | 643 | I'190 | " | 5334 | $443 \cdot 8$ | $447{ }^{\circ}$ | $448 \cdot 2$ | $446 \cdot 6$ |
| 19 | | ' ${ }^{\text {c }}$ | | 1-190 | " | 531.5 | $444 \cdot 5$ | 445.4 | $446 \cdot 6$ | $445^{\circ} \mathrm{O}$ |
| 20 | 6/10/76 | 84 | $6 \cdot 55$ | I'197 | 2447 | $446 \cdot 9$ | 266 | 267.2 | 259*7 | 267.4 |
| 21 | 3/10/76 | 120 | 16.4 | I'2II | , | $463 \cdot 3$ | $284^{1} 1$ | 289.2 | 281.6 | 289.3 |
| 22 | 12/12/78 | $149{ }^{1} 1$ | 31.3 | I 285 | 3448 | 536.6 | 294.8 | $290 \cdot 6$ | 283.7 | $290 \cdot 5$ |
| 23 | 22/1/80 | 105 | 16 | $1 \cdot 300$ | 3436 | 481.5 | 282 | $278 \cdot 4$ | $271 \cdot 2$ | 279.6 |
| 24 | $17 / 1 / 80$ | 96 | 12 | I 340 | 3439 | 425.8 | $256 \cdot 2$ | $250 \cdot 5$ | $244{ }^{\text { }}$ I | 254.4 |
| 25 | 26/ 6/8o | 107 | 12.5 | I. 218 | 777.5 | 205'1 | $188{ }^{2}$ | 189.8 | 187.7 | 189.8 |
| 26 | 10/7/80 | 152.4 | $31 \cdot 5$ | I 206 | $966 \cdot 5$ | 203 | 188 | 187.4 | 185.9 | I $88{ }^{\circ}$ |
| 27 | 7/7/81 | 105 | 16 | I'222 | 950 | 514^{2} | 426.9 | 42I'I | $422 \cdot 2$ | $420 \cdot 4$ |
| 28 | 11/7/81 | 149.1 | 39 | 1.218 | 1429 | 470 | 369.5 | $370 \cdot 4$ | 369.1 | 369.3 |
| 29 | 23/ 6/77 | 283 | 2347 | I 206 | 4450 | 4647 | $32 \mathrm{I} \cdot 2$ | $318 \cdot 9$ | 311.3 | 317.6 |
| 30 | 25/7/81 | ', | 247 | I '205 | 1879 | $465 \cdot 3$ | 403.9 | $403 \cdot 3$ | 404.6 | 403.7 |
| 31 | 26/7/81 | " | " | 1 200 | 1919 | $465^{\circ} 9$ | 385.4 | 384.7 | $384{ }^{\circ} \mathrm{O}$ | $383 \cdot 8$ |
| 32 | | ," | ," | " | 2425 '5 | $466 \cdot 5$ | $370 \cdot 6$ | $368{ }^{\circ}$ | $366 \cdot 6$ | $367{ }^{\circ}$ |
| 33 | 27/7/81 | " | ", | 1'220 | 2921.5 | $464 \cdot 8$ | $347 * 8$ | 350% | 3477 | 3497 |
| 34 | 28/7/81 | " | " | 1 2227 | 3426.0 | 463.7 | $33^{\circ} \circ$ | 337.6 | $33{ }^{1}{ }^{\circ} 4$ | 336.6 |
| 35 | 29/7/81 | ", | " | 1.220 | $4446 \cdot 5$ | 460° | $316 \cdot 6$ | 316.6 | 308.6 | $315{ }^{\circ}$ |
| 36 | I) $8 / 8 \mathrm{I}$ | " | ", | I•192 | $5945^{\circ} \mathrm{O}$ | 455° | 295° | 293.9 | $285 \cdot 6$ | $293{ }^{\circ}$ |
| 37 | 4/ $8 / 8 \mathrm{I}$ | " | ," | 1 2206 | 5 | 453.1 | 294.7 | 291.5 | $283 \cdot 2$ | 2914 |

"occur where the curvature of the trajectory is considerable, as "in the last four rounds, and one or two others. Equation (30) is "based upon the supposition that the path of the projectile is a " horizontal right line, and of course, gives only approximate results "when this path has any appreciable curvature.... In No. 37, "for example, it will be found that to attain a range of 5945 metres " ($3 \frac{2}{3}$ miles) the angle of projection would have to be $12^{\circ} 37^{\prime}$, and "the angle of fall would be $17^{\circ} 40^{\prime \prime}$." Hence it appears that the result of Krupp's labours was a reduction of $9 \cdot 3$ per cent. in my coefficients, and the authority for that reduction depends entirely upon the 37 rounds given in Krupp's "Annexe."
177. When it is desired to find the law of the resistance of the air to the motion of projectiles by the use of chronoscopes of the Navez type, it is necessary to measure the velocities of the projectiles at two points near together, and then the resistance required to produce the observed loss of velocity in the given short runge is usually taken to be the resistance of the air to the projectile when moving with the mean of the two measured velocities. But not one of the ranges given in Krupp's Annexe is of moderate length, for they vary from 777 to 5945 metres. Nothing can therefore be known experimentally about the variation of the velority between the two extremities of each range. Velocities measured at distant stations by chronoscopes have not been found satisfactory. Take the round mentioned in particular by Captain Ingalls (176); the rise in the trajectory near the gun would be 22 in the 100 , and the fall at the distant end would be 32 in the 100. Here is a difficult problem to fire a projectile through a pair of screens near the gun and also through another pair 5945 metres off. And if this could be done, the resulting velocities would not be trustworthy under the circumstances above stated.
178. Notwithstanding all these difficulties Mayevski and Hojel have had the courage to attempt to deduce laws of resistance from the Meppen experiments. It appears to me that the only way to proceed in such a case, would be to take some previously determined law and adjust the coefficients so as to obtain the desired results. I have copied the following diagram ${ }^{2}$, as it

[^40]shows clearly the state of the case. The dotted line (1) represents the results given by my experiments (1880) ; (2) the laws deduced from my experiments by Captain Ingalls ${ }^{1}$ (164); and (3) the laws deduced by Mayevski (161), "when the Krupp projectile is "employed ${ }^{2 "}$. As Ingalls has used both the Krupp Table and

Fig. 13.

Mayevski's laws to calculate the rounds of the Annexe, and fuund a close agreement between them, (3) may be taken also to represent the laws of resistance on which Krupp's Tables are founded.
179. Immediately after my Report on the experiments of 1878, 9 was printed, it was decided to make experiments with still higher velocities. These experiments, carried out at Shoeburyness, March 8-10, 1880, extended the coefficients of resistance to ogival-headed projectiles to all velocities between 2250 and 2780 f.s., or between 686 and 850 m.s. The Report of these experiments was published 1880^{3}.
180. The following July experiments were professedly carried on at Meppen: "pour déterminer la résistance de l'air aux grandes "vitesses de projectile" Bulletin xxx. But in the end, all that was attempted was to try "si la résistance de l'air restait pro"portionelle au carré de vitesse du projectile aussi pour les vi"tesses de projectile plus grandes que celles expérimentées jus"qu'ici." Here the details of each round have been given, so that we are able to judge how experiments of this nature were con-

[^41]ducted at Meppen. No less than six independent chronographs were used which were arranged so that one pair measured the velocity at station $A, 30$ metres, another pair at $B, 130$ metres, and the remaining pair at $C, 500$ to 1500 metres from the gun. Generally the two measures of the velocity at the same point differed considerably and much more than is allowed by the rule laid down by Ingalls, for he says that the difference in the velocities of each shot as determined by two instruments should not exceed one-thousandth of the actual velocity ${ }^{1}$.
181. As a curiosity, I copy from Bulletin xxx. the worst group of all, which exceeds belief.

July 5, 1881.

182. Here the two measured velocities of round 9 at station A differ by so much as $20 \cdot 2 \mathrm{~m} . \mathrm{s}$, or $66 \mathrm{f.s}$; those of round 10 , at station B differ $19.4 \mathrm{~m} . \mathrm{s}$. , or 64 f.s.; and other rounds differ 10.0 , $9.3,5.04 .0$ and $3.9 \mathrm{~m} . \mathrm{s}$. But that is not the worst, for there was only one solitary unchecked velocity measured at station C, and that was treated as a perfectly satisfactory mean velocity at C^{\prime} for all the four rounds. The mean velocities so obtained at A and C, and at B and C, were combined to calculate a certain coefficient, which was found respectively to be 3585 and 3700 , and these differel little from the mean value 366 finally adopted. But if Krupp had combined the mean velocities at A and B, he would have obtained $2 \cdot 584$, something very different from 3.66 the value of the constant adopted.

[^42]183. Round 27 of Krupp's "Annexe" formed a part of the above-mentioned experiment. It is in reality the mean of five rounds. In this case the velocities measured at each station agreed better together. Combining the mean velocities at stations A and C, and B and C, the values of the constant were found to be respectively $3 \cdot 641$ and 3743 . But if those at A and B had been combined in the same way the result would have boen found $2 \cdot 765$! It is manifest that such experiments are quite unworthy of attention.
184. Thus it appears that the Report of some experiments made by my chronograph and General Tables for velocities 131686 m.s. were published in 1879. Krupp professes to have carried out the experiments in the following year, 1880, which formed the basis of his Tables for velocities $140-700$ f.s. printed in 1881. These Tables were similar to my own.

Again the Report on experiments with my chronograph, for velocities higher than 686 m.s., was published in 1880, and in the following summer, 1881, Krupp carried out experiments of the same kind (Bulletin xxx.).
185. I believe I am correct in stating that the United States did not adopt the Krupp system of guns, and they certainly have not adopted his Tables, for Captain Ingalls in his Exterior Ballistics, 1886, intended chiefly as text book for officers in U. S. Artillery School, has stated that his table was based "upon the experiments of Bashforth," p. 129.
186. The correct method of calculating the trajectories of projectiles originally given by Bernoulli is that which I have endeavoured to render practically useful for the purpose for which it was intended. If trajectories are correctly calculated by this method, we are quite certain that any error in the result arrived at is entirely due to the defects of the data made use of, and not at all to any defect in the mode of calculation.
187. In order to test the value of the coefficients of resistance in a satisfactory manner, great care must be exercised in selecting really trustworthy experiments. Random shots are of no value. Good Range Tables, where the muzzle velocity can be relied on, seem to be the best, because the ranges and times of flight for
different elevations must respectively be consistent. But the elevations given are liable to be affected by both the "jump" and the "vertical drift" which probably vary with the elevation. It seems to me also probable that the muzzle velocity may vary slightly with the elevation of the gun. A moderate wind might produce an effect upon the range, and still not affect sensibly the time of flight. In common fairness these causes of error must be allowed for.
188. As a test of the accuracy of coefficients of resistance for high velocities, I prefer to apply the General Tables to calculate the times of flight for ranges given by the Range Table for elevations below 4° or 5°, because such tests are not sensibly affected by the "jump" or the "vertical drift". Take the Range Table of the 4 -inch B.L. gun. Weight of projectile 25 lbs ; muzzlevelocity 1900 f.s. ; jump, 6 minutes.

Experimental Ranges. Elevation $+6^{\prime}$	$\begin{aligned} & 1000 \text { yards. } \\ & 0^{\circ} 55^{\prime} \end{aligned}$	$2000 \text { yards. }$	3000 yards. $4^{\circ} 10^{\prime}$
Horizontal m. velocity	1899.76 f.s.	1898.49 f.s.	1894.98 f.s.
$\left.\begin{array}{l}\text { Calc. horizon. striking } \\ \text { velocity }\end{array}\right\}$	1443.04 f.s.	$1109.03 \mathrm{f.s}$.	$944 \cdot 1$ f.s.
Exp. time of flight	1".80	$4^{\prime \prime} 21$	$7{ }^{\prime \prime} \cdot 20$
Calc. time of flight	$1^{\prime \prime} 814$	$4^{\prime \prime} \cdot 205$	$7^{\prime \prime} \cdot 171$
Difference in time, or	$+0^{\prime \prime .014}$	-0".005	- $0^{\prime \prime} \cdot 029$.
Difference in range	-7 yds .	+2yds	9 yds

The negative sign in the time of flight here indicates that the coefficients of resistance are too little. As the errors in time are so very minute, it is plain that my coefficients of resistance give admirable results for velocities from 1900 f.s. to 1443 f.s. to $1109 \mathrm{f.s}$. to 944 f.s., or, for all velocities between 1900 and 944 f.s. No matter at what elevation the gun be fired, so long as the density of the air remains unaltered, the same coefficients of resistance must still hold good for all velocities between 1900 and 944 f.s. For the case where the density of the air decreases with the height, proper corrections must be introduced by Tables xx . and xxr . Although the form of the 4 -inch projectile is probably more acutely pointed than those used in my experiments, it appears that, if anything, iny coefficients are a trifle too little.

Krupp's correction would be utterly wrong in this case. This is the gun chosen by the authorities to be used in testing my coefficients in consequence of the Krupp scare. It is also a modern gun.
189. Referring again to the Notes by Captain H. J. May, R.N., on the Method of compiling a Range Table, 1886^{1}, there will be found a specimen Range T'able, which we have already made use of (124), for ranges up to 4000 yards of the 12 -inch B.L. gun; muzzle velocity 1892 f.s.; weight of projectile 714 lbs.; jump 6 minutes. Using the horizontal muzzle velocity in the specified cases, the General Tables have been employed to calculate the time of flight as before.

Elevation	$\begin{aligned} & 1000 \text { yards } \\ & 0^{\circ} 50^{\prime} \end{aligned}$	$\begin{gathered} 2000 \text { yards } \\ 1^{\circ} 44^{\prime} \end{gathered}$	3000 yards $2^{\circ} 46^{\prime}$	$\begin{gathered} 4000 \mathrm{y} \\ 3^{\circ} 56 \end{gathered}$
$\left.\begin{array}{c}\text { Horizontal muzzle } \\ \text { velocity }\end{array}\right\}$	1891•8f.s.	1891•14f	$1889.79 \mathrm{f.s}$.	1887.54f
Calc. hor. striking velocity	$1739 \cdot 15$ f.s.	1593.44	1457	
Exp. time of flight	1". 66	$3^{\prime \prime} 47$	5 "'44	" 61
Calc. time of flight	$1^{\prime \prime} \cdot 654$	$3^{\prime \prime} 457$	$5^{\prime \prime} \cdot 428$	" 591
$\left.\begin{array}{l}\text { Difference in time, } \\ \text { or }\end{array}\right\}$	-0.'006	-0".01	$-0^{\prime \prime} \cdot 01$	0".010
ifference in range	+4 yds.	+7 yds .	+6 yds.	+ 8

190. Here it is manifest that my coefficients give most admirable results for velocity 1892 f.s. to 1739 f.s. to 1593 f.s. to 1458 f.s. and to 1332 f.s. or for all velocities between 1892 and 1332 f.s. And that will hold true for any elevation whatever, so long as the density of the air remains unaltered. The 12 -inch B.L. gun is, I believe, a modern gun. The only way to test my coefficients of resistance for low velocities is by calculating trajectories. This has been done with great success for one gun (122). In the above two examples the error in range has been found by calculating how far the shot moving with its corresponding velocity would travel in the error of time.
191. The conclusion I arrive at is, that my coefficients of resistance are perfectly satisfactory, and might be used with great advantage in testing all the new heavy guns. I would measure

[^43]the muzzle velocity and time of flight for say an elevation of about 4° by my chronograph. I would also take two or more measures of the muzzle velocity by the best chronoscopes in the service to secure a reliable muzzle velocity. I would then calculate by the General Tables, as above, the time of flight over the given range. If the time of flight of the experimental projectile was then divided by the calculated time of flight over the same range, the result, as it was $<$ or >1, would show whether, and to what extent, the experimental projectile was superior or inferior in steadiness to the theoretical projectile. In this way the General Tables might be used as a standard of reference in the trial of new guns, and in process of time it would be found how far calculation might take the place of experiment. This is a matter of great practical importance, if, as I see it stated, a 110 -ton gun can only fire 95 rounds, a 67 -ton gun only 127 rounds, and a 45 -ton gun only 150 rounds before they become respectively unserviceable.
192. I have given in Tables I.-IV. the coefficients of resistance to both spherical and ogival-headed projectiles finally adopted after a most careful re-examination of 502 rounds. In arriving at my conclusion I have had no theory to support and no interest to promote. I have been simply searching for the truth, and I have not been able to discover any satisfactory reason for changing my coefficients. But if any one should still be desirous of making a reduction of x per cent. in using the General Tables, or in calculating an are of a trajectory, he has only to substitute $\frac{d^{2}}{w} \cdot \frac{100-x}{100}$ for $\frac{d^{2}}{w}$. If $x=100$ he will come to the case of no resistance, and if $x>100$ he will have an accelerating force, and all the tables may still be used as directed.

Titles in full of some Reports, \&c., referred to.
(1) Reports on Experiments made with the Bashforth Chronograph, to determine the Resistance of the Air to the Motion of Projectiles, 1865—1870. 84/B/1941. W. Clowes \& Son; Harrison \& Sons; \&c., \&c.
(2) Tables of Remaining Velocity, Time of Flight and Energy of various Projectiles, calculated from the Results of Experiments made with the Bashforth Chronograph, 1865-1870. London, 1871.
(3) A Mathematical Treatise on the Motion of Projectiles, founded chieffy on the Results of Experiments made with the Bashforth Chronograph. London, 1873.
(4) Supplement to the above. London, 1881.
(5) Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles. (Part II.) 1878-79. 84/B/2853. Printed for Her Majesty's Stationery Office, 1879.
(6) Official Copy. 84/B/2909. Final Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles, 1878-80. W. Clowes \& Son; Harrison \& Sons; \&c., \&c.
I.

Coefficients for the Newtonian Law of the Resistance of the Air to Spherical Projectiles. $(\omega=534.22$ grains. See $p \geqslant 1$

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	k_{v}	$\frac{k_{v}}{g}$	v f.s.	k_{v}	$\frac{k_{v}}{g}$	v f.s.	k_{v}	$\frac{k_{v}}{g}$
840	118.3	3.675	1330	194.9	6.055	1820	205.8	6.393
850	119.7	3.718 3 3	${ }^{134}{ }^{\text {a }}$	195.6	6.076	1830	$205 \cdot 8$	${ }^{6} .3 .393$
88	${ }_{122} 121$	3.805	1	${ }_{1968} 19$	${ }^{6 \cdot 114}$	11880	${ }_{206 \cdot 1}^{20,9}$	6.402
880	123.9	3.849	1370	1974	$6 \cdot 132$	1860	$206 \cdot 1$	$6 \cdot 402$
890	125.3	$3 \cdot 892$	1380	197'9	6.148	1870	$206 \cdot 2$	$6 \cdot 406$
900	$126 \cdot 7$	3.936	1390	198.4	${ }^{6 \cdot 163}$	1880	$206 \cdot 4$	6.412
910	128°	3.979	1400	198.9	6.179	1850	2066	6.418
920	129.5	4.023	1410	199.4	6.194	1900	206.9	6.427
930	$130^{\circ} 9$	4.066	1420	$199{ }^{19}$	${ }^{6.210}$	1910	207.2	6.437
940	132.4	4.113	1430	$200 \cdot 4$	6.225	1920	$207 \cdot 6$	${ }^{6.449}$
950	133.8	4.156 4.200	1440 1450	200	6.241	11930 1940	2077 $208 \cdot 2$	6.4588
970	${ }_{1} 136.8$	4.250	1460	2016	6.263		208.4	6.474
9so	138.4	4299	1470	$202 \cdot$	6.275	1960	2087	6.483
990	$140^{\circ} \mathrm{I}$	4.352	1480	$202 \cdot 3$	6.284	1970	209.	6.493
1000	142\%	4.4	1490	$202 \cdot 7$	6.297	1980	$209 \cdot 3$	6.502
1010	$144{ }^{2}$	4.480	1500 1510 1	${ }^{203}{ }^{\circ} \mathrm{O}$	${ }_{6}^{6 \cdot 306}$	1990	209.5 209.8	6.508
${ }_{1020}$	${ }_{150}$	${ }_{4}^{4} 660$	15	203.5	6.322	2010	$210{ }^{\circ}$	6.524
1040	153.3	4.762	1530	203.8	${ }^{6} \cdot 331{ }^{1}$	2020	210	6.533
1050	156.5	4.862	1540	${ }^{204 \cdot 1}$	6.340	2030	$210^{\circ} 4$	${ }^{6 \cdot 536}$
1060	159.5	${ }^{4} 955$	1550	$204 \cdot 3$ 2045	${ }^{6} 6.347$	2040	210.5 210.5	${ }_{6} 6.539$
1080	164.9	5.123	1570	204.7	6.359	2060	$210 \cdot 5$	6.539
1090	167.3	${ }_{5} 5197$	1580	204.9	6.365	2070	$210 \cdot 4$	6.536
1100	$169^{\circ} 6$	5.269	1590	$205 \cdot 1$	${ }^{6.371}$		3	6.533
1110	1717	5.334	1600	205.3	${ }^{6 \cdot 378}$	2090	210.1 2098	6.527
1120 1130	1737 1755^{6}	${ }^{5} 5455$	1620	205 205	${ }^{6} 6.387$	2110	209.6	${ }_{5} 6511$
1140	$177 \cdot 5$	5.514	1630	2057	6.390	2120	$209 \cdot 3$	6.502
1150 1160	179.3 1810	${ }_{5}^{5.523}$		${ }^{205}{ }^{-8}$	${ }_{6}^{6.393}$	2130 2140	209.1 $208 \cdot 8$	6.496 6.486
1170	182.6	$5 \cdot 672$	1660	206.0	6.399	2150	$208 \cdot 6$	6.480
1180	184.1	5719	1670	$206 \cdot 1$	6. 402	2160	$208 \cdot 4$	${ }^{6} 4744$
1190 1200	1855 186.6	57799 5 5	1680 1690	${ }_{206 \cdot 2}^{206}$	${ }_{6}^{6.402}$	2170 2180	$208 \cdot 2$ 208.0	
1210	1877	5.831	1700	206 '2	6.406	2190	$207 \cdot 9$	6.458
1220	188.6	5.859	1710	$206 \cdot 2$	$6 \cdot 406$	2200	2077	${ }^{6.452}$
1230	189'4	$5 \cdot 884$	1720	$206 \cdot 2$	${ }^{6} \cdot 406$	2210	207.5	${ }^{6.446}$
1240	$190^{\circ} 2$	5.909	1730 1740		6.406		207. 20	6.440 6.437
1250	19		1750	${ }_{206}{ }^{206}$	6.402	2240	$207{ }^{\circ}$	6.430
1270	1927	$5 \cdot 968$	1760	$206 \cdot 1$	$6 \cdot 402$	2250	$206 \cdot 8$	${ }^{6.424}$
1280 1290	192.6 193	${ }_{5}^{5.983}$	1770 1780		${ }^{6} 6.399$			6.412
1300	193.3	6.005	1790	205.9	6.396	2280	2064	$6 \cdot 402$
1310	1937	6.017	1800	205.9	6.396			
1320	1943	6.036	1810	205.9	6.396			

II.

Approximate Law of the Resistance of the Air to the motion of Spherical Projectiles. ($\omega=534^{22}$ grains.)

$$
\begin{array}{llll}
v \quad>1300 f .8 ., f \propto v^{2}, k=205 \cdot 3, & \frac{k}{g}=6.3776, & \log \frac{k}{g}=0.80466, \\
v<1300>1100 f .8 ., f \propto v^{3}, & K=153 \cdot 8, & \frac{K}{g}=4.7778, & \log \frac{K}{g}=0.67923, \\
v<1100>1000 f . s ., f \propto v^{4}, h=141 \cdot 6, & \frac{h}{g}=4.3988, & \log \frac{h}{g}=0.64333, \\
v<1000>840 \quad, f \propto v^{3}, & K=140 \cdot 7, \frac{K}{g}=4.3708, & \log \frac{K}{g}=0.64056, \\
r<840 \quad, f \propto v^{2}, k=118 \cdot 3, & \frac{k}{g}=3.6749, & \log \frac{k}{g}=0.56525 .
\end{array}
$$

III.

Coefficients for the Newtonian Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega=534^{\circ 22}$ grains.)

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	k_{v}	$\frac{k_{v}}{g}$	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	k_{v}	$\frac{i_{v}}{g}$	${ }^{\prime \prime}$	k_{v}	$\frac{k_{v}}{g}$
100	$60 \cdot 5$	1.879	1110	120.3	3.737	1430	147.9	4.594
to			1120	122.3	3•799	1440	$148{ }^{\circ}$	4.598
810	60.5	1.879	1130	123.9	3.849	1450	$148 \cdot 1$	4.601
820	$60 \cdot 6$	1.883	1140	125.0	3:883	14 ¢o	148.0	$4 \cdot 598$
830	${ }_{61.1}$	1.898	1150	126.0	3.914	1470	1488°	4.598
840	61.8	1.920	1160	127.1	3.948	1480	148.0	4.598
850	$62 \cdot 6$	1.945	1170	128.2	3.983	1490	147.8	4.591
8.0	$63 \cdot 3$	1.966	1180	129.3	$4^{\circ} 101$	1500	1476	4.585
870	64°	1.988	1150	$130 \cdot 4$	4.051	1510	147.6	4.585
880	64.8	2.013	1200	1315	4.085	1520	14773	4.576
890	$65^{\circ} 5$	2.035	1210	132.6	$4 \cdot 119$	1530	1471	4.570
900	66°	2.057	1220	133.7	4.153	1540	$146 \cdot 8$	4.560
910	67*	2.081	1230	134.8	4.188	1550	146.5	4.551
920	67.7	$2 \cdot 103$	1240	135.9	$4 \cdot 222$	1560	$146 \cdot 2$	4.542
930	68.4	2.125	1250	$137{ }^{\circ}$	4.256	1570	145.9	4.532
940	69.2	2.150	1260	$135 \cdot 1$	4.290	1580	145.6	4.523
950	69.9	$2 \cdot 171$	1270	139.2	4.324	1590	145.2	4.511
960	$70 \cdot 7$	2.196	1280	$140 \cdot 3$	4.358	1600	$144^{\circ} 9$	4.501
970	71.4	2.218	1290	1414	4.393	1610	144.6	4.492
980	72.1	2.240	1300	142.2	4.417	1620	144.4	4.486
990	$72 \cdot 9$	$2 \cdot 265$	1310	142.9	4439	1630	144.2	4.480
1000	$73 \cdot 6$	$2 \cdot 286$	1320	$143 \cdot 6$	4.461	1640	143.9	4.470
1010	74.5	2.314	1330	144.3	4.453	1650	143.6	$4 \cdot 461$
1020	76.1	2.364	1340	144.9	4501	1660	143.3	$4 \cdot 452$
1030	78.9	2.451	1350	$145^{\circ} 4$	4.517	1670	143.0	4442
10.40	$84^{\circ} \mathrm{O}$	$2 \cdot 609$	1360	145.8	4.529	1650	142.6	4430
1050	91.7	2.849	1370	$146 \cdot 3$	4.545	1690	142.3	4.421
1060	99.6	3.094	1380	146.6	4.554	1700	$142^{\circ} \mathrm{O}$	4411
10,0	$105 \cdot 6$	3.281	1390	147.1	4.570	1710	141.6	$4 \cdot 399$
10So	$110{ }^{2}$	3.423	1400	147.3	4.576	1720	1413	$4 \cdot 389$
1000 1100	114.3	3.551	1410	14775	4.582	1730	$141^{\circ} \mathrm{O}$	4.380
1100	117.6	3.653	1420	147.7	4.585	1740	1407	$4 \cdot 371$

III. (continued).

$\begin{gathered} z^{\prime} \\ \text { f.s. } \end{gathered}$	k_{v}	$\frac{k_{v}}{g}$	f.s.	k_{v}	$\frac{k_{v}}{g}$	v f.s.	k_{v}	$\frac{k_{v}}{g}$
1750	140.5	4.365	2100	$140 \cdot 7$	4.371	2450	134* 1	$4 \cdot 166$
1760	$140 \cdot 3$	4.358	2110	$141 \cdot 2$	4.386	2460	133.6	4.150
1770	140.1	4.352	2120	141.6	4.399	2470	133.2	4.138
1780	139.9	$4 \cdot 346$	2130	$14^{\circ} \mathrm{O}$	4411	2480	132.9	41129
1790	139.6	4.337	2140	142.5	4.427	2490	132.5	4.116
1800	$139{ }^{\circ} 3$	$4 \cdot 327$	2150	143.0	4.442	2500	132.2	4.107
1810	$139{ }^{\circ} \mathrm{O}$	4.318	2160	143.5	4458	2510	132.3	4.110
1820	138.8	4.312	2170	143.9	4470	2520	132.5	4^{1116}
1830	138.6	4.306	2180	144.2	4.480	2530	132.4	$4{ }^{1113}$
1840	138.4	4.299	2190	144.5	4489	2540	132.5	4.116
1850	138.3	4.296	2200	144.8	4498	2550	132.6	4.119
1860	138.2	$4 \cdot 293$	2210	$145^{\circ} \mathrm{O}$	4.504	2560	132.8	4.125
1870	138.0	$4 \cdot 287$	2220	$145^{\circ} \mathrm{I}$	4.507	2570	133.1	4.135
1880	137.8	$4 \cdot 28 \mathrm{I}$	2230	145.2	4.511	2580	133.4	4.144
1890	137.5	4.271	2240	145.3	4.514	2590	133.7	4.153
1900	137.2	$4 \cdot 262$	2250	$145{ }^{\circ} 3$	4.514	2600	133.9	4.160
1910	136.9	$4 \cdot 253$	2260	$145 \cdot 1$	4.507	2610	134.2	4.169
1920	136.7	$4 \cdot 247$	2270	144.6	4492	2620	134.6	$4 \cdot 181$
1930	$136 \cdot 6$	$4 \cdot 243$	2280	$144{ }^{1} 1$	4476	2630	135.2	$4 \cdot 200$
1940	136.6	4.243	2290	143.6	4461	2640	135.7	4.215
1950	136.5	4.240	2300	143.1	4.445	2650	136.3	4.234
1960	136.4	$4 \cdot 237$	2310	142.5	4427	2660	136.8	4.250
1970	$136 \cdot 5$	4.240	2320	142.0	4411	2670	137.3	4.265
1980	136.6	$4 \cdot 243$	2330	141.4	$4 \cdot 393$	2680	137.7	4.278
1990	$136 \cdot 8$	$4 \cdot 250$	2340	$140 \cdot 9$	4.377	2650	$138 \cdot 1$	4.290
2000	$137{ }^{\circ}$	4.256	2350	$140 \cdot 2$	4355	2700	138.5	$4 \cdot 302$
2010	$137^{\circ} 2$	4.262	2360	139.5	4334	2710	139°	4318
2020	137.5	4.271	2370	138.9	4.315	2720	139.4	4.330
2030	137.8	$4 \cdot 281$	2380	$138 \cdot 2$	4-293	2730	139.8	4.343
2040	138.1	$4 \cdot 290$	2390	137.5	4.271	2740	$140 \cdot 3$	4358
2050	138.4	4*299	2400	136.8	$4 \cdot 250$	2750	$140 \cdot 8$	4.374
2060	138.8	4.312	2410	136.2	$4 \cdot 231$	2760	141.4	4393
2070	I $39{ }^{\circ} 2$	$4 \cdot 327$	2420	1 35.6	$4 \cdot 212$	2770	141.9	4408
2080	139.6	4.337	2430	135.0	$4 \cdot 194$	2780	142.4	4.424
2090	$140^{\circ} 1$	$4 * 352$	2440	134.5	$4^{1} 178$			

IV.

Approximate Law of the Resistance of the Air to the motion of Ogival-headed Projectiles. ($\omega=534.22$ grains.)

$$
\begin{aligned}
& v>1300 f .8 ., f \propto v^{2}, \quad k=141 \cdot 2, \frac{k}{g}=4.3864, \quad \log \frac{k}{g}=0.6421 \mathrm{I}, \\
& v<1300>1100 f .8 ., f \propto v^{8}, K=109 \cdot 1, \frac{K}{g}=3.3891, \quad \log \frac{K}{g}=0.53009, \\
& v<1100>1000 f . s ., f \propto v^{6}, L=77.0, \frac{L}{g}=2.3920, \log \frac{L}{g}=0.37876, \\
& i<1000>820 f . s ., f \propto v^{3}, K=73.6, \frac{K}{g}=2.2864, \quad \log \frac{K}{g}=0.35915 \text {, } \\
& v<820 f .8 ., \quad f \propto v^{2}, \quad k=60.5, \frac{k}{g}=1.8794, \quad \log \frac{k}{g}=0.27402
\end{aligned}
$$

r.

Coefficients for the Newtonian Law of Resistance of the Air to Hemispherical-headed Projectiles. ($\omega=534.22$ grains.)

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	k_{v}	$\frac{k_{v}}{g}$	κ_{1}	v.s.	k_{v}	$\frac{k_{v}}{g}$	κ_{1}	v. s.	k_{v}	$\frac{k_{v}}{g^{\prime}}$	κ_{1}
1100	146.3	4.54	$1 \cdot 24$	1670	$192{ }^{\circ}$	597	134	1780	194*	6.03	1.39
1110	147.6	4.59	$1 \cdot 23$	1680	192.7	5.99	$1 \cdot 35$	1790	193.3	6.01	$1 \cdot 38$
1120	149°	4.63	$1 \cdot 22$	1690	193.3	6.01	1.36	1800	192.6	5.98	$1 \cdot 38$
1130	1503	$4 \cdot 67$	1.21	1700	193.8	6.02	$1 \cdot 37$	1810	191.9	5.96	$1 \cdot 38$
1140	151.6	4.71	1.21	1710	194.3	6.03	1-37	1820	190.9	5.93	$1 \cdot 38$
1150	153 ${ }^{\circ}$	4.75	$1 \cdot 21$	1720	1947	6.05	$1 \cdot 38$	1830	1900	5.90	r 37
1160	154.3	4.79	$1 \cdot 21$	1730	195*	6.06	1.38	1840	189°	$5 \cdot 87$	$\begin{array}{r}1.37 \\ \mathbf{1} \cdot 36 \\ \hline\end{array}$
				1740	195.1	6.06	1-39	1850	188°	$5 \cdot 84$	1.36
1640	189.6	$5 \cdot 89$	- 32	1750	195°	6.06	I-39	1860	187.1	$5 \cdot 11$	- 3
1650	190.4	5.92	$1 \cdot 33$	1760	194.8	6.05	I-39	1870	186.3	579	$1 \cdot 35$
1660	191.2	5.94	$1 \cdot 33$	1770	194.5	6.04	$1 \cdot 39$				

VI.

Coefficients for the Newtonian Law of Resistance of the Air to Flat-headed Projectiles. ($\omega=534: 22$ grains.)

$\begin{gathered} v \\ f . s . \end{gathered}$	k_{v}	$\frac{k_{v}}{g}$	κ_{2}	f.s.	k_{v}	$\frac{k_{v}}{\underline{g}}$	κ	f.s.	k_{v}	$\frac{k_{v}}{g r}$	κ_{2}
1530	$266 \cdot 7$	8.28	1.81	1650	286.4	$8 \cdot 90$	$2{ }^{\circ} \mathrm{O}$	1760	301.8	938	$2 \cdot 15$
1540	$268 \cdot 6$	$8 \cdot 34$	1.83	1660	288*0	$8 \cdot 95$	$2 \% 1$	1770	$3^{3} 3^{\circ}$	9.41	$2 \cdot 16$
1550	$270 \cdot 3$	$8 \cdot 40$	1.85	1670	289.4	$8 \cdot 99$	2.02	1780	$304^{\circ} 2$	9.44	$2 \cdot 17$
1560	$272^{\circ} 2$	8.46	1.86	1680	291*	$9{ }^{\circ} 04$	$2 \cdot 04$	1790	$305^{*} 2$	9.48	$2 \cdot 19$
1570	$274{ }^{\circ}$	$8 \cdot 51$	1.88	1690	292.4	9.08	2.05	1800	306%	9.51	$2 \cdot 20$
1580	2755°	$8 \cdot 56$	1.89	1700	293.9	$9 \cdot 13$	$2 \cdot 07$	1810	$306 \cdot 8$	9.53	$2 \cdot 21$
1590	$277^{\circ} 1$	8.61	1.91	1710	$295 \cdot 3$	$9^{\prime} 17$	2.09	1820	3074	9.55	$2 \cdot 22$
1600	$278 \cdot 7$	$8 \cdot 66$	1.92	1720	296.9	$9 \cdot 22$	$2 \cdot 10$	1830	$30{ }^{\circ}$	9.57	2.22
1610	$280 \cdot 3$	$8 \cdot 71$	1.94	1730	$298 \cdot 3$	$9 \cdot 27$	$2 \cdot 12$	1840	308.4	9.58	$2 \cdot 23$
1620	281.9	$8 \cdot 76$	1.95	1740	299.5	9.30	$2 \cdot 13$	1850	$308 \cdot 6$	9.59	2.23
1630 1640	283.5 284.9	8.81 8.85	1.97 1.98	1750	$300 \cdot 6$	$9 \cdot 34$	$2 \cdot 14$	1860	308.6	9.59	$2 \cdot 23$
1640	$25^{4} 9$	$8 \cdot 85$	198								

VII.
$Q_{\phi}=\sec \phi \tan \phi+\log _{e} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)$.

ϕ	-	I	$\cdot 2$	3	4	5	-6	7	- 8	'9	Δ
0°	000000	0349	0698	1047	1396	17	2095	2444			349
1	$0 \cdot 03491$	3840	4190	4539	4888	5238	5587	5937	62	6636	350
2	0.060986	7335	7685	8035	8385	8735	9085	9435	9786	*or 36	350
3	$0 \cdot 10456$	0837	1188	1538	1889	2240	2591	2942	3294	3645	351
4	O-1 3997	4348	4700	5052	5404	575	6109	6462	6814	+ 7167	352
5	$0 \cdot 17520$	7873	8227	8580	8934	9288	9642	9996	*0350	*0705	354
6	0.2	1414	1770	2125	6	2836	3192	3549	3905	4262	356
7	0.24618	4976	5332	5691	6048	6406	6765	7123	7482	7841	358
8	0.28200	8560	8920	9280	9640	*0001	*0362	*0723	*1085	* 1447	361
9	0.31809	2171	2534	2897	3260	3624	3988	4352	4717	5082	364
10	$0 \cdot 35447$	5813	6179	6545	6912	7279	7646	8014	8382	8751	367
11	$0 \cdot 39120$	9489	9858	*0228	*0599	*0969	${ }^{1}$ I 341	${ }^{*} 1712$	*2084	*2457	371
12	0.42829	3202	3576	3950	4325	4700	5075	5451	5827	6203	375
13	0.46581	6958	7336	7715	8094	8473	8853	9233	9614	9996	379
14	0.50378	0760	1143	1526	1910	2294	2679	3065	3451	3837	384
15	0.5422	4612	50	5389	5778	6168	6558	6949	7341	7733	390
16	0.58126	8519	8913	9307	9702	*0098	*0494	*0891	* 1289	* 1687	396
17	0.62086	2485	2885	3286	3687	4090	4492	4896	5300	5704	402
18	0.6611	6516	6923	7330	7739	8148	8557	8968	9379	9791	409
19	$0 \cdot 70203$	0616	1030	1445	1861	2277	2694	3112	3531	3950	416
20	$0 \cdot 74371$	4792	5214	5636	6060	6484	6909	7335	7762	8190	424
21	0.7861	9048	947	9910	*0342	*0774	* 1208	${ }^{*} 1643$	* 2079	*2515	433
22	$0 \cdot 8295$	3391	3830	4270	4712	5154	5597	6041	6486	6932	442
23	0.87380	7828	8277	8727	9178	9630	*0083	*0537	*0992	${ }^{1} 1449$	452
24	0.9190	2364	2824	3284	3746	420	4672	5137	5603	6071	463
25	$0 \cdot 9653$	7008	7479	7951	8424	8898	9373	9850	*0327	*0806	474
26	1•0 1286	1768	2250	2734	3219	3706	4193	4682	5173	5664	486
27	I'O6157	6651	7147	7643	8141	8641	9142	9644	*O148	*0653	500
28	1-1 1159	1667	2176	2687	3199	3712	4227	4744	5262	5781	514
29	I•1 6302	6825	7349	7874	8402	8930	9460	9992	*0526	*1061	529
30	$1 \cdot 21597$	2136	2675	3217	3760	4305	4851	5400	* 5950	6501	545
31	1.27055	7610	8167	8725	9286	9848	*0412	*0978	${ }^{\text {1 }} 1546$	*2115	562
32	1-32687	3260	3835	4412	4991	5572	6155	6739	7326	7915	581
33	I. 38506	9098	9693	*0290	*0889	${ }^{1} 1490$	*2093	*2699	*3305	* 3915	601
34	$1 \cdot 44526$	5140	5756	6374	6994	7617	8241	8868	9498	*0129	623
35	1.50763	1399	2038	2679	3322	3968	4616	5267	5920	6575	646
36	I•5 7233	7894	8557	9222	9890	*0561	*1234	${ }^{*} 1910$	*2589	* 3270	671
37	I.63954	4641	5330	6022	6717	7414	8115	8818	9524	*0233	698
38	1•70945	1660	2378	3099	3823	4549	5279	6012	6748	7487	727
39	1.78229	8974	9722	*0474	*1229	${ }^{*} 1987$	*2749	${ }^{*} 3513$	*4281	*	758
40	1.85828	6606	7388	8173	8961	9753	*0549	* 1348	${ }^{*} 2151$	* 2958	792
4 I	I•93768	4582	5399	6221	7046	7875	8708	9544	${ }^{*} \mathrm{O}^{8} 5$	* 1229	829

V1I. $Q_{\phi}=\sec \phi \tan \phi+\log _{e} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)$ (continued).

ϕ	'0	$\cdot 1$	$\cdot 2$	3	4	5	6	7	8	9	Δ
42°	2.02078	2931	378	46	5513	63	7255	8132	14	9899	69
43	$2 \cdot 10789$	1684	2583	3486	4394	53	6223	7145	8071	9001	912
44	2.19937	-0877	-1822	${ }^{2} 772$	* 3726	4686	*5650	-6620	7594	* 874	960
45	2. 2956	3055	315	3254	3355	6	58	66	63	3866	01
46	2. 3970	4074	4179	4285	439	44	4605	4713	4821	4931	1
47	2. 5040	5151	5262	5373	5485	5598	5712	5826	5941	6056	113
48	2.6173	6289	6407	6525	6644	6764	6884	7005	7127	7249	20
49	2.7373	7497	7621	7747	7873	8000	8128	8257	8386	8516	127
50	2.8647	8779	8912	9045	9180	9315	9451	9588	9726	9864	135
51	3.0004	0144	0286	0428	0571	0716	0861	1007	154	1302	144
52	3. 1451	1601	1753	1905	2058	2212	23	2524	2681	2839	154
53	3. 2999	3160	3322	3485	3649	3814	3980	4148	4317	4487	165
54	3. 4658	4831	5004	5179	5356	55	5712	5893	6074	6257	178
55	3. 6441	6627	6814	7.03	7193	738	7577	7771	7967	8164	192
56	3.8363	8563	8765	8969	9174	9381	9589	9799	*0011	-0225	207
57	4. 0440	0657	0876	1096	1318	1542	1768	1996	2226	2458	224
58	4-2691	2927	3164	3404	36	3889	4135	4383	4633	4885	244
59	4. 5139	5396	5655	5916	618	6445	6714	6984	7257	7533	266
60	4.7811	8091	83	8660	89.8	9239	9533	9829	*0129	-0431	291
61	5. 0736	1043	1354	1668	1984	2304	2627	2953	3282	3615	320
62	5. 3950	4289	4632	497	5327	5680	6036	6396		7127	35
63	5. 7498	7873	8252	8635	9022	9412	9807	207	0610	1018	391
64	6. 1430	1347	2268	2693	3124	3559	3999	4444	4893	5348	435
65	6. 5808	6273	6743	7219	7700	8187	8679	9177	9681	0191	
66	7-0706	1228	1756	2291	28.31		3932	4493	5061	5635	48
67	$7 \cdot 6217$	6805	7402	8005	8616	9235	9862	*0497	* 1140	${ }^{1791}$	620
68	8. 2451	3119	3796	4483	5178	58 S 2	6596	7319	So52	8706	
69	8.9549	*0312	* 1087	${ }^{*} 1872$	*2667	*3475	* 4293	* 5123		*68	Sos
70	9.7685	8564	9455	*0360	${ }^{1} 1278$	*2210	*155	* 4115		*6078	933
71	10.7082	8iol	9136	*0187	${ }^{*} 1254$	*2338	* 3440	4558	*56	*6850	$10{ }^{\text {c }}$
72	$11 \cdot 8023$		0.28	1660	291		5480	6796	8134	9496	1275
73	13.088 r	2290	3723	5181	6665	8176	9713	* 1278	*2S71	*493	1512
74	14^{-614}	14.783	14*954	$15 \cdot 129$	15.306	15.488	15.672	15.860	16.052	16.248	${ }_{1} \mathrm{SI}_{1}$
75		16.650	$16 \cdot 858$	17.069	$17 \cdot 285$		17×30	17.959	IS. 193	$18.43{ }^{2}$	21
76	18.676	18.925	19-180	19.440	19.705	19.977	$20 \cdot 254$	20.538	20.828	$21 \cdot 124$	272
77	21.427	21.737	22.055	$22 \cdot 3$ So	22.712	23.052	23.401	23.757	$24 \cdot 123$	24.497	341
78	24.881	25.274	$25 \cdot 677$	26.091	26.514	26.9	$27 \cdot 396$	$27 \cdot 854$	28.324	$28 \cdot 506$	43
79	29.302	29.812	30.335	$30 \cdot 873$	31.425	31×99	32.580	33^{182}	$33 \cdot 801$	34439	571

VIII.

$\log Q_{\phi}$			$\log Q_{\phi}$		
ϕ	$\log Q_{\psi}$	$\log \Delta Q_{\phi}$	ϕ	$\log Q_{\phi}$	$\log \Delta Q_{\phi}$
I°	8.54297		41°	0.28728	
2	$8 \cdot 84420$	8.54417	42	$0 \cdot 30552$	8.94009
3	9.02063	8.54536	43	0.32385	8.96130
4	9.14603	8.54694	44	$\bigcirc 34230$	8.98326
5	9.24353 9.32345	8.54894	45	0.36089 0.37966	$9 \cdot 00600$
7	932345 9.3926	8.55133	47	0.37960 0.39864	9.02956
8	9.45026	8.55411	48	${ }^{0} 0.41785$	9.05395
9	9.50255	${ }_{8}^{8.55732}$	49	-0.43732	9.07921 9.10538
10	9.54958	8.56493	50	0.45708	9.10538
11	9.59239	$8 \cdot 56935$	51	0.47718	${ }_{9} \cdot 16058$
12	9.63174	$8 \cdot 57418$	52	0.49764	9•18969
13	9.66821	8.57943	53	0.51850	9.21988
14 15	9.70224 9	8.58511	54 55 54	0.53981 0.56159	9.25119
16	9.76437	8.59120	56	\bigcirc	9.28368
17	979299	8.59772	57	$0 \cdot 60681$	9.31741
18	6.82027	8.60467 8.61206	58	0.63034	9.35244 9.38884
19	9.84636	8.612060	59	0.65456	${ }_{9} 9.388884$
20	9.87140	8.62816	60	$\bigcirc \cdot 67952$	
21	9.89553	8.63690	61	$\bigcirc \cdot 70531$	9.46611
22	9.91883	8.64609	62	$0 \cdot 73199$	9.54995
23	9.94141	8.65574	63	0.75965 0.78838	9.5946 I
24	9.96334 9.98470	$8 \cdot 66587$	64	0.78838 0.81828	9.64126
25 26	9.98470 0.00555	8.67647	65 66	0.81828 0.84946	$9 \cdot 69006$
27	-0.02594	8.68757	67	-0.88205	9.74117 9.79178
28	0.04595	8.69916 8.71124	68	\bigcirc	${ }^{9} 9.79478$
29	-06559	8.71124 8.72386	69	0.95206	9.85112
30	-. 08492	8.72386 8.73699	70	-0.98983	9.91042
31	- 10399	873699 8.75065	71	1.02971	9.97297 0.03909
32 32	$\circ .12283$ 0.14147	$8 \cdot 76487$	72	1.07197 1.16888	- $0 \cdot 10917$
33	O.14147 0.15995	$8 \cdot 77963$	73 74	1.11688 -1647	-. 18367
34 35	0.15995 0.17830	8.79498 8.8	74 75	1.16478 1.21609	- 263307
36	-19654	8.81090 8.82742	76	1.27129	$0 \cdot 3481 \mathrm{I}$
37	0.21472	8.82742 8.84456	77	$1 \cdot 33097$	0.43952 0.53826
38	0.23286	8.86233	78	1-39587	0.53826 0.6456
39	$\bigcirc \cdot 25098$	8.86233 8.88075	79 80	I. 46690	0.76296
40	$0 \cdot 2691$ I	8.89984	80	1.54526	

IX.

$\lambda=0^{\circ} \mathrm{OO}$					$\lambda=0^{\circ} \mathrm{OO}$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(7^{\prime})	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
70°	27475	37743	27475	2924	30°	5774	1667	5774	1155
69	26051	33933	26051	2790	29	5543	1536	5543	1143
68	24751	30630	24751	2669	28	5317	1414	5317	1133
67	23559	27750	23559	2559					
66	22460		22460	2459	27 26	5095	1298	5095	112
65	21445	22995	21445	2366	25	4663	1087	4877 4663	1113
64	20503	21019	20503	2281					1103
					24	4452	991•1	4452	1095
63	19626	19259	19626	2203	23	4245	$900 \cdot 9$	4245	1086
62	18807	17686	18807	2130	22	4040	816.2	4040	1079
61	180.40	16273	18040	2063					
					21	3839	$736 \cdot 8$	3839	1071
60	17321	15000	17321	2000	20	3640	$662 \cdot 4$	3640	1064
59	16643	13849	16643	1942	19	3443	$592 \cdot 8$	3443	1058
58	16003	12805	16003	1887	18	3249	$527 \cdot 9$	3249	1051
57	15399	11856	15399	1836	17	3057	4674	3057	1046
56	14826	10990	14826	1788	16	2867	411*1	${ }_{2 S 67}$	1040
55	14281	10198	14281	1743					
					15	2679	$359{ }^{\circ}$	2679	1035
54	13764	9472	13764	1701	14	2493	$310 \cdot 8$	2493	-1031
53	13270	8805	13270	1662	13	2309	$266 \cdot 5$	2309	1026
52	12799	8191	12799	1624					
					12	2126	225.9	2126	1022
51	12349	7625	12349	1589	11	1944	188.9	1944	1019
50	11918	7101	11918	1556	10	1763	$155{ }^{\circ}$	1763	1015
49	11504	6617	11504	1524					
48	11106	6167	11106	1494	9	1584 1405	125.4 98.8	1584 1405	1012 1010
47	10724	5750	10724	1466	7	1228	$75 \cdot 4$	1228	1005
46	10355	5362	10355	1440					
					6	1051	55.2	1051	1006
45	10000	5000	10000	1414	5	875	38.3	875	1004
44	9657	4663	9657	1390	4	699	24.5	699	1002
43	9325	4348	9325	1367					
					3	524	$\begin{array}{r}13.7 \\ 6.1 \\ \hline\end{array}$	524	1001
42	9004	4054	9004	1346	2	349	$6 \cdot 1$	349	1001
41	8693	3778	8693	1325	1	175	$1 \cdot 5$	175	1000
40	8391	3520	8391	1305	\bigcirc	-		-	1000
39	Sog8	3279	8098	1287					
38	7813	3052	7813	1269			$\lambda=0^{\circ}$		
37	7536	2839	7536	1252					
36	7265	2639	7265	1236	ϕ	(x)	(${ }^{\prime}$)	(t)	(7)
35	7002	2451	7002	1221					
34	6745	2275	6745		70°	$2 \mathrm{SG2S}$	39987	28043	307S
33	6494	2109	6494	1192	69	27057	35783	26547	2924
32	6249	1952	6249	1179	68	25635	32170	25187	2787
31	6009	ISO_{5}	6009	1167	67	24340	29042	23945	2663

IX. (continued).

$\lambda=0.0 \mathrm{I}$					$\lambda=0.02$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
66°	23155	26315	22804	2550	63°	20666	20685	20137	2341
65	22065	23922	21752	2448	62	19744	18914	19268	2255
64	21059	21812	20779	2355	6I	18888	17336	18458	2176
63	20127	19942	19874	2269	60	18089	15924	17699	2103
62	19260	18275	19032	2190	59	17342	14655	16988	2036
61	18450	16784	18244	2117	58	1664I	13511	16318	1973
60	17693	15445	17506	2050	57	15982	12476	15687	1915
59	16982	14238	16812	1988	56	15360	11535	15090	186I
58	16314	13147	16158	1929	55	14771	10679	14524	181 I
57	15683	12156	15540	1874	54	14214	9898	13987	1764
56	15086	11255	14955	1824	53	I 3685	9183	13476	1719
55	14521	10432	14401	1776	52	13182	8526	12989	1678
54	13984	9679	13874	1732	51	12702	7923	12524	1639
53	13473	8989	13372	1690	50	12243	7367	12079	1602
52	12987	8355	12893	1650	49	11805	6853	I1653	1568
51	12522	7770	12436	1613	48	11385	6379	11245	1535
50	12078	7231	11998	1579	47	10982	5939	10852	1505
49	11652	6732	11578	1546	46	10594	5530	10474	1475
48	I 1243	6271	11175	1514	45	10222	5151	ioilo	1448
47	10851	5842	10787	1485	44	9862	4798	9759	1422
46	10473	5444	10414	1457	43	9516	4469	9420	1397
45	10109	5074	10055	1431	42	9181	4162	9092	1374
44	9758	4729	9708	1406	4 I	8857	3875	8775	1352
43	9419	4407	9373	1382	40	8543	3607	8467	1330
	9091	4107	9048	1359	$\lambda=0.03$				
$\begin{aligned} & 41 \\ & 40 \end{aligned}$	8774	3826	8734	1338					
	8466	3563	8429	1318					
$\lambda=0.02$					ϕ	(x)	(y)	(t)	(v)
ϕ	(x)	(y)	(t)	(v)	$\begin{aligned} & 70^{\circ} \\ & 69 \\ & 68 \\ & 67 \end{aligned}$	$\begin{aligned} & 31463 \\ & 29483 \\ & 27731 \\ & 26167 \end{aligned}$	45656 40356 35905	$\begin{aligned} & 29366 \\ & 27687 \\ & 26178 \\ & 24812 \end{aligned}$	$\begin{aligned} & 3477 \\ & 3263 \\ & 3077 \\ & 2914 \end{aligned}$
	29943	4259037901	28669	32603080	66	24758	28884	23568	27702641
69	28191		27089						
68	2662125204	3391330489	25661	29212780	$\begin{aligned} & 65 \\ & 64 \end{aligned}$	2348122317	23681	${ }_{21382}{ }^{2}$	
67			24361						2526
66	23916	27527	23172	2653	63	$\begin{aligned} & 21250 \\ & 20267 \end{aligned}$	$\begin{aligned} & 21498 \\ & 19608 \end{aligned}$	$\begin{aligned} & 20415 \\ & 19518 \\ & 18682 \end{aligned}$	$\begin{aligned} & 2421 \\ & 2327 \\ & 2240 \end{aligned}$
65	22741	24946	22079	2539	62				
64	21661	22682	21071	2436	61	19357	17932	18682	

IX. (continued).

$\lambda=0.03$					$\lambda=0{ }^{\circ} \mathrm{O} 4$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(3)	(t)	(v)
60°	18512	16438	17903	2161	57°	16633	13176	15999	2005
59	17725	15101	17172	2088	56	15953	12148	15374	1944
58	16988	13899	16486	2021	55	15313	11217	14784	1886
57	16298	12814	15839	1959	54	14709	10370	14225	1833
56	15648	11832	15229	1901	53	14139	9599	13695	1784
55	15035	10940	14652	1847	52	I 3598	8894	13190	1737
54	14455	10128	14104	1797	51	I 3084	8249	12709	1694
53	13906	9386	I 3584	1751	50	12596	7656	12250	1653
52	13385	8706	13088	1707	49	12130	7110	11811	1615
51	12889	8082	12615	1666	48	11684	6606	11390	1579
50	12416	7503	12164	1627	47	11258	6141	10986	1546
49	11964	6979	11731	1591	46	10850	5711	10598	1514
48	11532	6490	11317	1557	45	10458	5312	10225	1484
47	11117	6038	10918	1525	44	10081	4941	9865	1456
46	10720	5619	10536	1494	43	9718	4597	9518	1429
45	10338	5230	10167	1466	42	9368	4276	9183	1404
41	9970	4868	9812	1438	41	9030	3977	8859	1380
43	9615	4532	9469	1413	40	8703	3698	8545	1 357
42	9273	4218	9138	1388	$\lambda=0.05$				
41	8942	3925	8817 8506	1365					
40	8622	3652	8506	1343					
$\lambda=0.04$					ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
	(x)	(3)	(t)	(v)	$\begin{aligned} & 70^{\circ} \\ & 69 \\ & 68 \\ & 67 \end{aligned}$	$\begin{aligned} & 35424 \\ & 32747 \\ & 30466 \\ & 28489 \end{aligned}$	$\begin{aligned} & 53902 \\ & 46734 \\ & 40938 \\ & 36164 \end{aligned}$	3105629103	4085
									3755 3482 3
	33257	49344	30152	3746				25846	3253
70° 60					66	26754	32169		
69	30981 28099	43250	28352	3483				24466	3058
67	27252	33996	25304	3070	64	${ }_{23} 3_{31}$	25887	23215	2889
								22074	2741
66	25697	3041827351	$\begin{aligned} & 23997 \\ & 22806 \end{aligned}$	$\begin{array}{r} 2903 \\ 2757 \end{array}$	$\begin{aligned} & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 22583 \\ & 21448 \end{aligned}$	23383	21028	26092493
6564	23,30023037						21202	20064	
		24701	21715	2627	61	20.409	19288	19171	2388
63	21856	$\begin{aligned} & 22392 \\ & 20367 \end{aligned}$	$\begin{aligned} & 20711 \\ & 19782 \end{aligned}$	2510240	60	$\begin{aligned} & 19454 \\ & 18571 \end{aligned}$	$\begin{aligned} & 17599 \\ & 16099 \end{aligned}$	1834217569	2293
6	${ }_{2}^{20833}$				59				
61	19863	18580	$\begin{aligned} & 19782 \\ & 18920 \end{aligned}$	2310	58	17752	14762	16845	2128
co	18966	$\begin{aligned} & 16995 \\ & 15581 \\ & 14315 \end{aligned}$	$\begin{aligned} & 18116 \\ & 17365 \\ & 16661 \end{aligned}$	$\begin{aligned} & 2224 \\ & 2145 \\ & 2072 \end{aligned}$	575655	16988 16275 15605	$\begin{aligned} & 13563 \\ & 12485 \\ & 11511 \end{aligned}$	$\begin{aligned} & 16165 \\ & 15526 \\ & 14922 \end{aligned}$	$\begin{aligned} & 2056 \\ & 1959 \\ & 1928 \end{aligned}$
59 5	18134								
58	17358								

IX. (continued).

$\lambda=0.05$					$\lambda=0.05$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
54°	14976	10628	14351	1871	15°	2716	$365 \cdot 6$	2698	1050
53	14382	9825	13810	1818	14	2525	316.1	2509	1044
52	13821	9093	13296	1769	13	2336	$270 \cdot 7$	2322	1038
51	13288	8424	12806	1724	12	2148	229.2	2137	1033
50	12783	7811	12339	1681	11	1963	191.4	1953	1029
49	12302	7247	11893	1641	10	1779	157.3	1771	1025
48	11843	6728	11466	1603	9	1597	126.8	1590	1021
47	11404	6249	11056	1567	8	1415	99.7	1410	1017
46	10984	5807	10663	1534	7	1235	$76 \cdot 0$	1232	1014
45	10582	5397	10285	1503	6	1057	55^{6}	1054	1011
44	10195	5017	9921	1474	5	879	38.5	877	1008
43	9823	4664	9570	1446	4	702	24.6	700	1005
42	9465	4336	9231	1419	3	526	13.8	525	1004
41	9120	4031	8903	1394	2	350	$6 \cdot 1$	349	1002
40	8786	3746	8585	1370	+ 1	175	$1 \cdot 5$	175	1001
39	8464	3480	8278	1348	\bigcirc	\bigcirc	o	\bigcirc	1000
38	8152	3232	7980	1327	- 1	174	$1 \cdot 5$	175	999
37	7849	2999	7690	1307	2	348	6.1	349	999
36		2782	7408	1288	3	523	13.7	523	999
35	7270	2578	7134	1270	4	697	24.3	698	999
34	6993	2388	6867	1252	5	871	$38 \cdot 1$	873	1000
	6722	2209	6607	1236	6	1045	54.9	1048	1000
32	6459	2041	6353	1220	7	1220	74.8	1224	1001
31	6203	1884	6104	1206	8	1395	$97 \cdot 8$	1400	1003
30	5952	1736	5862	1192	9	1571	124.1	1578	1004
29	5707	1597	5624	1178	10	1748	153.7	1755	1007
28	5467	1467	5391	1165	11	1925	186.5	1934	1009
					12	2103	$222 \cdot 7$	2114	1012
27	5233	1345	5163	1152					
26	5003	1231	4939	1142	13	2282	$262 \cdot 5$	2295	
25	4777	1123	4720	H3I	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	2462 2644	$305 \cdot 7$ 352.6	2478 2662	1018
24	4556	1022	4504	1121					
23	4339	927.7	4291	IIII	16	2827	403.3	2847	1026
22	4125	839°	4082	1102	17	3011	457.9	3034	1030
21			3877	1093	18	3197	$516 \cdot 6$	3223	1035
20	3708	679.1	3674	1085	19	3384	$579 \cdot 4$	3414	1040
19	3504	606.9	3474	1077	20	3574	646.5	3607	1045
18	3303	539.7	3276	1069	21	3766	718.2	3802	1051
17	3105	$477^{\circ} 2$	3081	1062	22	3959	794.5	4000	
16	2910	$419^{\circ} 2$	2888	Io56	23	455	875.8	4200	1063
					24	4354	$962 \cdot 1$	4403	1070

IX. (continued).

$\lambda=0.05$					$\lambda=0.05$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
25° 26	4555 4760	1054 1151	4609 4818	1078 1085	64° 65	18244 18959	17883 19382	19327 20147	1995
27	4967	1255	5030	1094	66	19716	21043	21024	2113
28	5177	1364	5247	1102	67	20519	22891	21963	2178
30	5609	1484 1603	5490	1121	69	21373 22283	24954 27263	22972 24059	2246 2319
31	5830	1734	5918	1131	70	23253	29859	25235	2397
32 33	6055 6285	${ }_{2018}^{1872}$	$6{ }_{6}^{6151}$	1142	${ }_{72}^{71}$	24289 25400	32789 36109	26509 27897	2479 2566
34	6520	2173	6631	1165		26591	39889	29414	2659
35	6759	${ }^{2338}$	6879	1177	74	27871	44213	31079	2758
36	7003	2512	7133	1190	75	29249	49185	32915	2862
37	3	2697	7392	1204	76	30734	54932	34950	73
39	7771	3102	7932	1233	78	34068	60431	39758	${ }_{3211}$
$\begin{aligned} & 40 \\ & 41 \\ & 42 \end{aligned}$	$\begin{aligned} & 8040 \\ & 8046 \\ & 83516 \\ & 8599 \end{aligned}$	$\begin{aligned} & 3324 \\ & 3559 \\ & 3510 \end{aligned}$	$\begin{aligned} & 8213 \\ & 8501 \\ & 8798 \end{aligned}$	$\begin{aligned} & 1249 \\ & 1265 \\ & 1282 \end{aligned}$	79	35939	78839	42627	3338
								45690	3ヶ70
434445	$\begin{aligned} & 8890 \\ & 9189 \\ & 9498 \end{aligned}$	$\begin{aligned} & 4077 \\ & 4361 \\ & 4664 \end{aligned}$	91049419	13001320	$\lambda=0.06$				
46	9816	4988	$\begin{aligned} & 10080 \\ & 10428 \\ & 10758 \end{aligned}$	13601382	ϕ	(x)	(y)	(t)	(v)
$4{ }_{48}$	$\begin{array}{r} 9010 \\ 1014 \\ 10483 \end{array}$	$\begin{aligned} & 5334 \\ & 5704 \end{aligned}$							
				1405					4545
49	10834	$\begin{aligned} & \begin{array}{l} 100 \\ 6525 \\ 69925 \end{array} \end{aligned}$	11161	1429	$\begin{aligned} & 70^{\circ} \\ & 69 \\ & 68 \end{aligned}$	${ }_{34}^{3853}$	${ }_{5}^{59745}$	29965	
50	11197		11549	1455		32196	4		3755 3474
51	11573		11952	1482		29920	38715	26449	3474
52	11963	7473 8002	12371	$\begin{array}{r} 1510 \\ 1540 \end{array}$	$\begin{aligned} & 66 \\ & 65 \\ & 65 \end{aligned}$	27956 26236	$\begin{aligned} & 34196 \\ & 30420 \end{aligned}$	$\begin{aligned} & 24981 \\ & 23659 \end{aligned}$	$\begin{aligned} & 3240 \\ & 3042 \end{aligned}$
54	12791 1259	8572	13265	1571					
$\begin{aligned} & 55 \\ & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 13231 \\ & 13659 \\ & 14168 \end{aligned}$	$\begin{array}{r} 9188 \\ 9855 \\ 10579 \end{array}$	$\begin{aligned} & 13742 \\ & 14241 \\ & 14765 \end{aligned}$	$\begin{aligned} & 1603 \\ & 1638 \\ & 1675 \end{aligned}$	$\begin{aligned} & 63 \\ & 62 \\ & 62 \\ & 61 \end{aligned}$	233492119	2445821232006	216682036410368	272225902473
						210	20064	19438	2473
$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 14668 \\ & 15193 \\ & 15743 \end{aligned}$	$\begin{aligned} & 11365 \\ & 13221 \\ & 13155 \end{aligned}$	$\begin{aligned} & 15315 \\ & 15994 \\ & 16505 \end{aligned}$	$\begin{aligned} & 1713 \\ & 1754 \\ & 17997 \\ & 1797 \end{aligned}$	$\begin{aligned} & 60 \\ & 59 \\ & 58 \end{aligned}$	$\begin{aligned} & 19979 \\ & 19900 \\ & 104171 \end{aligned}$	$\begin{aligned} & 18256 \\ & 16661 \\ & 15243 \end{aligned}$	$\begin{aligned} & 18581 \\ & 17783 \\ & 1703^{8} \end{aligned}$	2368 2274 2188 181
6	$\begin{array}{\|l\|l} 16320 \\ 16928 \\ 17568 \end{array}$	$\begin{aligned} & 14176 \\ & 15296 \\ & 16526 \end{aligned}$	$\begin{aligned} & 17150 \\ & 17833 \\ & 18557 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1842 \\ 1891 \\ 18941 \end{array}$	$\begin{aligned} & 57 \\ & 56 \\ & 55 \end{aligned}$	$\begin{aligned} & 17366 \\ & 10651 \\ & 150 \end{aligned}$	$\begin{aligned} & 13978 \\ & 12544 \\ & 11823 \end{aligned}$	$\begin{aligned} & 16340 \\ & 15654 \\ & 15006 \end{aligned}$	$\begin{aligned} & 2110 \\ & 2038 \\ & 1972 \end{aligned}$

IX. (continued).

$\lambda=0.06$					$\lambda=0.07$					
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)	
54°	15256	10900	14482	1912	51°	13724	8803	13011	1788	
53	14637	10064	13930	1856	50	13181	8144	12527	1740	
52	14053	9302	13405	1803	49	12667	7541	12065	1695	
51	13501	8608	12906	1755	48	12177	6988	11624	1654	
50	12977	7973	12431	1710	47	11711	6479	11202	1615	
49	12480	7390	11977	1667	46	11267	6011	10797	1578	
48	12006	6855	11543	1628	45	10842	5578	10409	1544	
47	11554	6362	11128	1591	44	10434	5178	10035	1511	
46	11122	5906	10729	1556	43	10044	4807	9675	1481	
45	10709	5486	10346	1523	42	9668	4463	9328	1452	
44	10312	5096	9977	1492	41	9307	4143	8992	1425	
43	9931	4734	9621	1463	40	8959	3846	8668	1400	
42	9565	4398	9278	1436	$\lambda=0.08$					
41 40	9212 8871	4086 3795	8947 8626	1410 1385						
$\lambda=0.07$					ϕ	(x)	(y)	(t)	(v)	
ϕ	(x)	(${ }^{\text {) }}$	(t	(i)	$\begin{aligned} & 70^{\circ} \\ & 699 \\ & 69 \frac{1}{2} \\ & 6 \end{aligned}$	$\begin{aligned} & 46794 \\ & 45170 \\ & 43694 \end{aligned}$	7935374922	3505834284	$\begin{aligned} & 6255 \\ & 5952 \\ & 5686 \end{aligned}$	
							70947	33555		
70°	41699	67653	33405	5200	69	42342	67355	328665450		
69	37561	56575	30979	4568						
68	34292	48267	28918	4105		41096	61099	32211	5050	
67	31609	41785	27129	3747	69 688 1	39942		31589		
66	29348	36580	25554	3460	$68 \frac{1}{2}$68868	$\begin{aligned} & 38867 \\ & 37863 \end{aligned}$	$\begin{aligned} & 58354 \\ & 55820 \end{aligned}$	3099530426	48774720	
65	27403	32310	24148	3222						
64	25705	28747	22884	3022		36921	53473	29882	4576	
63	24203	25732	21736	2850	$\begin{array}{\|l\|l\|} 67 \frac{3}{4} \\ 67 \frac{1}{2} \end{array}$	36034	5129249258	29360288582835	44424319	
62	22860	23152	20687	2700		35197				
61	21650	20922	19724	2569	$67 \frac{1}{4}$	34405	47358	28375	4204	
60	20551	18978	18834	2452	6766	3365330988	4557639442	2790926198	4097	
59	19546	17272	18009	2348						
53	18623	15765	17241	2254	65	28751	34528	24691	3439	
57	17770	14426	16523	2169	$\begin{aligned} & 64 \\ & 63 \\ & 62 \end{aligned}$	$\begin{aligned} & 26832 \\ & 25159 \\ & 23682 \end{aligned}$	3050327146	23347221362	319929972825	
56	16979	13230	15850	2091						
55	16242	I2157	15216	2021			24306	21036		
54	15553	11191	14619	1955	$\begin{aligned} & 61 \\ & 60 \\ & 59 \end{aligned}$	$\begin{aligned} & 22362 \\ & 21174 \\ & 20095 \end{aligned}$	$\begin{aligned} & 21875 \\ & 19773 \\ & 17941 \end{aligned}$	$\begin{aligned} & 20030 \\ & 19105 \\ & 18250 \end{aligned}$	$\begin{aligned} & 2676 \\ & 2545 \\ & 2429 \end{aligned}$	
53	14906	10317	14054	1895						
52	14298	9524	13519	1839						

IX. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\lambda=0.08\)} \& \multicolumn{5}{|c|}{\(\lambda=0.09\)} \\
\hline \(\phi\) \& (i \(^{\text {a }}\) \& (3) \& (t) \& (v) \& \(\phi\) \& (x) \& (\({ }^{\text {l }}\)) \& (t) \& (v) \\
\hline \[
\begin{aligned}
\& 55^{\circ} \\
\& 57
\end{aligned}
\] \& 1919
18203
1836 \& \[
\begin{aligned}
\& 163322 \\
\& 14909
\end{aligned}
\] \& \[
\begin{aligned}
\& 17456 \\
\& 16716
\end{aligned}
\] \& \[
\begin{aligned}
\& 2326 \\
\& 223262 \\
\& 225
\end{aligned}
\] \& \[
664^{\circ}
\] \& 33715
32970
3 \& \[
\begin{aligned}
\& 44655 \\
\& 42972
\end{aligned}
\] \& 27332
26936
2530 \& 4186 \\
\hline 56 \& 17366 \& \({ }_{13644}\) \& 16023 \& 2148 \& 65 \& 30336 \& 37186 \& 25301 \& 3706 \\
\hline \[
\begin{aligned}
\& 55 \\
\& 54
\end{aligned}
\] \& \[
\begin{aligned}
\& 16590 \\
\& 15866
\end{aligned}
\] \& \[
\begin{aligned}
\& 12514 \\
\& 15500
\end{aligned}
\] \& \[
\begin{aligned}
\& 15373 \\
\& 14762
\end{aligned}
\] \& 2071
2001 \& 64
63 \& \[
\begin{aligned}
\& 28131 \\
\& 26244
\end{aligned}
\] \& \begin{tabular}{l}
32560 \\
28773
\end{tabular} \& \[
\begin{aligned}
\& 23860 \\
\& 22574
\end{aligned}
\] \& \({ }_{3}^{3412}\) \\
\hline 53 \& 15190 \& 10585 \& 14184 \& 1937 \& 62 \& 24601 \& 25615 \& 21414 \& 2970 \\
\hline 52 \& 145 \& \({ }_{9}^{9758}\) \& \[
13637
\] \& \[
\begin{aligned}
\& 1878 \\
\& 1823
\end{aligned}
\] \& \[
\begin{aligned}
\& 61 \\
\& 60
\end{aligned}
\] \& \[
\begin{aligned}
\& 23151 \\
\& 21557
\end{aligned}
\] \& 22943
2065 \& \[
20360
\] \& 2798
2650
25 \\
\hline 50 \& 13394 \& 8323 \& 12625 \& \(177^{2}\) \& 59 \& 20692 \& 18677 \& 18506 \& 2520 \\
\hline 49 \& 12861 \& 7698 \& 12155 \& 1725 \& 58 \& 19635 \& 16950 \& 17684 \& 2405 \\
\hline \[
\begin{aligned}
\& 48 \\
\& 47
\end{aligned}
\] \& 12355 \& 7126
6601 \& 11707
11278 \& 1681 \& \begin{tabular}{l}
58 \\
56 \\
\hline
\end{tabular} \& 18669
17781 \& 15433
14091 \& 16919
16206 \& 2210 \\
\hline \multirow[t]{7}{*}{46
4
4
4
4
4
4
4
40} \& 11416 \& 6118 \& 10867 \& 1601 \& 55 \& 16961 \& 12898 \& 15538 \& 2127 \\
\hline \& 10978 \& 5673 \& 10473 \& 1565 \& 54 \& 16199 \& \({ }_{1838} 18\) \& 14910 \& 2051 \\
\hline \& 10560
10159 \& 5262
4882 \& 10094

9730 \& | 1531 |
| :--- |
| 1500 | \& 53 \& 15490 \& 10871 \& 14319 \& 1982

\hline \& 10159 \& 4882 \& 9730 \& 1500 \& 52 \& 14827 \& 10006 \& 13760 \& 18

\hline \& 9775 \& 4529 \& 9378 \& 1470 \& 5 \& 14204 \& ${ }^{9223}$ \& 13230 \& 1860
1806

\hline \& 9405
9049 \& 4202
3898 \& 9039
8711 \& 1441
1415 \& 50 \& ${ }_{13} 318$ \& 8512 \& 12727 \& 1806

\hline \& \& \& \& \& 49 \& 13064 \& ${ }_{7}^{764}$ \& 12249 \& 1756

\hline \multicolumn{5}{|c|}{\multirow[b]{2}{*}{$\lambda=0.09$}} \& \[
$$
\begin{aligned}
& 48 \\
& 47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12541 \\
& 12044
\end{aligned}
$$
\] \& 7272

6729 \& $$
\begin{aligned}
& 11792 \\
& { }_{11}^{11356}
\end{aligned}
$$ \& 1709

1666

\hline \& \& \& \& \& 46 \& 11571 \& 6231 \& 10939 \& 1626

\hline \multirow[b]{2}{*}{ϕ} \& \& \& \& \& 4 \& 11121
10691
1 \& 5773
5350 \& 10539
10155 \& ${ }_{1588}^{1588}$

\hline \& (x) \& (y) \& (${ }^{\text {t }}$ \& (v) \& $$
\begin{aligned}
& 44 \\
& 43
\end{aligned}
$$ \& ${ }_{1}^{10279}$ \& 4959 \& $\underline{9786}$ \& 1519

\hline \multirow[b]{3}{*}{$$
\begin{aligned}
& 70^{\circ} \\
& 6698 \\
& 69 \frac{1}{2}
\end{aligned}
$$} \& \& \multirow[b]{3}{*}{\[

$$
\begin{array}{|l|l|}
\hline 99919 \\
92196 \\
85701 \\
\hline
\end{array}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{aligned}
& 37405 \\
& 36384 \\
& 35453
\end{aligned}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{aligned}
& 8411 \\
& 7718 \\
& 7167
\end{aligned}
$$
\]} \& ${ }_{41}^{42}$ \& 9506 \& 4263 \& 9430 \& 1488

1458
1438

\hline \& 553545 \& \& \& \& \& ${ }_{9142}$ \& 3952 \& 8755 \& 1431

\hline \& 50134 \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 697 \\
& 69 \\
& 689 \\
& 68
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 48035 \\
& 46180
\end{aligned}
$$
\]

$$
44520
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 80124 \\
& 75259 \\
& 70962
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 34594 \\
& 33795 \\
& 33049
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 6715 \\
& 6334 \\
& 6009
\end{aligned}
$$
\]} \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{$\lambda=0.10$}}

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 683 \\
& 688 \\
& 68
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 43019 \\
& 41651 \\
& 40595
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 67127 \\
& 63676 \\
& 60547
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 32336 \\
& 32684 \\
& 31055
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 5726 \\
& 5477 \\
& 5256 \\
& 525
\end{aligned}
$$
\]} \& ϕ \& (x) \& (${ }^{\text {) }}$ \& (t) \& (v)

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 678 \\
& 677 \\
& 677 \\
& 677
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 39235 \\
& 38159 \\
& 37155
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 57694 \\
& 55079 \\
& 52670
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 30458 \\
& 29959 \\
& 29345
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 5058 \\
& 4879 \\
& 4716
\end{aligned}
$$
\]} \& \& 69862 \& 135118 \& 40009 \&

\hline \& \& \& \& \& 69 ! \& 63221 \& 117242 \& 38466 \& H17\%

\hline \& \& \& \& \& 69. \& 58519 \& 104747 \& 37181 \& 9669

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 67 \\
& 669 \\
& 661
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 36215 \\
& 35333 \\
& 34501
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 50433 \\
& 48376 \\
& 46452
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 28824 \\
& 28324 \\
& 27844
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4567 \\
& 4430 \\
& 4201
\end{aligned}
$$
\]} \& \& \& \& \& 8631

\hline \& \& \& \& \& $$
659
$$ \& 51926 \& 87558 \& 35067 \& 7862

\hline \& \& \& \& \& 68.1 \& 49437 \& 81198 \& 34163 \& 7262

\hline
\end{tabular}

IX. (continued).

$\lambda=0.10$					$\lambda=O^{\circ} \mathrm{I} O$				
ϕ	(x)	(3)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$68^{1}{ }^{\circ}$	47292	75785	33333	6776	39°	8880	3712	8476	1419
68	45409	71094	32564	6372	38	8534	3437	8162	1394
$67{ }^{3}$	43733	66972	31846	6030	37	8201	3182	7858	1369
$67 \frac{1}{3}$	42225	63308	31172	5734	36	7879	2943	7564	1346
$67 \pm$	40855	60021	30537	5476	35	7568	2721	7277	1325
67	39601	57049	29935	5248	34	7267	2514	6999	1304
$66{ }^{\text {a }}$	38446	54345	29364	5044	33	6974	2320	6728	1285
$66 \frac{1}{2}$	37377	51870	28819	4861	32	6690	2140	6464	1266
66	36382	49594	28299	4694	31	6414	1970	6207	1249
66	35451	47492	27801	4543	30	6146	1812	5955	1232
$65 \frac{3}{4}$	34579	45543	27324	4404	29	5884	1664	5710	1216
$65 \frac{1}{2}$	33757	43730	26865	4275	28	5629	1526	5470	1202
$65 \frac{1}{4}$	32982	42039	26424	4157	27	5380	1396	5235	1187
65	32248	40456	25999	4047	26	5137	1275	5005	1174
6.4	29657	35018	24436	3673	25	4899	1162	4779	1161
63	27492	30673	23059	3379	24	4667	1056	4558	1149
62	25642	27117	21828	3139	23	4439	956.4	4340	1137
61	24033	24152	20717	2939	22	4215	863 8	4126	1126
60	22613	21641	19706	2769	21	3996	$777 \cdot 4$	3916	1116
59	21347	19491	18780	262I	20	3781	$696 \cdot 9$	3709	1106
58	20207	17629	17926	2493	19	3569	6219	3505	1097
57	19172	16004	17135	2379	18	3361	552.2	3304	1088
56	18226	14575	16399	2278	17	3156	$487 \cdot 5$	3106	1080
55	17357	13310	15711	2187	16	2954	427%	2910	10ファ2
54	16554	12183	15067	2105	15	2755	372.4	2717	1065
53	15808	11176	14460	2030	14	2558	321.6	2525	1058
52	15113	10270	13888	1962	13	2364	$275{ }^{\circ}$	2336	1051
51	14463	9452	13347	1899	12	2172	$232 \cdot 5$	2149	1045
50	13853	8711	12834	1842	11	1983	194*	1963	1039
49	1 3278	So38	12346	1790	10	1795	159.2	1779	1034
48	12735	7424	11881	1739	8	1610	128.2	1596	1029
47	12221	6863	11438	1694	8	1426	$100 \cdot 7$	1415	1024
46	11733	6349	11014	1651	7	1243	$76 \cdot 6$	1235	1020
45	11269	5876	10608	1612	6	1062	56.0	1057	1016
44	10826	5441	10218	1574	5	883	$38 \cdot 7$	879	1013
43	10403	5040	9843	1539	4	704	24.7	702	1010
42	9999	4669	9483	1506	3	527	13.8	526	1007
41	961 I	4326	9135	1476	2	351	$6 \cdot 1$	350	1004
40	9238	4007	8800	1447	+ 1	175	1'5	175	1002

IX. (continued).

$\lambda=0.10$					$\lambda=O^{\circ} \mathrm{IO}$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(3)	(t)	(v)
-	\bigcirc	\bigcirc	0	1000	40°	7727	3150	So50	1199
-1°	174	$1 \cdot 5$	174	998	41	7981	3367	8326	1213
	348	$6 \cdot 1$	349	997	42	8241	3597	8611	1227
3	521	13.6	523	996		8507	3841	8903	1243
5	695	$24^{\circ} 2$	697	996	44	8780	4100	9204	1259
	867	$37 \cdot 8$	871	995	45	9060	4375	9514	1275
	1040	54.5	10.46	995	46		4668	34	93
8	1213	$74^{\circ} 2$	1221	995	47	9348 9644	4980	10164	1293
	1386	96.9	1396	996	48	9948	5312	10505	1331
9	1559	122.8	1572	997					
					49	10262	5667	10858	1351
10	1733	151.9	1748	998	50	10585	6046	11224	1372
12	1907	184.1	1925	999	51	10919	6450	11603	1393
	2082	2197	2103	1001					
	2257	258.5	2283	1003	53	11620	7348	11997	1417
131415	2433	$300 \cdot 8$	2463	1006	54	11988	7846	12833	1466
	2610	$346 \cdot 6$	2644	1008					
15	2788	$395 \cdot 9$	2827	1011	55	12370	8382 8958	13278 13742	1493 1520
17	2967	$449{ }^{\circ}$	3012	1015	57	13177	9579	14228	1549
18	3147	$505 \cdot 8$	3198	1018					
					58	13604	10250	14736	1580
192021	3329	$566 \cdot 6$	3385	102	59	14049	10975	15269	1612
	3512	631.5	3575	1027	60	14512	11761	15829	1645
	3697	$700 \cdot 6$	3767	1031	61	14994	12614	16418	1680
22	3884	774.1	3961	1036	62	15497	13541	17039	1717
23	4072	852.1	4157	1042	63	16023	14552	17696	1755
24	4263	935°	4356	1048	64	16573		18390	
252627	4455	1023	4557	1054	65	17149	16863	19127	1838
	4650	1116	4762	1060	66	17752	18188	19909	18S2
27	4848	1214	4969	1067					
					67	18386	19644	20743	1928
28	50.48	I3IS	51SO	1074	68	19051	21250	21634	1976
29	5251	1429	539.4	10 S 2	69	19750	23026	22587	2027
30	5457	1545	5612	1090					
	5666	1668			70	20485 21260	24994	23611	20So
313233	5878	1798	6059	1109	71 72	21260 22077	27183 29625	24713 25903	2134 2192
	6095	1936	6290	1117					
33					73	22938	32357	27192	2251
$\begin{aligned} & 34 \\ & 35 \\ & 36 \end{aligned}$	6314	2082	6525	1127	74	23846	35.26	28.595	2312
	6538	2236	6765	1138	75	24805	35886	30127	2376
			7010	1149	76	25818	42804	31806	2441
3738	6999	2571	7264	1161	77	26886	47258	33657	2508
	7237	2753	7517	1173	78	2 SO 14	52347	35708	2575
39	7479	29.46	7780	1185	79	29202	${ }_{5} 8195$	37994	2644
					So	30454	64955	40561	2712

IX. (continued).

$\lambda=0.11$					$\lambda=0.12$				
¢	(x)	(${ }^{\text {(}}$)	(t)	(v)	ϕ	(x)	(${ }^{\text {) }}$	(t)	(v)
$\begin{aligned} & 61^{\circ} \\ & 68^{\circ} \end{aligned}$	$\begin{aligned} & 57839 \\ & 54069 \end{aligned}$	99473 90087	$\begin{aligned} & 35819 \\ & 34731 \end{aligned}$	9888 8752 78	${ }^{67^{\circ}} 6$	52928 49912	$\begin{aligned} & 84598 \\ & 77534 \end{aligned}$	33410 32487	8758 7905
$67{ }^{3}$	51047	82651	33768	7927	$66 \frac{1}{2}$	47412	71749	31655	7256
$\begin{aligned} & 6721 \\ & 6774 \end{aligned}$	$\begin{aligned} & 48527 \\ & 46370 \end{aligned}$	$\begin{aligned} & 76529 \\ & 71353 \end{aligned}$	$\begin{aligned} & 32897 \\ & 32099 \end{aligned}$	$\begin{aligned} & 7292 \\ & 6785 \end{aligned}$	$66 \pm$	$\begin{aligned} & 45280 \\ & 43424 \end{aligned}$	$\begin{aligned} & 66874 \\ & 62679 \end{aligned}$	$\begin{aligned} & 30894 \\ & 30191 \end{aligned}$	${ }_{6}^{6740}$
	44487		${ }^{11} 362$		65	41782	59012	29536	5960
${ }_{661}$	42817	62978	30675	${ }_{6}^{6014}$			55766	28922	66
$\begin{gathered} 66 \frac{1}{2} \\ 66 \pm \end{gathered}$	41319 39962	$\begin{aligned} & 59511 \\ & 56409 \end{aligned}$	$\begin{aligned} & 30030 \\ & 29423 \end{aligned}$	${ }_{5448}^{5711}$	655	38981	52864	${ }^{28344}$	992
66	38723	53608	28849						
65\%	37583	51064	28303	500	$6_{4}{ }^{4}$	36652	47868	27277 26782 2	4953
651	36529	48737	27784	4823	64	35622 3465	45696 43700	$\begin{aligned} & 26782 \\ & 26310 \end{aligned}$	476
654 65	35549	46600	27287	4656 4503	64	33772	41858	25858	449
64 9	33778	42799	26357	4363	63^{3}	32935	40152	25424	4311
$64 \frac{1}{2}$	32971	41099	25919	4235	$63^{\frac{1}{2}}$	32148	38565	25007	4183
64.	32211	39514	25498	4116	63	31406	37085	24605	4065
64	31492	38030	25092	4006	63	30704	35701	24218	3956
63	28954		23601	3633		28230	30944	22795	359
62	26837	28867	22284	3341	61	26167	27142	21537	3298
61	25029	25535	21107	3103	60	2440	24025	20411	${ }^{3063}$
60	23456	22754	20043	2905	59	22872	21422	19392	
59 58	$\begin{aligned} & 22070 \\ & 2033 \end{aligned}$	$\begin{aligned} & 20399 \\ & 18379 \end{aligned}$	19074 18185	2736 2591	58	21520	19214	18462 1608	2702 2559
	19718	16630		2464	57 56	20314 19227	17319 15676	17608 16818	2559 2434
56	18707	15101	16602	2352					
55	17783	13755	15893	2252	55	18239	14239 12973	${ }_{15408}^{1608}$	2324 2226
54	16932	12563	15230	2163	54	18336 16506	12973 1850	${ }_{14762}^{1543}$	${ }_{2138}^{228}$
53	16147	${ }_{11501}$	14607	2082					
52	15417	1055°	14021	2008	52	15738	10849	${ }_{1}^{14160}$	2059 1986
51	14737	9694	13467	1941	5	14359	${ }_{9} 9944$	${ }_{13057}$	1920
50	14100	8921	12943	1880					
49	13501	8221	12446	1823		13735	8414	12550	1860 1805
48	12938	7584	11972	1771	48	13150 12597	${ }_{7149} 71$	12067	1805 1753
47	12406	7003	11521	${ }_{1723}$	47	12597			㖪
46	11901	6471	11090	1678	46			11169	1706
45	11	5983	10678	1636	45	11581 1111	${ }_{5634}^{6096}$	10750 10348	1620 1620
44	10967	5535	${ }^{10282}$	1597 1560			5634		
43	10532	5123	9902	1560	43	10664	5209	9963	1582
42	10116	4742	9537	1526	42	10237	4818	9593	1546
41	9719	4390	8985	11494 1464	${ }_{40}^{41}$	9829 9438	4454	9237 8893	$1{ }_{1481}^{1513}$
40	9337	4064	8846	1464					

IX. (continued).

$\lambda=0.13$					$\lambda=0.14$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	\%	(x)	(${ }^{\prime}$)	(t)	(\sim)
66°	51486	78857	32101	8648	65°	49792	73004	30811	8435
659	48547	72293	31226	7802	$64^{\frac{3}{4}}$	46991	67031	29988	7620
$65 \frac{1}{2}$	46115	66923	30436	7156	$64 \frac{1}{2}$	44667	62130	29245	6998
					644	42683	57993	28565	6503
$65 \pm$	44042	62400	29715	6644	64	40954	54428	27936	6097
65	42239	58510	29048	6225					
$64{ }^{\text {星 }}$	40644	55110	28427	5873	63 3	39424	51307	27349	5756
$64 \frac{1}{2}$	39217	52100	27844	5573	$63 \frac{1}{2}$	38052	48540	26798	5464
$64 \pm$	37925	49407	27296	5312	$63 \pm$	36810	46062	26279	5211
64	36747	46979	26776	5083	63	35676	43 S25	25787	SS
					623	34634	41790	25319	4790
631	354666	44773	26283 25813	4879 4697	$62 \frac{1}{2}$	33670	39929	24573	4612
$63 \pm$	33737	40903	25363	4533					
					$62 \pm$	32775	38217	24447	4452
63	32870	39192	24933	4383	62	31938	36636	24038	4306
$62{ }^{3}$	32058	37607	24520	4247	61	31154	35170	23646	4173
$62 \frac{1}{2}$	31294	36133	24123	4121					
					$61{ }^{1}$	30417	33804	23269	4050
$62 \ddagger$	30574	34757	23741	4005	614	29721	32530	22905	3937
62 61	29893 27491	33469 29041	23372 22015	3898 3535	61	29063	31336	22554	3832
61	27491	29041	22015	3535					
60	25487	25496	20814		60 50	26739 24795	27225 23928	21261 20114	3478 3200
59	23774	22586	19737	3021	59 58	24798	23928 21216	20114	3200 2975
53	22283	20152	18761	2829		23137		19053	2975
57	20967	18086	17869	2666	57	21690	IS944	18148	2788
56	19792	16310	170.48	2526	56	20412	17011	17292	2628
55	18733	14769	16289	2403	55	19269	15349	16503	2491
54	17771	13419	${ }^{15583}$	2295	54	18239	13903	15773	2371
53	16890	12228	14924	2199	53	17301	12636	15093	2265
52	16079	11171	14306	2113	52	16443	11517	14457	2171
51	15329	10228	13725	2035	51	15653	10523	13860	2087
50	14632	9382	13176	1964	50	14921	9635	13298	2010
49	13981	8620	12657	1899	49	14240	SS37	12,68	1941
48	13371	7930	12165	18.40	48	13604	8118	12265	1878
47	12798	7304	11697	1785	47	13008	7467	${ }_{11} 1285$	1820
46	12257	6734	11250	1735	46	12447	6576	11333	1766
45	11746	6214	10824	1688	45	11918	6338	10899	1717
44	11261	5738	10416	1645	44	11417	58.46	10485	1671
43	10 SO 1	5300	10025	1605	43	10942	5395	100SS	1629
42	10362	$4 \mathrm{S98}$	9650	1567	42	10491	4981		1589
41	9943	4527	9289	1532	41	10060	4600	9341	1552
40	9542	4155	S941	1499	40	9649	42.49	8989	1518

IX. (continued).

$\lambda=0 \times 15$					$\lambda=0 \cdot 15$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$64{ }^{\frac{1}{2}}$	55459	82861	31412	10758	43°	8164			
64.	51164	73902	30412	9185	44	8	3634 3872	8719 9007	1192 1205
64	47909	67189	29549	8139	45	867 I	4124	9304	1220
$63{ }^{\frac{8}{4}}$	45292	61852	28782	7379	46	8934		9610	
$63{ }^{\frac{1}{2}}$	43107	57444	28087	6794	47	9204	43976	9925	1235 1250
634	41233	53707	27449	6326	48	9480	4977	10250	1266
63	39595	50473	26858	5940		9764	5298	10586	1283
62 23	38140	47634	26305 25786	5614	49	$\begin{array}{r}9764 \\ 10055 \\ \hline\end{array}$	5639		1301
$62 \frac{1}{2}$	36834	45111	25786	5335	51	10055 10355	5039 6003	10933 11292	$1 \begin{aligned} & 1381 \\ & 1320\end{aligned}$
62 去	35649	42847	25296	5091	52	10663	6390	11665	1339
62	34566	40799	24831	4877	53	10981	6804		
618	33569	38933	24388	4687	53 54	10981 I 308	6204 7247	12052 12454	1359 1380
$61 \frac{1}{2}$	32646	37224	23966	4515		1:546		12872	1402
$61{ }^{1}$	31787	35650	23562	4360	55	IIO94	8822	13307	1425
61	30984	34195	23174	4220	57	12354	8772	13762	1449
60	28220	29304	21764	3761	58				
59	25979	25498	20533	3417	59	12727 13112	9356 9986	14238	1473
58	24104	22436	19437	3147	60	13512	10664	15253	1526
57	22498	19912	18451	2927	61	I 3926	11396	15799	1554
56	21096	17794	17555	2745	62	14356	12187	16373	1584
55	19856	15989	16734	2589	63	14802	13045	16978	1614
54	18748	14433	15976	2455	64	15265		17615	1645
53	17745	13079	15273	2338	65	15747	14986	18289	1679
52	16833	11890	14618	2235	66	16249	16087	19003	1713
51	15998	10839	14004	2143		16772	17289	19760	1748
50	15227	9905	13428	2060	68	17316	18605	20566	1785
49	14514	9069	12884	1985	69	17884	20047	21425	1823
48	13849	8318	12370	1918		18477	21632		1862
47	13228	7640	11883	1856	71	19095	23379	23328	1903
46	12646	7026	11420	1799	72	1974	25310	24387	1944
45	12098	6468	10979	1747			27450	25528	1987
44	11580	5959	10557	1698	74	21120	29828	26763	2031
43	11090	5494	10154	1654	75	21855	32482	28104	2075
42	10625	5067	9767	1612		22623	35453		2120
41	10182	4676	9396	1573		23424	38794	31170	21 C 6
40	9760	4315	9039	1537	78	24260	42567	32935	2211
-	- 0	-	-	1000			46851	34892	2256
40					80	26037	51746	37077	2301
41	7679	3197	8165	1166					
42	7919	3409	8438	1179					

1X. (continued).

$\lambda=0 \cdot 16$					$\lambda=0^{\circ} 17$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
63°	45906	61547	28320	7786	$62 \frac{1}{2}^{\circ}$	49842	67590	28682	9367
$62{ }^{3}$	43499	56847	27610	7095	62 ${ }^{\frac{1}{4}}$	46493	61188	27858	8216
62 $\frac{1}{2}$	41472	52931	26963	6556	62	43 S 44	56179	27132	7401
$62 \frac{1}{4}$	39722	49588	26367	6121	618	41656	52085	26476	6783
62	38185	46681	25813	5759	$6 \mathrm{I} \frac{1}{2}$	39795	48538	25877	6295
61\%	36815	44118	25295	5453	$61 \frac{1}{4}$	$3 \mathrm{SI76}$	45572	25322	5897
$61 \frac{1}{2}$	355SI	41833	24S06	5189	61	36746	43078	24805	5563
614	34459	39776	24344	4958	603	35465	40779	24319	5278
6I	33430	37912	23506	4754	60.2	34307	38722	23861	5031
$60 \frac{3}{4}$	32482	36209	23488	4573	$60 \frac{1}{4}$	33250	36863	23427	4814
$60 \frac{1}{2}$	31602	34647	23088	4409	6	32280	35173	23013	4622
604	30783	33206	22706	4261	593	31382	33627	22619	4450
60	30016	31871	22339	4125	$59^{\frac{1}{2}}$	30548	32204	22242	4295
59.7	29296	30630	21986	4002	$59 \frac{1}{4}$	29770	30889	2 ISSo	4154
592	2S617	29472	21645	3887	59	29040	29669	21532	4026
591	27976	28388	21317	37 S 2	58	26512	25540	20261	3604
59	27368	27371	20999	3684	57	24449	22299	19145	3284
58	25215	23855	19826	3352	56	22712	19673	1 S147	3032
57	2340 S	21018	18781	3093	55	21217	17497	17245	2826
56	21857	18673	17838	2878	54	19909	15662	16422	2654
55	20502	16700	16980	2700	53	18747	14091	15665	2508
54	19301	15016	16191	2549	52	17705	12733	14965	2381
53	18225	13562	15463	2419	51	16762	11547	14313	2270
52	17253	12294	14786	2305	50	15902	10503	I 3704	2172
51	16367	11179	14154	2204	49	15112	9577	13132	$20 S 5$
50	15554	10193	13562	2114	4 S	14382	8752	12593	2006
49	14804	9314	13005	2033	47	13705	SOI3	12084	1935
48	14108	8528	12479	1960	46	13073	7347	11602	1870
47	13460	7821	1198I	1894	45	12452	6746	11144	1811
46	12854	7182	11509	1834	44	11927	6200	10707	1757
45	$122 S_{5}$	6603	11059	1778	43	11403	5703	10290	1707
44	11750	6076	10530	1727	42	10909	5250	9892	1661
43	11243	5596	10221	1680	41	10.440	4835	9510	1618
42	10764	5156	9 S 2 S	1636	40	9904	4454	9143	1578
41	10309	4753	9452	1595					
43	9575	4353	9090	1557					

IX. (continued).

$\lambda=0.18$					$\lambda=0^{\circ} \mathrm{I} 9$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
611°	44123	55419	26650	7705	$60 \frac{3}{3}^{\circ}$	47499	60177	26921	9115
61	41775	51154	25987	7003	$60 \frac{1}{2}$	44326	54540	26163	7999
$60 \frac{8}{4}$	39804	47615	25384	6459	$60 \frac{1}{4}$	41815	50122	25493	7207
$60 \frac{1}{2}$	38107	44601	24830	6023	60	39739	46508	24889	6608
$60 \frac{1}{4}$	36621	41986	24314	5662	593 ${ }^{\frac{3}{4}}$	37972	43462	24336	6134
60	35298	39684	23832	5357	592	36434	40839	23824	5747
$59{ }^{\frac{3}{4}}$	34108	37632	23378	5094	594	35075	38543	23346	5423
591	33026	35787	22949	4866	59	33858	36507	22897	5146
$59 \frac{1}{4}$	32037	34115	22541	4664	58 星	32757	34683	22473	4906
59	31124	32589	22152	4484	$58 \frac{1}{2}$	31752	33035	22070	4696
58 星	30279	31189	21780	4323	$58 \frac{1}{4}$	30828	31534	21688	4509
$58 \frac{1}{2}$	29491	29897	21424	4177	58	29974	30161	21322	4342
$58 \frac{1}{4}$	28754	28701	21082	4043	$57 \frac{3}{4}$	29180	28896	20972	4192
58	28063	27588	20753	3922	$57 \frac{1}{2}$	28438	27726	20636	4055
57	25657	23809	19547	3520	$57 \frac{1}{4}$	27743	26641	20313	3930
56	23684	20826	18484	3215	57	27089	25629	20002	3^{815}
55	22018	18400	17532	2972	56	24806	22176	18858	3435
54	20580	16383	16670	2774	55	22923	19435	17846	3144
53	19318	14677	15880	2608	54	21327	17196	16937	2911
52	18196	13214	15154	2466	53	19945	15328	16112	2721
51	17188	11946	14480	2343	52	18730	13744	${ }^{1} 5355$	2560
50	16274	10837	13852	2235	51	17648	12382	14657	2423
49	15439	9860	13264	2140	50	16673	11200	14009	2305
48	14672	8992	12712	2055	49	15788	10163	13404	2200
47	13962	8217	12191	1978	48	14979	9248	12836	2108
46	13303	7522	11698	1909	47	14234	8435	12303	2025
45	12688	6896	11231	1846	46	13545	7708	11799	1951
44	12112	6330	10786	1789	45	12904	7056	11321	1883
43	11570	5816	10362	1736	44	12305	6467	10868	1822
42	11059	5347	9957	1687	43	11743	5934	10436	1766
41	10576	4920	9569	1642	42	11215	5450	10025	1714
40	10117	4528	9197	1600	41	10716	5008	9631	1667
					40	10244	4605	9253	1623

IX. (continued).

$\lambda=0.20$					$\lambda=0^{\circ} 20$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
60°	47859	59443	26438	9557	30°	6592	1991	6165	1327
593	44421	53516	25667	8272	29	6290	1820	5901	1305
59 ${ }^{\frac{1}{2}}$	41759	48973	24993	7390	28	5997	1661	5643	1255
594	39590	45308	24389	6736	27	5714	1513	5393	1265
59	37761	42249	23839	6227	26	5439	1376	5148	1246
58 䍃	36182	39633	23331	5816	25	5172	1249	4909	1228
$58 \frac{1}{2}$	34794	37356	22858	5474	24	4912	1130	4675	1212
58	33556	35345	$22+15$	5185	23	4659	1020	4446	1196
58	32439	33550	21997	4936	22	4413	918.3	4221	1181
$57{ }^{\text {a }}$	31424	31932	21601	4718	21	4172	823.5	4001	1167
$57 \frac{1}{2}$	30492	30463	21225	4525	20	3937	735.7	3785	1153
574	29633	29121	20865	4353	19	3708	654.4	3572	1141
57	$22^{2} 35$	27887	20522	4199	18	3483	$579 \cdot 2$	3364	1129
56	26123	23787	19276	3707	17	3263	$509 \cdot 8$	3158	1117
55	23960	20638	18191	3348	16	3047	445'9	2956	1107
54	22168	18122	17228	3071	15	2835	$387 \cdot 1$	2756	1096
53	20641	16058	16360	2850	14	2627	333.3	2559	$10 \$ 7$
52	19316	14330	15570	2667	13	2423	284.2	2365	1078
51	18147	12860	14845	2511	12	2222	239.7	2173	1069
50	17103	11593	14174	2381	11	2024	$199^{\circ} 4$	1983	1061
49	16162	10491	13550	2266	10	1829	$163^{\circ} 2$	1796	1054
48	15306	9523	12966	2165	9	1636	131.0	1610	1046
47	14522	8667	12419	2075	8	1447	102.6	1426	1040
46	13799	7905	11903	1995	7	1259	77.9	1243	1033
45	13130	7224	11415	1923	6	1074	$56 \cdot 8$	1062	1027
44	12506	6611	10953	1858	5	891	39.2	88_{3}	1022
43	11924	6058	10513	1798	4	709	24.9	704	1017
42	11377	5557	10094	1743	3	530	13.9	527	1012
41	10562	5101	9694	1693	2	352	$6 \cdot 2$	351	1008
40	10375	4685	9310	1647	+1	175 0	1.5	175	1004 1000
39	9914	4305	8943	1604	-1	174	1.5	174	997
38	9476	3957	8590	1564	2	347	6.0	$3+8$	994
37	9059	3637	8249	1527	3	519	13.5	521	991
36	8661	3342	7922	1493	4	690	24°	694	9S9
35	8281	3071	7605	1461	5	860	37.4	867	987
34	7916	2820	7299	1431	6	1029	53.7	1040	985
33	7566	2588	7002	1402		1199	73°	1213	984
32	7229	2374	6715	1376	8	1367	$95^{\circ} 2$	1386	983
31	6905	2175	6436	1351	9	1536	1204	1560	982

IX. (continued).

$\lambda=0.20$					$\lambda=0.20$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
10°	1704	148.5	1733	981	46°	8567	4149	9404	1184
11	2040	213	$1 \begin{aligned} & 1908 \\ & 2082\end{aligned}$	${ }_{981}^{981}$	4	9067	4410	${ }^{9705}$	12
13	2208		2258	982					1225
14	2376	${ }_{291}{ }^{2} 5$		982	50	9591	5289	10669	220
15	2544	335'1	2611	983	5	${ }_{9863}$	5619	11011	1256
16	2713	382\%	278	985	52	42	5970°	11366	1273
17	2883	$43^{2} \cdot 2$	2969		53	10429	6344	11733	1290
18	3053	$485 \cdot 8$	3149	988	54	10723	6741	12114	1307
19	3224	$543{ }^{\circ}$	3331	990	55	11026	7166	12510	1326
20	3395	603.8	3515	993	56	11337	${ }_{7}^{7619}$	12921	1345
21	3568	$668^{\circ} 3$	3700	996	57	11657	8103	13350	1365
22	3741	736	3887	999	58	11988	8621	13797	86
23 24	3916 4092	809.0.	${ }_{4267}^{4076}$	1002 1006	59	12328 12679	9177 9774	14263	1488 1430
25	4269	966	4461	1010	61	130	10415	15	1453
26	444	1052	4656	1015	62	134	1110	157	1477
27	4629	1142	4855	1019	63	13804	11849	16362	1502
28	4^{811}	1237	5056	1024	64	14205	12653	16954	1528
29	4995	1337	526	1030	65	14619	13523	17579	1555
30	5181	1442	5467	1036	66	15049	14465	18240	1582
31 32 3	5370 5560	1553 1670	${ }_{5891}^{5677}$	1042	67 68	15494 15955	15489 16602	${ }_{1}^{18939}$	1611 1640
33	5753	1793	6109	1055	69	16433	17817	20469	1670
34		1922	6330	1062		16929	19144	21309	1701
35	6147	2059		1070	71	17443	20597	22207	1733
36	6349	2202	6786	1078	72	17977	22194	23169	1765
37	6553							24204	1798
39	6761 6972	${ }_{2681}^{2513}$	${ }_{7507}^{7261}$	11096	$\begin{aligned} & 74 \\ & 75 \end{aligned}$	119106	25894 28046	25319 26527	1832 1866
40	7187	2858	7758	1115	76	20321		27840	1900
41	7406	3045	8	1125	77	20963	33111	${ }^{29274}$	1934
42	7629	3242	8278	1136		21627			1967
43	7856 8088	34	8548 8826	1147	8	22314 23024	39490	32586 34520	2001 2034
45	8324	3903		1171					

IX. (continued).

$\lambda=0.22$					$\lambda=0.24$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
58°	41310	46280	23968	7654	55°	30686	28787	20101	4923
$57 \frac{3}{4}$	39006	42610	23372	6910	$54 \frac{3}{4}$	29679	27355	19736	4691
$57 \frac{1}{2}$	37096	39596	22833	6344	54 $\frac{1}{2}$	28,60	26061	19390	4489
$57 \frac{1}{4}$	35465	37049	22338	5895	$54 \frac{1}{4}$	27917	24884	19061	4309
57	34044	34850	21879	5528	54	27137	23806	18746	4148
563	32786	32921	21451	5220	533	26412	22813	18445	4004
$56 \frac{1}{2}$	31657	31208	21047	4956	532	25736	21895	18155	3872
564	30635	29671	20666	4728	534	25102	21042	17876	3753
56	29701	28280	20304	4528	53	24506	20246	17607	3643
553	28842	27012	19959	4349	52	22423	17530	16617	3280
55.	28047	25850	19629	4190	51	20705	15369	15738	3003
55	27308	24778	19313	4046	50	19247	13600	14945	2783
55	26617	23787	19009	3915	49	17984	12120	14222	2602
54	24235	20446	17899	3491	48	16871	10S61	13556	2451
53	22304	17833	16923	3174	47	15879	9778	12940	2321
52	20684	15721	16050	2926	46	14984	8835	12366	2209
51	19292	13971	15258	2726	45	14171	8007	11829	2110
50	18076	12495	14534	2558	44	13426	7274	11323	2023
49	16997	11231	13866	2417	43	12739	6623	10846	1945
48	16030	10137	13245	2295	42	12102	6039	10394	1875
47	15154	9181	12667	2188	41	11510	5515	9964	1812
46	14354	8338	12124	2094	40	10955	5041	9555	1754
45	13620	7591	11613	2010					
44	12941	6923	11131	1935	$\lambda=0.25$				
43	12311	6325	10673	1867					
42	11722	5786	10239	1806	ϕ	(x)	(y)	(t)	(v)
41 40	11171 10653	5298 4855	9825	$\begin{aligned} & 1749 \\ & 1698 \end{aligned}$					
40					-	$\begin{aligned} & 7952 \\ & 7157 \\ & 7365 \end{aligned}$			
	$\lambda=0.24$				$\begin{aligned} & 40^{\circ} \\ & 41 \\ & 42 \end{aligned}$		$\begin{aligned} & 2733 \\ & 2908 \\ & 3092 \end{aligned}$	$\begin{aligned} & 7627 \\ & 7876 \\ & 8130 \end{aligned}$	$\begin{aligned} & 1079 \\ & 1088 \\ & 1097 \end{aligned}$
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	43	7577	3286	8391	1106
					44	7792	3491	8658	1117
					45	8012	3707	8933	1127
$\begin{aligned} & 56 t^{\circ} \\ & 56 \frac{1}{t} \\ & 56 \end{aligned}$	$\begin{aligned} & 40352 \\ & 38012 \\ & 36090 \end{aligned}$	430453952636063	$\begin{aligned} & 22908 \\ & 22331 \\ & 21812 \end{aligned}$	7735 6944 635 I	46	823684658698	$\begin{aligned} & 3935 \\ & 4176 \\ & 4430 \end{aligned}$	9215	1138
					47			$\begin{aligned} & 9505 \\ & 9304 \end{aligned}$	$\begin{aligned} & 1150 \\ & 1162 \end{aligned}$
					48				
$\begin{aligned} & 55 \frac{3}{2} \\ & 55 \frac{1}{2} \\ & 55 \frac{1}{2} \end{aligned}$	344613304831801	$\begin{aligned} & 34258 \\ & 32193 \\ & 30387 \end{aligned}$	$\begin{aligned} & 21337 \\ & 20897 \\ & 20486 \end{aligned}$	$\begin{aligned} & 5885 \\ & 5507 \\ & 5192 \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \\ & 51 \end{aligned}$	$\begin{aligned} & 8936 \\ & 9179 \\ & 9428 \end{aligned}$	$\begin{aligned} & 4700 \\ & 4985 \\ & 5287 \end{aligned}$	$\begin{aligned} & 10112 \\ & 10429 \\ & 10757 \end{aligned}$	$\begin{aligned} & 1174 \\ & 1188 \\ & 1201 \end{aligned}$

IX. (continued).

$\lambda=0.25$					$\lambda=0.26$					
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)	
52°	9683	5607	11095	1215	$533^{\frac{10}{0}}$	29540	26330	19156	4836	
53	9944	5947	11446	1230	53	28567	25022	188II	4609	
54	10211	6308	11809	1245	53	27681	23841	18483	4409	
55	10485	6693	12186	1261	52 年	26867	22765	18171	4233	
56	10767	7102	12577	1278	52,	26115	21780	17873	4075	
57	11055	7538	12984	1295	524	25415	20873	17586	3933	
58	11352	8004	13407	1312	52	24762	20033	17312	3805	
59	11657	8501	I3849	1331	51 13	24150	19253	17047	3687	
60	11970	9034	14310	1350	$51 \frac{1}{2}$	23575	18526	16792	3580	
61	12293	9604	14792	1370	$51 \frac{1}{4}$	23031	17846	16545	3480	
62	12625	10216	15296	1390	51	22517	17208	16306	3388	
63	12967	10874	15826	1411	50	20698	14999	1542 I	3080	
64	13320	11581	16382	1433	49	19173	13213	14626	2839	
65	13684	12344	16967	1455	48	17864	11733	13905	2644	
66	14059	13168	17585	1478	47	16719	10483	13244	2482	
67	14447	14059	18237	1501	46	15703	9412	12632	2345	
68	14846	15024	18927	1526	45	14792	8484	12063	2227	
69	15259	16073	19660	1551	44	13966	7673	${ }^{11531}$	2125	
70	15686	17214	20439	1576	43	13212	6957	11031	2034	
71	16126	18459	21270	1602	42	12519	6322	10559	1953	
72	16582	19820	22159	1628	41 40	11878 11282	5754 5245	10112 9688	1881 I 816	
737475	17052	21312	23112	1655						
	18039	22953 24763	25245	1709						
					$\lambda=0.28$					
76	18557	26766	26446	1736						
78	19642	28993 31480	29189	1790						
$\begin{aligned} & 79 \\ & 89 \\ & 80 \end{aligned}$	20210	34272	30769	1816	ϕ	(x)	(y)	(t	(v)	
	20794	37426	32522	1842						
$\lambda=0.26$					$\begin{aligned} & 53 \frac{1}{2}^{\circ} \\ & 534^{\prime} \\ & 53 \end{aligned}$	$\begin{aligned} & 36958 \\ & 34872 \\ & 33^{14} 47 \end{aligned}$	$\begin{aligned} & 35386 \\ & 32580 \\ & 30279 \end{aligned}$	207002019419737	728865706026	
					19737					
ϕ	(x)	(y)	(t)	(v)			$\begin{aligned} & 31677 \\ & 30397 \\ & 29264 \end{aligned}$	$\begin{aligned} & 28336 \\ & 26660 \\ & 25190 \end{aligned}$	$\begin{aligned} & 19318 \\ & 18928 \\ & 18564 \end{aligned}$	55975246
555454	$\begin{aligned} & 38874 \\ & 36612 \end{aligned}$	$\begin{aligned} & 39352 \\ & 36137 \end{aligned}$	2181321268	$\begin{aligned} & 7608 \\ & 6825 \end{aligned}$	$\begin{aligned} & 52 \\ & 51 \frac{3}{4} \end{aligned}$	2824827329	$\begin{aligned} & 23885 \\ & 22713 \end{aligned}$	1822117897	47014484	
	34756	33522	20776	6241	51	26489	21652	17589	4294	
544	33183	$\begin{aligned} & 31326 \\ & 29439 \end{aligned}$	$\begin{aligned} & 20326 \\ & 19910 \end{aligned}$	$\begin{aligned} & 5783 \\ & 5410 \\ & 5100 \end{aligned}$	$\begin{aligned} & 514 \\ & 51 \\ & 51 \\ & 50 \end{aligned}$	$\begin{aligned} & 25716 \\ & 25001 \\ & 24336 \end{aligned}$	$\begin{aligned} & 20685 \\ & 19798 \\ & 18980 \end{aligned}$	$\begin{aligned} & 17294 \\ & 17013 \\ & 10743 \end{aligned}$	$\begin{aligned} & 4125 \\ & 3974 \\ & 3838 \end{aligned}$	
545453	31819									
	30615	27791	19522							

IX. (continued).

$\lambda=0.28$					$\lambda=0.30$				
ϕ	(x)	(y)	(t)	(i)	ϕ	(x)	(v)	(t)	(z')
$50{ }^{\circ}{ }^{\circ}$	23714	18222	16483	3714	39°	11388	5187	9546	1886
501	23130	17518	16233	3601	38	10789	4710	9133	1818
50	22581	16860	15992	3497	37	10232	4283	8740	1757
49	20659	14608	15100	3154	36	9711	3897	8365	1701
48	19069	12810	14305	2891	35	922 I	3547	8005	1650
47	17716	11333	I 3586	2682	34	8760	3231	7661	1603
46	16542	10095	12928	2510	33	8324	2942	7330	1560
45	15506	9040	12322	2366	32	7910	2678	7012	1520
44	14580	S129	11758	2243	31	7516	2437	6704	1483
43	13744	7336	11232	2136	30	7141	2216	6407	1449
42	12983	6638	10737	2042	29	6783	2013	6120	1417
41	12284	6021	10271	1960	28	6440	1827	$5^{8} 42$	1387
40	11640	5470	9830	I 885					
					27	6111	1656	5571	1359
$\lambda=0.30$					26	5795	1498	5309	1333
					25	5490	135^{2}	5053	1309
ϕ	(x)		(t)	(v)	2.4	5196	1219	4805	1286
					23	4912	1095	4562	1265
					22	4638	$981 \cdot 3$	4325	1244
					21	4371	876.4	4093	1225
52°	34743	31376	19582	6836	20	4113	$779{ }^{\circ} 9$	3866	1207
518	32892	29018	19122	6213	19	3862	691°	3644	1190
$51 \frac{1}{2}$	31340	27057	18702	5732					
514	30003	25384	18316	5347	18	3618	609.4	3427	1174
					17	3381	534.5	3213	1159
51	28831	23930	17955	5028	16	3149	$465^{\circ} 9$	3003	1145
503	27787	22647	17617	4759					
$50 \frac{1}{2}$	26847	21501	17298	4528	15	2923	403.2	2797	1131
					14	2702 2486	346°	2595	1119
50	25210	19532	16995	4327 4149	13	2486	294.2	2395	1107
493	24487	18675	16431	3993	12	2275	$247 \cdot 3$	2195	1095
					I 1	2068	205* ${ }^{\text {I }}$	2004	1084
$49 \frac{1}{2}$	23817	17886	16167	3850	10	IS64	$167{ }^{\circ} 4$	1813	1074
491	23192	17158	15914	3721					
49	22607	16482	15670	3605	9	1665	134°	1623	1065
					8	1469	$94^{\circ} 7$	14.36	1055
48	20582	14191	14773	3224	7	1276	793	1251	1047
47	18930	12386	13978	2940					
46	17537	10918	13262	2716	6	1086	57.7	1068	1039
					5	899	$39^{\circ} 7$	SE_{7}	1031
45	16337	9696	12609	2535	4	714	$25^{\circ} 2$	707	1024
44	15283	8660	12008	2384					
43	14345	7770	11450	2255	3	533	$14^{\circ} \mathrm{O}$	528	1017
					2	353	$6 \cdot 2$	351	1011
42	13501	6996	10929	2144	+1	176	$1 \cdot 5$	175	1006
41	12735	6318	10441	2048	\bigcirc	\bigcirc	0	0	1000
40	12034	5719	9981	1962					

IX. (continued).

$\lambda=0.30$					$\lambda=0^{\circ} 30$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
-1°	174	155	174	995	40°	6737	2620	7504	1046
2	346	$6 \cdot 0$	347	990	41	6930	2784	7745	1054
3	516	13.5	520	986	42	7125	2957	7991	1062
4	685	$23 \cdot 8$	692	982	43	7323	3139	8244	1070
5	853	37°	864	978	44	7525	3330	8502	1079
	1019	53°	1035	975	45	7730	3531	8768	108%
7	1185	71•9	1206	972	46	7938	3744	9040	1098
8	1349	93.5	1377	970	47	8151	3967	9319	1108
9	1513	$118{ }^{\circ}$	1548	967	48	8367	4203	9607	1119
10	1676	145.3	1719	965	49	8588	4453	9903	1129
11	1839	175.4	1890	964	50	8813	4716	10208	1141
12	2000	208.3	2061	962	51	9042	4995	10523	1153
13	2162	$244 \cdot 1$	2233	961	52	9276	5289	10848	1165
14	2323	$282 \cdot 8$	2406	961	53	9516	5601	11184	1178
15	2484	324.4	2579	960	54	9761	5932	11531	1191
16	2645	$369{ }^{\circ}$	2753	960	55	10011	6284	11892	1205
17	2805	416.7	2928	960	56	10268	6657	12265	1219
18	2966	$467 \cdot 4$	3103	961	57	10530	7054	12653	1234
19		521-3	3280	961	58	10800	7477	13057	1250
20	3289	578.5	3458	962	59	1076	7927	13477	1265
21	3451	$639{ }^{\circ}$	3638	963	60	1359	8408	13915	1282
					61	1649	8921	14372	1299
22	3613	702.9	3819	965	62	1948	9471	14850	1316
23	3776	$770 \cdot 4$	4001	967	63	12254	10060	15351	1334
24	3940	841.5	4186	969	64	12569	10692	15877	1353
25	4104	916.4	4372	972	65	12893	11372	16429	1372
26	4269	995*2	4560	974	66	3227	12103	17011	1392
27	4435	1078	4750	977	67	13569	12892	17625	1412
28	4603	1165	4943	981	68	13923	13744	18274	1432
29	4771	1257	5138	984	69	14286	14667	18961	1453
30	4941	1353	5336	988	70	4660	15668	19691	1475
31	5112	1454	5537		71	15045	16756	20468	1497
32	5285	1560	5740	997	72	5442	17942	21297	1519
33	5459	1671	5947	1002	73	15850	19238	22185	1541
					74	6271	20658	23139	1563
34	5636 5814	1787	6158	1007	75	16704	22220	24168	1586
35	58314 5994	1910	6371 6589	1013 1019	76	17149	23943	25282	1609
					77	17607	25852	26494	1631
	6176	2173	6811	1025	78	18078	27976	27819	1653
38	6361	2315	7037	1032	79	18561	30354	29277	1675
39	6548	2464	7268	1039	80	19057	33032	30893	1696

IX. (continued).

$\lambda=0.32$					$\lambda=0.34$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
${ }^{5010^{\circ}}$	323	275	${ }_{18478}$	6317 5800	$4{ }^{881^{\circ}}$	27459	21075	16691	5030
${ }_{50}{ }_{5}$	29418	25995 29965	${ }_{17683}^{18064}$	5391	${ }_{48}{ }^{88 \pm}$	25486	18886	16068	${ }_{4503}^{4745}$
499°	28229	22552	17330	5055	47星	24642	17931	15782	4294
492	27176	21314	16999	4775	473	23872	17087	15510	4111
$49 \pm$	26232	20213	16688	4535	474	23164	16318	15251	3948
49	25376	19224	16392	4327	47	22509	15612	15002	3803
488	24594	18328	16111	4145	46	21900	14962	14764	3673
$48 \frac{1}{2}$	23873	17510	15843	3983	461	21330	14359	14534	3554
$48 \pm$	23206	16760	15586	3838	$46 \ddagger$	20796	13798	14313	3446
48	22586	16067	15340	3708		20293	13275	14099	3347
$47{ }^{4}$	22005	15425	15103	3589	45	18533	11482	13308	3019
47 ${ }^{\frac{1}{2}}$	21460	14828	14874	3481	44	17076	10050	${ }^{12601}$	2768
474	20947	14270	14653	3381	43	15836	8873	11960	2569
47	20461	13747	14439	3289	42	14758	7884	11372	2406
46	18752	11944	13646	2983	41	13806	7042	10828	2268
45	17324	10491	12933	2745	40	12954	6315	10321	2151
44	16101	9289	12286	2554	39	12185	5680	${ }^{954} 4$	2050
	15033	8275	11691	2397	38	11484	5122		${ }^{1961}$
$4{ }_{4}^{42}$	14087 13238	7407 6656	11139 10625	2264 2150	37 36	10840 10244	4628 4187	8976 8575	1882 1812
40	12469			2050		9692			
39	11766	5420	9690	1963	34	9175	3438	${ }_{7829}$	1691
${ }_{3} 8$	11120	4906	9261	1886	33	8692	3 H 8	7481	1639
	105	4447		1816					
36 35	${ }_{9} 9448$	4036 3665	8466 8096	1754 1697	31 30	7806 7399	2564 2324	6516	1548 1508
3433323130	$\begin{aligned} & 8961 \\ & 8502 \\ & 8068 \\ & 70657 \\ & 7267 \end{aligned}$	$\begin{aligned} & 3330 \\ & 3027 \\ & 2750 \\ & 2499 \\ & 2269 \end{aligned}$	$\begin{aligned} & 7743 \\ & 7403 \\ & 7077 \\ & 6763 \\ & 6460 \end{aligned}$	$\begin{aligned} & 1645 \\ & 1598 \\ & 1555 \\ & 1514 \\ & 1477 \end{aligned}$					
					$\lambda=0.35$				
$\lambda=0.34$						(x)	(y)	(t)	(v)
ϕ	(x)	(y)	(t)	(v)	40°	6539	2516	7389	1016
					42	6904		$\begin{aligned} & 7623 \\ & 7862 \end{aligned}$	1023 1030
$\begin{aligned} & 499^{\circ} \\ & 49 \\ & 483_{3} \end{aligned}$	$\begin{aligned} & 31586 \\ & 29992 \\ & 28636 \end{aligned}$	25808	${ }_{17806}$	6321		7091		8107	1037
		23965	17404	${ }^{5789}$	44	7280	3184	8357	1045
		22412	17034	5370	45	7472	3373	8614	1053

IX. (continued).

$\lambda=0.35$					$\lambda=0.36$				
ϕ	(x)	$\left(y^{\prime}\right)$	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
46°	7667	3572	8877	1062	48°	30527	23909	17111	6217
47	7865	3781	9148	1070		28984	22203	16724	5695
48	8067	4001	9425	1080	47 $\frac{1}{2}$	27672	20764	16369	5285
49	8272	4233	97 II	1089	474	26532	19525	16040	4950
50	8481	4478	10005	1099	47	25523	184.39	15731	4671
51	8694	4736	10308	I I 10	463	24620	17475	15441	4433
52	891 I	5009	10621	1121	$46 \frac{1}{2}$	23803	16609	15166	4228
53	9133	5297	10944	1132	$46 \frac{1}{4}$	23056	15826	14905	4048
54	9359	5603	11278	1144	46	22370	15112	14655	3888
55	9589	5926	11623	1156	454	21735	14457	14416	3746
56	9825	6269	I198I	1168	45 $\frac{1}{2}$	21144	I 3853	14186	3617
57	10066	6633	12353	1181	454	20591	13293	I 3965	3501
58	10312	7020	12739	1195	45	20073	12773	13752	3394
59	10564	7432	13140	1209	44	18271	11001	12966	3047
60	10822	7870	13559	1223	43	16792	9597	12266	2784
61	11087	8337	I 3995	1238	42	15541	8449	11632	2578
62	11358	8836	1445 I	1253	41	14457	7490	11051	2409
63	11635	9369	14927	1269	40	13504	6676	10515	2269
64	11920	9940	15427	1285	39	12653	5974	10015	2149
65	12212	10553	15951	1302	3^{8}	11885	5363	9548	2046
66	12512	II2II	16503	1319	37	III87	4827	9108	1956
67	12819	11918	17084	1336	36	10547	4353	8692	1876
68	13135	12681	17698	1354	35	9956	3931	8297	1805
69	13459	13505	18347	1372	34	9407	3554	7922	1742
70	13793	14396	19036	1391	33	8895	3215	7563	1684
71	14135	15363	19768	1410	32	8416	2910	7220	1632
72	14486	16414	20549	1429	$\begin{aligned} & 31 \\ & 30 \end{aligned}$	7965	2634 2383	6891 6575	1584 1540
73	14847	17559	21384	1448					
74	15218	18811	22280	1467	$\lambda=0.38$				
75	15599	20185	23245	1486					
76	15989	21696	24289	1506					
77 78	16390 16801	23366 $2522 I$	25422 26660	1525	ϕ	(x)	(y)	(t)	(v)
7980	17222 17653	27291	28020	1562					
	17653	29618	29525	1580	47 $46 \frac{3}{4}$	30981 29236	23758 21894	16798 16395	6660 6016
					$46 \frac{1}{2}$	27787	20360	16029	5527
					$46 \ddagger$	26549	19060	15692	5139
					46	25468	17937	15379	4821
					45^{3}	24510	16949	15085	4555

IX. (continued).

$\lambda=0^{\circ} 38$					$\lambda=0.40$				
ϕ	(x)	(y^{\prime})	(t)	(v)	ϕ	(${ }^{\text {a }}$	(y)	(t)	(v)
$45^{\frac{1}{2}}{ }^{\circ}$	23651	16070	14808	4328	423°	18955	11211	12829	3345
$45 \frac{1}{1}$	22871	15280	14546	4131	42.4	18481	10775	12633	3247
45	22157	14563	14296	3958	$42 \frac{1}{4}$	1 So34	10367	12444	3157
$44 \frac{3}{7}$	21501	13909	14057	$3 \mathrm{So4}$	42	17611	9984	12261	3074
442	20892	13309	13828	3667	41	16114	8659	11578	2794
$44 \frac{1}{4}$	20325	12754	13608	3543	40	14859	7586	10963	2577
44	19795	12240	13396	3430	39	137 So	6696	10401	2402
43	17963	10501	12617	3065	38	12834	5944	$9 \mathrm{S8} 2$	2257
42	16471	9132	11925	2793	37	11994	5299	9399	2134
41	15214	So20	11300	2580	36	11238	4740	S947	2029
40	14130	7094	10728	2408	35	10552	4250	8522	1938
39	13179	6309	10200	2265	34	9924	3^{819}	8120	1857
38	12332	5635	9708	2144	33	9346	3435	7739	1785
37	11569	5049	9248	2039	32	8810	3094	7377	1721
36	10876	4536	8816	1948	31	8310	2787	7030	1664
35	10241	4083	8407	1868	30	7842	2512	6699	1611
34	9655	3681	Sol9	1797	29	7403	2263	6380	1564
33	9112	3321	7650	1732	28	6988	2038	6074	1520
32	8606	2998	7297	1675	27	6596	1834	5779	14So
31	8132	2708	6960	1622	26	6223	1648	5494	1443
30	7686	2445	6636	1574	25	5869	1479	5219	1408
$\lambda=0.40$					24	5530	1324	4952	1377
					23	5207	1184	4693	1347
					22	4897	1055	4441	1319
ϕ	(x)	(y)	(t)	(v)	21	4599	$937 \cdot 8$	4196	1294
					20	4312	$830 \cdot 6$	3957	12% \%
					19	4036	$732 \cdot 8$	3724	1247
46°	31301	23464	16461	7091	18	3769	$643 \cdot 5$	3496	1226
454	29352	21454	16042	6312	17	3511	$562 \cdot 1$	3274	1206
45 ${ }^{\frac{1}{2}}$	27773	19840	15667	5741	16	3261	488.0	3056	1158
45\%	26446	18496	15325	5300					
					15	3019	$420 \cdot 8$	2842	1170
45	25304	17348	15008	4945	14	2783	$359{ }^{\circ} 9$	2633	1153
$44{ }^{3}$	24300	16349	14713	4653	13	2554	$304 * 9$	2427	1138
44t	23406	15466	14436	4406					1
					12	2331	$255{ }^{\circ} 5$	2225	1123
$44 \pm$	22600	14678	14173	4194	11	2114	211.2	2026	1109
44	21867	13966	13924	4007	10	1901	171.9	$1 S_{31}$	1096
43%	21194	13320	13686	3846					
					9	1694	$137 \cdot 2$	1638	1084
43.	20573	12728	13459	3701	8	1491	$106 \% 9$	1447	1072
$43 \pm$	19997	12183	13241	3570	7	1293	$80 \cdot 7$	1260	1061
43	19459	11679	13031	3453					

IX. (continued).

$\lambda=0.40$					$\lambda=0.40$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
6°	1098	$58 \cdot 5$	1074	1051	34°	5362	1672	6002	960
5	907	$40 \cdot 2$	891	1041	35	5524	1783	6206	964
4	720	$25^{\circ} 4$	709	1033	36	5687	1899	6413	968
3	536	$14^{\circ} \mathrm{I}$	530	1023	37	5851	2021	6623	973
2	354	$6 \cdot 2$	352	1015	38	6017	2148	$6 S_{3} 8$	978
1	176	$1 \cdot 5$	I 75	1007	39	6185	2282	7057	983
0	-	-	-	1000					
1	173	$1 \cdot 5$	174	993	40	6355	2422	7280	989
2	344	6.0	347	987	41	6526	2568	7508	995
3	513	134	519	98 I	42	6700	2722	7740	1001
4	681	23.6	690	975	43	6876	2883	7978	1007
5	846	$36 \cdot 6$	861	970	44	7054	3052	8221	1014
6	1009	52*3	1030	966	45	7235	3230	8470	1021
7	1171	$70 \cdot 8$	1200	961	46	7418	3416	8725	1029
8	1332	91.9	1368	958	47	7604	3613	8987	1036
9	1491	$115 \% 7$	I 537	954	48	7793	3^{819}	9256	1045
10	1649	142.2	1705	950	49	7985	4036	9532	1053
11	1806	171*3	1874	947	50	8180	4264	9816	1062
12	1963	203•I	2042	945	51.	8378	4505	10109	1071
13	2118	237.5	2211	942	52	8581	4759	10411	108I
14	2273	274.6	2380	940	53	8786	5028	10722	109I
15	2427	314.5	2549	938	54	8996	5311	11044	I IOI
16	2580	$357^{\circ} \mathrm{O}$	2719	937	55	9210	5611	11376	III 2
17	2733	402.4	2890	936	56	9428	5928	11721	1123
18	2886	$450 \cdot 5$	3061	935	57	9650	6264	12078	I 135
19	3038	$501 \cdot 5$	3233	935	58	9877	6621	12448	1147
20	3191	555.5	3406	934	59	10109	7000	12834	1159
21	3343	612.5	3580	934	60	10347	7402	13235	1172
22	3495	672.5	3755	935	61	10589	7831	13652	1185
23	3648	$735 \cdot 7$	3932	935	62	10837	8287	14088	I 199
24	3800	802. 1	41 Io	936	63	11091	8775	14544	1213
25	3954	$871 \cdot 9$	4289	937	64	11350	9296	15021	12~7
26	4107	$945 \cdot \mathrm{I}$	4471	939	65	11616	9853	15522	1242
27	4261	1022	4654	940	66	11888	10451	16047	1256
28	4416	1102	4839	942	67	12167	11092	16601	1272
29	4571	1187	5027	945	68	12453	11783	17185	1288
30	4728	1275	5216	947	69	12746	12527	17802	1304
3 I	4885	1368	5409	950	70	13046	13330	18456	1320
32	5043	1464	5603	953	71	13354	14200	19150	1336
33	5202	1566	5801	957	72	13670	15143	19890	1353

IX. (continued).

$\lambda=0.40$					$\lambda=0.44$								
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)				
73°	13993	16169	20681	1372	$43 \frac{1}{1}^{\circ}$	27235	18385	14871	6008				
74	14325	17289	21528	1387	43i	25799	17027	14526	5485				
75	14665	18514	22439	1403	43	24585	15890	14211	5077				
76	15012	19861	23424	1420	423 ${ }^{\text {a }}$	23534	14914	13919	4747				
77	15369	21345	24493	1437	$42 \frac{1}{2}$	22608	14062	13646	4474				
78	15733	22991	25659	1453	421	21780	13307	13389	4241				
7980	16106	24824	26939	1469	42	21033	12631	13145	4041				
	16487	26881	28355	1485		20351	12020	12913	3867				
$\lambda=0.42$					41741$40 \frac{1}{4}$	19146	10953	12481	3575				
					18608	10483	12277	3451					
ϕ	(x)	(y)		(v)		18105	1004	12081	3339				
			(t)			$\begin{aligned} & 40 \frac{1}{2} \\ & 40 \frac{1}{4} \end{aligned}$	1763317190	$\begin{aligned} & 9644 \\ & 9267 \end{aligned}$	11892	3237			
					11710				3143				
					16771		8913	11533	3057				
$443^{\frac{1}{c}}$$443^{\circ}$	2759726202	17820	14937	5419	39								
						15295	7696	10875	2770				
44	25012	16666	14620	5034	38	14064	6716	10283	2549				
					37	13009	5906	9742	2372				
$43{ }^{\frac{8}{1}}$	23977		14325										
433	23059 22237	14796	14048	4456	36	12088	5224	9243	2227				
	22237	14019	13788	4232	35	11270	4641	8779	2104				
					34	10536	4137	8345	1999				
43	21492	13320	13541 13305	4037									
$42 \frac{1}{2}$	20184	12111	${ }_{1}^{13081}$	3716	33 32	9871 9263	3696 3308	7937	1908 1828				
					31	8702	2965	7183	1757				
$\begin{aligned} & 42 \frac{1}{4} \\ & 42 \\ & 41 \end{aligned}$	19603 19062 17212	$\begin{array}{r} 1158 \mathbf{1} \\ 11092 \\ 9454 \end{array}$	$\begin{aligned} & 12865 \\ & 12658 \\ & 11900 \end{aligned}$	$\begin{aligned} & 358 \mathrm{I} \\ & 3460 \end{aligned}$	30	8183	2659	6834	1693				
					$\lambda=0.45$								
$\begin{aligned} & 40 \\ & 39 \\ & 38 \end{aligned}$	$\begin{aligned} & 15721 \\ & 14474 \end{aligned}$	$\begin{aligned} & 8179 \\ & 7151 \\ & 6300 \end{aligned}$	11229 10625 10073	$\begin{aligned} & 2786 \\ & 2566 \end{aligned}$									
3^{8}				2390	ϕ	(x)	(y)	(t)	(v)				
	$\begin{aligned} & 12469 \\ & 11639 \\ & 10893 \end{aligned}$	$\begin{aligned} & 5582 \\ & 4967 \\ & \hline 435 \end{aligned}$	$\begin{aligned} & 9563 \\ & 9090 \\ & 8646 \end{aligned}$	2244									
36				2121					
35				2016									
	10217	$\begin{aligned} & 3970 \\ & 3560 \end{aligned}$	8229	1924	40°	61846347	233524742620	7177 7399	963968				
34													
33 32	9598 9028			18441772	42	6511	2620	7625	974				
3		$\begin{array}{r} 3560 \\ 3197 \end{array}$				$\begin{aligned} & 6678 \\ & 6846 \\ & 7017 \end{aligned}$	$\begin{aligned} & 2772 \\ & 2932 \\ & 3100 \end{aligned}$	$\begin{aligned} & 7856 \\ & 8093 \\ & 8335 \end{aligned}$	$\begin{aligned} & 980 \\ & 986 \\ & 992 \end{aligned}$				
31	84998007	$\begin{aligned} & 2873 \\ & 2583 \end{aligned}$	71056765	$\begin{aligned} & 1708 \\ & 1651 \end{aligned}$	434445								
30													

IX. (continued).

$\lambda=0.45$					$\lambda=0.46$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
46°	7190	3276	8582	998	$42^{\frac{1}{2}}{ }^{\circ}$	26673	17443	14432	6027
47	7365	3460	8837	1005	423	25232	16127	14093	5488
48	7543	3654	9097	1013	42	24019	15031	13783	5070
49	7723	3858	9365	1020	$41 \frac{3}{4}$	22973	14092	13496	4734
50	7906	- 4072	9640	1028	$41 \frac{1}{2}$	22053	13275	13228	4456
51	8092	4298	9924	1037	41 $\frac{1}{4}$	21232	$1255{ }^{2}$	12976	4222
52	8281	4536	10215	1045	41	20492	11906	12737	4019
53	8473	4786	10516	1054	$40 \frac{3}{4}$	19818	11323	12510	3844
54	8669	5051	10827	1063	$40 \frac{1}{2}$	19200	10792	12294	3688
55	8868	5330	11148	1073	$40 \frac{1}{4}$	18629	10306	12087	3550
56	9071	5625	11480	1083	40	18098	9859	11888	3426
57	9278	5937	11825	1093	393	17603	9445	11696	3314
58	9489	6268	12182	1104	$39 \frac{1}{2}$	17139	9061	11511	3211
59	9703	6619	12552	II 15	$39 \frac{1}{4}$	16702	8703	11333	3118
60	9923	6991	12938	1127	39	16290	8367	11160	3032
61	10147	7387	13339	1138	3^{8}	14839	7213	10517	2745
62	10375	7808	13758	1150	37	13630	6284	9938	2526
63	10609	8257	14195	1163	36	12595	5518	9409	2350
64	10847	8735	14653	1176	35	11691	4873	8922	2205
65	11091	9247	15132	1189	34	10890	4322	8468	2083
66	11341	9795	15635	1202	33	10170	3846	8043	1979
67	11596	10382	16165	1216	32	9518	3430	7643	1889
68	11857	11012	16723	1230	31	8921	3064	7264	1810
69	12124	11690	17312	1244	30	8372	2741	6905	1739
70	12397	12422	17936	1259	$\lambda=0.48$				
71	12677	13212	18598	1273					
72	12963	14068	19302	1288					
73	13256	14997	20055	1303	ϕ	(x)	(y)	(t)	(v)
74	13556 13863	16010 17116	20860	1318 1333					
75	13863	17116	21720	1333					
76	14176	18329	22661	1348	$4{ }^{11^{\frac{1}{2}}}$	25913	16376	13970	5959
77	14497	19666	23675	1363	412	24504	15135	13639	5425
78	14825	21144	24781	1377	41	23319	14100	13337	5011
79	15159	22790	25993	1391	$40 \frac{8}{4}$	22296	13216	13058	4679
80	15500	24633	27334	1405	$40 \frac{1}{2}$	21398	12445	12797	4403
					$40 \frac{1}{4}$	20597	11763	12552	4171

IX. (continued).

$\lambda=0.48$					$\lambda=0.5$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$\begin{aligned} & 40^{\circ} \\ & 39^{3} \end{aligned}$	19874 19216	$\begin{aligned} & 11154 \\ & 10605 \end{aligned}$	$\begin{aligned} & 12320 \\ & 12099 \end{aligned}$	$\begin{aligned} & 3972 \\ & 3798 \end{aligned}$		$\begin{aligned} & 14849 \\ & 14998 \end{aligned}$	$\begin{aligned} & 6999 \\ & 6738 \end{aligned}$	$\begin{aligned} & 10246 \\ & 10092 \end{aligned}$	2873 2801 2
$39 \frac{1}{2}$	18613	10105	11888	3644	$36 \pm$	14163	6492	9942	5
$39 \pm$	18055	9647	11686	3508	36	13844	6259	9796	2673
39	17537	${ }_{8} 9226$	$\underset{114936}{11493}$	3385	35	12698	5441 4765	9246	2460
388	17053	8836	11306	3274	34	11715	4765	8744	2290
$38 \frac{1}{2}$	16600	8474	11126	3173	33	10856	4196	8280	2150
$38 \pm$	16174	8136	${ }_{\text {10952 }}^{1078}$	3081 2996	${ }^{32}$	10093	3710	7847	2033
38	15771	7820	10784	2996	31	9408	3290	7442	1932
37	14355 13174 12172	6733 5859	10157	2713 2496	30 20	8787 8218	2924 2602	7059 6697	1844 1767 169
35	${ }_{12163}$	5137	9977	${ }_{2322}$	28	7694	2318	6353	1699
34	11280	4530	8600	2180	27	7208	2065	6025	1638
33	10497	4012	8157	2060	26	6756	1839	5711	1584
32	9794	3563	7742	1957	25	6332	1636	5410	1534
31	9156	3173	7350	1868	24	5933	1455	5120	89
30	8573	2829	6980	1790	23	5557	1291	4840	1448
						5=03	1144	4570	1410
$\lambda=0.5$					$\begin{array}{\|l\|} 21 \\ 20 \\ 19 \end{array}$	$\begin{aligned} & 4862 \\ & 4540 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1010 } \\ & 889.8 \\ & 780 \cdot 9 \end{aligned}$	$\begin{aligned} & 4309 \\ & 4056 \\ & 48 \mathrm{ro} \end{aligned}$	137513431313183
ϕ	(x)	(${ }^{\text {r }}$)	(t)	(v)	$\begin{array}{\|l\|l} 18 \\ 17 \\ 16 \end{array}$	$\begin{aligned} & 3938 \\ & 3656 \\ & 33^{8} 4 \end{aligned}$	$\begin{aligned} & 682 \cdot 3 \\ & 593 \cdot 3 \end{aligned}$	35713338	$\begin{aligned} & 1285 \\ & 1259 \\ & 1235 \end{aligned}$
		1846416628						3111	
41°	28738		1424113839	75 \%6499	15	31232870	${ }^{4740^{\circ} \cdot 1}$	$\begin{aligned} & 2890 \\ & 2673 \end{aligned}$	12131192
40,	26617	18628							
40 咼	24972	15217	13486	5810	14				
$40 \frac{1}{4}$	23630	14076	${ }_{13169}$	5301	13	2627	316.6	2461	1172
40	22497	13120	12878	4904					
39.	$\begin{aligned} & 21517 \\ & 20654 \\ & 19883 \end{aligned}$	1230211587	1260912357	45844319	1110	23912162	$\begin{aligned} & 264: 3 \\ & 217.8 \end{aligned}$	$\begin{aligned} & 2253 \\ & 2049 \end{aligned}$	115311361120
393							176.6	1849	
392		10954	12119	4094		1940			1720
	$\begin{aligned} & 19186 \\ & 11552 \\ & 17969 \end{aligned}$		$\begin{aligned} & 11895 \\ & 11695 \\ & 11477 \end{aligned}$	$\begin{aligned} & 3900 \\ & 3731 \end{aligned}$		1725	140.5	14591268	$\begin{aligned} & 1104 \\ & 1090 \\ & 1076 \end{aligned}$
$\begin{aligned} & 39 \\ & 38 \\ & 3_{2}^{3} \\ & \hline 1 \end{aligned}$		$\begin{array}{r} 10387 \\ 9976 \\ 9410 \end{array}$			8	$\begin{aligned} & \begin{array}{l} 1515 \\ 1310 \end{array} \end{aligned}$	$\begin{aligned} & 109 \cdot 1 \\ & 82^{2} \cdot 2 \end{aligned}$		
				3582					
	$\begin{aligned} & 17430 \\ & 16929 \\ & 16461 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 8983 \\ 8990 \\ 85926 \\ 8226 \end{array} \end{aligned}$	$\begin{aligned} & 11281 \\ & 11093 \end{aligned}$		54	$\begin{gathered} 1111 \\ 916 \\ 725 \end{gathered}$	$\begin{aligned} & 59.5 \\ & 40.7 \\ & 25.7 \end{aligned}$	$\begin{gathered} 1080 \\ 895 \\ \hline 912 \end{gathered}$	106310511040
$\begin{aligned} & 38 \\ & 38 \\ & 37 \end{aligned}$				$\begin{aligned} & 3449 \\ & 3330 \end{aligned}$					
379								712	1040
	$\begin{aligned} & 16022 \\ & 15609 \\ & 15219 \end{aligned}$	788875727277	$\begin{aligned} & 10737 \\ & 10568 \\ & 10405 \end{aligned}$	$\begin{aligned} & 3123 \\ & 3033 \\ & 2949 \end{aligned}$	3210	5383561760	14.26.21.50	531 352 175 0	$\begin{aligned} & 1029 \\ & 1019 \\ & \text { 1090 } \\ & 1000 \end{aligned}$
371									
37									

IX. (continued).

$\lambda=0.5$					$\lambda=0.5$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
I°	173	1×5	174	992	40°	6024	2254	7079	940
2	343	$6 \cdot 0$	346	984	41	6179	2386	7295	944
3	511	13.3	517	976	42	6335	2525	7516	949
4	676	23.4	688	969	43	6493	2669	7741	954
5	839	$36 \cdot 2$	857	963	44	6653	2821	7971	959
6	1000	$5{ }^{1} 6$	1025	956	45	6814	2980	8207	965
7	1158	69.7	1192	951	46	6978	3146	8448	97 I
8	1315	90.4	I 359	945	47	7143	3321	8695	977
9	1470	113.6	1526	940	48	7311	3504	8948	984
10	1624	139.3	1692	936	49	7481	3696	9208	990
II	1776	167.5	1857	932	50	7653	3898	9475	998
12	1927	198.2	2023	928	51	7828	4110	9750	1005
13	2077	23 r 3	2189	924	52	8006	4333	10033	IOI3
14	2225	2670	2354	921	53	8186	4569	10324	102I
15	2373	305.2	2520	918	54	8370	4816	10625	1029
16	2520	345.9	2686	916	55	8556	5078	10936	1038
17	2666	389.2	2853	913	56	8746	5354	11257	1047
18	2811	435°	3020	912	57	8939	5645	11589	1056
19	2956	483.4	3187	910	58	9135	5954	11934	1066
20	3100	534.5	3356	909	59	9335	6280	12292	1076
2 I	3244	588.3	3525	907	60	9539	6627	12663	1086
22	3388	644.9			61	9747	6994	13050	1097
23	3531	704.3	3866	906	62	9959	7385	13453	1108
24	3674	$766 \cdot 6$	4039	906	63	10176	7800	13874	III9
					64	10396	8243	14314	1131
25	3818	831.9	4213	906	65	10622	8716	14775	1142
26	3961	$900 \cdot 3$	4388	907	66	10852	9221	15258	1155
27	4104	971.8	4565	907	67	11087	9762	15767	1167
28	4248	1047	4743	908	68	11327	10342	16302	1179
29	4392	I 125	4924	909	69	11573	10965	16867	1192
30	4537	1207	5106	9 II	70	11824	11636	17464	1205
	4682				71	12080	12361	18098	1218
32	4827	1292 1381	5478	912	72	12342	13144	18772	1232
33	4974	1474	5668	917					
					73	12610	13994	19491	1245
34	5121	1572	5860	919	74 75	12883 I 3163	14918 15926	22261	1259 1272
35	5268	1673	6055	922	75	+3163	I5926		12
36	5417	1779	6253	925	76	13448	17030	21980	1286
					77	13740	18245	22946	1299
37 38	5567 5718	1890 2006	6454 6658	928	78	14037	19588 21080	23999	1312 1325 1
39	5870	2127	6867	932 936	80	14650	22750	26430	1337

IX．（continued）．

$\lambda=0.55$					$\lambda=0.6$				
中	（ x ）	（y）	（ t ）	（v）	ϕ	（x）	（ y ）	（t）	（v）
$38 \frac{1}{2}^{\circ}$	24976	14445	12857	6390	$3^{633^{\circ}}$	26084	14566	12462	7665
$38{ }^{4}$	23391	13190	12522	5698	$36 \frac{1}{2}$	23919	12956	12080	6500
38	22103	12178	12220	5189	$36 \pm$	22295	11760	11749	5740
378 ${ }^{\text {P }}$	21018	11335	11945	4795	36	20996	10812	11455	5196
$37 \frac{1}{2}$	20082	10613	11690	4478	353	19914	10029	11187	4780
$37 \frac{1}{4}$	19258	9984	11451	4216	$35^{\frac{1}{2}}$	18986	9364	10939	4450
37	18524	9428	11227	3995	35	18175	8788	10709	4179
369	17861	8931	11014	3804	35	17455	8281	10492	3952
$36 \frac{1}{2}$	17257	8482	10812	3638	34爯	16807	7830	10287	3758
364	16703	8074	10619	3492	$34 \frac{1}{\frac{1}{2}}$	16219	7424	10092	3589
36	16191	7700	10434	3361	$34 \frac{1}{4}$	15680	7055	9907	3441
35 星	15715	7356	10256	3244	34	15183	6718	9729	3310
$35 \frac{1}{2}$	15271	7037	10085	3138	33 ${ }^{\text {a }}$	14723	6409	9558	3192
354	14854	6742	9919	3042	$33 \frac{1}{2}$	14293	6123	9394	3085
35	14462	6466	9759	2954	334	13891	5858	9235	2989
34	13091	5523	9166	2663	33	13512	5611	9082	2901
33	11957	4772	8632	2443	32	12193	4770	8512	2612
32	10991	4156	8145	2268	31	11103	4102	8001	2393
31	10149	3640	7696	2126	30	10176	3556	7534	2220
30	9405	3202	7278	2006	29	9371	3100	7104	2080
29	8739	2824	6886	1905	28	8659	2713	6703	1963
28	8135	2496	6517	1817	27	8021	${ }_{2}^{2381}$	6326	1863
27	7583	2209	6167	1740	26	7444	2093	5972	1776
26	7076	1956	5834	1672	25	6917	1841	5636	1701
25	6606	1732	5517	1611	24	6431	1620	5316	1634
24	6168	1532	5213	1557	23	5982	1425	5011	1575
23	5759	1354	4922	1507	22	5564	1252	4718	1522
22	5374	1195	4641	1463	21	5173	1097	4437	1474
21	5011	1052	4371	1422	20	4805	959＊9	4167	1430
20	4668	923.3	4109	1384	19	4458	837°	3906	1390
19	4342	807.8	3856	1350	18	4130	727.1	3653	1354
18	4031	703.9	3611	1320	17	3818	628.8	3409	1320
17	3735	6104	3372	1289	16	3521	$540 \cdot 8$	3171	1289
16	3451	526.4	3140	1261	15	3238	462．1	2940	1260
15	3179	$450 \cdot 9$	2914	1236	14	2966	391.9	2716	1234
					13	2706	329.4	2496	1209

IX. (continued).

$\lambda=0.6$					$\lambda=0.6$				
\$	(x)	$\left(y^{\prime}\right)$	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
12°	2456	273.9	2282	1186	28°	4096	996.7	4654	877
11	2215	224.8	2073	I 164	29	4230	1070	4829	877
10	1982	181'7	1868	I 144	30	4365	I 146	5005	878
9	1757	144* 1	1667	I 126	31	4499	1225	5183	879
8	1540	111.5	1470	1108	32	4634	1308	5363	880
7	1329	83.7	1277	1091	33	4769	1394	5545	881
6	1124	$60 \cdot 4$	1086	1076	34	4905	1484	5729	883
5	924	$41 \cdot 2$	899	1061	35	5041	1578	5916	885
4	730	25.9	714	1047	36	5178	1675	6106	887
3	541	14.3	532	1034	37	5316	1777	6299	889
2	357	$6 \cdot 3$	353	1022	38	5454	1883	6494	892
1	176	1-5	175	IOII	39	5593	1994	6694	894
0	0	\bigcirc	0	1000					
1	173	I.5	174	990	40	5734	2109	6897	898
2	342	$5 \cdot 9$	346	980	41	5875	2230	7103	901
3	508	$13 \cdot 2$	516	971	42	6017	2356	7314	905
4	672	23.2	685	963	43	6160	2487	7528	909
5	832	$35^{\circ} 8$	853	955	44	6305	2625	7747	913
6.	990	$51^{\circ} \mathrm{O}$	1020	947	45	645 I	2768	7971	917
7	1146	$68 \cdot 7$	1186	940	46	6599	2918	8200	922
8	1299	$88 \cdot 9$	1351	934	47	6748	3076	8435	927
9	1450	I II 5	1515	928	48	6899	3240	8675	932
10	1599	136.5	1679	922	49	7051	3413	8921	938
II	1747	163.8	1842	917	50	7206	3593	9174	944
12	1893	193.5	2005	912	51	7362	3783	9434	950
13	2037	225.5	2167	907	52	7521	3982	9701	956
14	2180	259.8	2330	903	53	7681	4192	9976	963
15	2322	296.5	2493	899	54	7844	4412	10259	970
16	2462	$335 \cdot 5$	2655	896	55	8009		10552	977
17	2602	$376 \cdot 8$	2818	893	56	8177	4888	10854	984
18	2741	$420 \cdot 5$	2981	890	57	8347	5145	III66	992
19	2878	466.6	3144	887	58	8520	5417	11490	1000
20	3015	$515 \cdot 1$	3309	885	59	8696	5704	11825	1008
21	3152	$566 \cdot 1$	3473	883	60	8875	6008	12174	1016
22	$32 \% 8$	619.6	3639	881	61	9057	6330	12536	1026
23	3423	$675 \cdot 7$	3805	880	62	9242	6671	12912	1035
24	3558	7343	3972	879	63	9431	7033	13305	1044
25	3693	$795 * 7$	4141	878	64	9623	7418	13715	1054
26	3827	859.9	43 II	878	65	9819	7829	14145	1064
27	3962	$926 \cdot 8$	4482	877	66	10018	8266	14595	1074

IX. (continued).

$\lambda=0.6$					$\lambda=0.65$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
67°	10221	8734	15067	1084	27°	8546	2590	6508	2016
68	10428	9234	15564	1095	26	7877	2256	6126	1904
69	10640	9770	16088	1105	25	7276	1970	5768	ISos
70	10855	10346	16642	1116	24	6732	1722	5429	1725
71	11075	10967	17228	1127	23	6235	1505	5108	1653
72	11298	11636	17852	1138	22	5776	1315	4802	1589
73	11527	12361	18516	1150	21	5352	1148	4509	1532
74	11760	13147	19226	1161	20	4956	1000	4228	14^{81}
75	11997	14004	19988	1172	19	4585	$868 \cdot 8$	3959	1434
76	12239	14940	20809	1183	18	4237	752^{1}	3699	1392
77	12486	15968	21698	1194	17	3908	$648 \cdot 4$	3447	1354
78	12737	17102	22666	1205	16	3596	5560	3204	1319
$\begin{aligned} & 79 \\ & 80 \end{aligned}$	12993	18360	23726	1216	15	3300	473.9	2968	1287
	13253	19765	24897	1226					
$\lambda=0.65$					$\lambda=0.7$				
	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$\begin{aligned} & 342^{\circ}{ }^{\circ} \\ & 34 \frac{1}{4} \\ & 34 \end{aligned}$	21805	10898	11170		331°	24731	1234210709	1119710So3	84436832
				$\begin{aligned} & 6030 \\ & 5379 \end{aligned}$					
	20392	9932 9153	10869		32 ${ }^{3}$	20.81	9579	10475	5889
	19244	9153	10599	4901	$3=\frac{1}{2}$	19135	8717	10187	5250
$\begin{aligned} & 33 \frac{3}{4} \\ & 33 \frac{1}{4} \\ & 33 \frac{4}{4} \end{aligned}$	18276	$\begin{aligned} & 8504 \\ & 7948 \end{aligned}$	10352	4530	$32 \frac{1}{4}$	18041	$\begin{aligned} & \mathrm{So24} \\ & 7445 \end{aligned}$	$\begin{aligned} & 9928 \\ & 9692 \end{aligned}$	478244204128
	17441		10122	4231	32	17120			
	16705	7463	9908	3985	31 尔	16324	6951	9472	
$\begin{aligned} & 33 \\ & 323 \\ & 32 \frac{1}{2} \\ & 3, \end{aligned}$	16049	703566526307	$\begin{aligned} & 9706 \\ & 9514 \end{aligned}$	$\begin{aligned} & 3776 \\ & 3597 \end{aligned}$	$\begin{aligned} & 31 \frac{7}{2} \\ & 3{ }^{1} \frac{1}{4} \end{aligned}$	$\begin{aligned} & 15625 \\ & 15000 \end{aligned}$	$\begin{aligned} & 6520 \\ & 6139 \end{aligned}$	92679074	388736833508
	15457								
	14917		9332	3440	31	14437	5799	SS91	
$\begin{aligned} & 32 \ddagger \\ & 32 \\ & 319 \end{aligned}$	14421	$\begin{aligned} & 5992 \\ & 5705 \\ & 5440 \end{aligned}$	$\begin{aligned} & 9158 \\ & 8991 \\ & 8531 \end{aligned}$	33023180	$\begin{aligned} & 303 \\ & 30 \frac{1}{2} \\ & 30.4 \\ & 30 . \end{aligned}$	$\begin{aligned} & 13924 \\ & 13452 \\ & 13017 \end{aligned}$	$\begin{aligned} & 5492 \\ & 5213 \\ & 4957 \end{aligned}$	$\begin{aligned} & 8716 \\ & 8550 \\ & 8390 \end{aligned}$	33553221
	13963								
	13538			3069					3101
$31 \frac{1}{2}$31431	13140	$\begin{aligned} & 5195 \\ & 4968 \\ & 4756 \end{aligned}$	$\begin{aligned} & 8676 \\ & 8527 \\ & 8382 \end{aligned}$	$\begin{aligned} & 2969 \\ & 2879 \\ & 2796 \end{aligned}$	$\begin{aligned} & 30 \\ & 299 \\ & 29 \frac{1}{2} \\ & 29 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 12612 \\ & 12234 \\ & 11879 \end{aligned}$	$\begin{aligned} & 4722 \\ & 4505 \\ & 4303 \end{aligned}$	$\begin{aligned} & 8236 \\ & 8088 \end{aligned}$$7945$	$\begin{aligned} & 2993 \\ & 2896 \\ & 2807 \end{aligned}$
	12767								
	12416								
$\begin{aligned} & 30 \\ & 29 \\ & 28 \end{aligned}$	11187	$\begin{aligned} & 4031 \\ & 3455 \\ & 2984 \end{aligned}$	$\begin{aligned} & 7845 \\ & 7301 \\ & 6918 \end{aligned}$	$\begin{aligned} & 2522 \\ & 2315 \\ & 2150 \end{aligned}$	29.42928	$\begin{aligned} & 11545 \\ & 11230 \\ & 10118 \end{aligned}$	$\begin{aligned} & 4115 \\ & 3940 \\ & 3336 \end{aligned}$	$\begin{aligned} & 7807 \\ & 7672 \\ & 7171 \end{aligned}$	$\begin{aligned} & 2726 \\ & 2652 \\ & 2404 \end{aligned}$
	10170								
	9302								

IX. (continued).

$\lambda=0 \cdot 7$					$\lambda=0 \cdot 7$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(71
27°	9190	2852	6718	2214	13°	1999	$220{ }^{\circ}$	2147	891
26	8393	2455	6301	2063	14	2137	253.1	2306	886
25	7696	2122	5915	1938	15	2274	288.3	2466	881
24	7077	1840	5553	1833	16	2409	325'7	2625	877
23	6519	1597	5213	1743	17	2542	365.3	2784	873
22	6013	1388	4891	1666	18	2675	407.1	2943	869
21	5548	1205	4585	1597	19	$2 \mathrm{So6}$	$451^{\circ} \mathrm{O}$	3103	866
20	5120	10+4	4293	1537	20	2937	$497 \cdot 2$	3263	863
19	4722	903.6	4014	1483	21	3066	5457	3424	860
18	4351	7794	3745	1435	22	3195	596.4	3585	858
17	4003	$669 \cdot 6$	3487	1391	23	3323	$649 \cdot 4$	3747	835
16	3675	572.4	3237	1351	24	3451	704*9	3909	854
15	3365	486.5	2996	1314	25	3578	$762 \cdot 8$	4073	852
14	3071	$410 \cdot 5$	2762	1281	26	3704	823.2	4238	851
13	2792	$343 \cdot 4$	2535	1250	27	3831	886. I	4403	850
12	2525	284.2	2314	1222	28	3957	951*7	4571	849
11	2270	2324	2099	1196	29	4082	1020	4739	849
10	2026	I $87 \cdot 1$	I 889	1171	30	4208	1091	4909	849
9	1791	147.8	1683	1148	31	4334	II 65	5081	849
8	I 565	$114{ }^{\circ} \mathrm{O}$	1483	I 127	32	4460	1242	5255	849
7	1 347	$85 \cdot 3$	1286	1107	33	4585	I 323	5431	850
6	I 137	$6 \mathrm{I} \cdot 3$	1093	1039	34	4712	1406	5609	851
5	933	41×7	901	1072	35	4838	1493	5789	852
4	736	$26 \cdot 2$	717	1055	36	4965	1583	5972	853
3	544	14.4	534	1040	37	5092	1677	6157	854
2	358	$6 \cdot 3$	354	1026	38	5219	1775	6345	856
1	177	I•5	176	1013	39	5348	1877	6536	858
0	\bigcirc	0	\bigcirc	1000					
1	172	1.5	173	988	40	5477	1984	6731	861
2	341	$5 \cdot 9$	345	977	41	5606	2094	6928	863
3	506	13^{1} I	515	967	42	5737	2210	7130	866
4	657	$23^{\circ} 0$	683	957	43	5868	2330	7335	869
5	825	35.4	850	947	44	6001	2456	7545	872
6	980	$50 \cdot 3$	IOI5	939	45	6134	2587	7759	876
7	1133	67.7	1179	931	46	6268	2724	7977	8So
8	1283	87.4	1342	923	47	6404	2867	8201	884
9	1430	109.5	1504	916	48	654	3016	8430	888
10	1575	133.8	1666	909	49	6679	3173	8664	893
II	1719	$160^{\circ} 3$	1827	903	50	6819	3336	8905	897
12	I 860	189* 1	1987	897	51	6961	3508	9152	902

IX. (continued).

$\lambda=0.7$					$\lambda=0.75$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
52°	7104	3688	9405	908	29 9°	14298	5528	8587	3678
53	7248	3876	9666	913	$29 \frac{1}{2}$	13737	5209	8407	3496
54	7395	4074	9935	919	$29 \frac{1}{4}$	13228	4923	8236	3338
55	7543	4282	10212	925	29	12762	4663	8073	3199
56	7693	4501	10498	932	283	12333	4426	7917	3076
57	7846	4732	10794	${ }_{93} 8$	28.	11935	4209	7766	2966
58	8000	4974	11100	945	$28 \ddagger$	11564	4009	7622	2867
59	8157	5231	11417	952	28	11217	3823	7482	2777
60	8317	5501	11745	959	27	10014	3196	6966	2486
61	8479	5787	12087	967	26	9030	2706	6503	2269
62	8643	6090	12442	975	25	8199	2309	6081	2100
63	8810	6412	12812	983	24	7480	1981	5692	1964
64	8980	6752	13198	991	23	6846	1705	5329	I850
65	9153	7115	13601	999	22	6280	1470	4989	1755
66	9329	7501	14024	1008	21	5768	1269	4667	1672
67	9508	7912	14467	1017	20	5301	1094	4363	1600
68	9690	8352	14933	1026	19	4872	942°	4072	1537
69	9875	8822	15424	1035	18	4474	809.I	3795	1481
70	10064	9327	15942	1044	17	4105	692.5	3528	1430
71	10256	9870	16491	1054	16	3759	590.0	3272	1385
72	10451	10454	17073	1063	15	3434	$499{ }^{\circ}$	3025	1344
73	10651	11086	17693	1073					
74 75	10853 11060	11771 12516	18356 19066	1083 1092	$\lambda=0.8$				
75	11060	12516	19066						
76	11270	13328	19831	1102					
77	11483	14219 15200	20659 21560	I111	ϕ	(x)	(y)	(t)	(2)
79	11922	16288	22546	1130					
So	12146	17501	23633	H139	30°	20497	S850	9720	6999
					29^{9}	18699	7817	9398	5914
$\lambda=0.75$						17357	7054	$\begin{aligned} & 8871 \\ & \$ 645 \\ & 8437 \end{aligned}$	5214
					$\begin{aligned} & 29 \ddagger \\ & 29 \\ & 283 \end{aligned}$	$\begin{aligned} & 16286 \\ & 15395 \\ & 14633 \end{aligned}$	$\begin{aligned} & 6451 \\ & 5955 \\ & 5534 \end{aligned}$		$\begin{aligned} & 4714 \\ & 4335 \\ & 4033 \end{aligned}$
ϕ	(x)	(y)	(t)	(v)					
					$28 \frac{1}{2}$$28 \frac{1}{4}$28	$\begin{aligned} & 13967 \\ & 13376 \\ & 12845 \end{aligned}$	51714851	82438060	$\begin{aligned} & 3787 \\ & 3580 \\ & 3404 \end{aligned}$
31^{1}	18513	Soo7	9693	5376			4567	7887	
$30{ }^{\text {a }}$	17376		9433	4855		12362	4507		$\begin{aligned} & 3251 \\ & 3116 \end{aligned}$
$30 \frac{1}{2}$	16433	6768	9197	4460	279		4312	7723	
$30 \pm$	15626	6296	8950	4147	$27 \frac{1}{2}$	11920	4081	7566	
30	14922	$55^{\text {S }} 7$	8777	${ }_{3} 892$	$27 \pm$	11513	3870	7416	2997

IX. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\lambda=0.8\)} \& \multicolumn{5}{|c|}{\(\lambda=0: 85\)} \\
\hline \(\phi\) \& (\(x\)) \& (y) \& (t) \& (v) \& \(\phi\) \& (x) \& (y) \& (t) \& (v) \\
\hline \(27^{\circ}\) \& 11135 \& 3676 \& 7272 \& 2891 \& \(283^{\circ}\) \& 16942 \& 6586 \& 8740 \& 5392 \\
\hline 261 \& 10783
10452 \& \({ }_{3332}^{3498}\) \& 7133
6999 \& 2795
2707 \& \({ }_{27}^{28}\) \& 15809
14885 \& \({ }_{5491}^{5981}\) \& 8488
8260 \& 4402 \\
\hline \(26 \pm\) \& 10142 \& 3178 \& 6869 \& 2628 \& \(27 \frac{1}{2}\) \& 14103 \& 5082 \& 8052 \& 4075 \\
\hline 26 \& 9849 \& 3035 \& 6743 \& 2554 \& 274 \& 13426 \& 4732 \& 7859 \& 3810 \\
\hline 259 \& 9572 \& 2900 \& 6621 \& 2487 \& 27 \& 12830 \& 4426 \& 7677 \& 3591 \\
\hline \(25 \frac{1}{2}\) \& 9309 \& 2774 \& 6502 \& 2425 \& \(26{ }^{\text {a }}\) \& 12296 \& 4156 \& 7506 \& 3406 \\
\hline 254 \& 90599 \& \({ }_{2555}^{2655}\) \& \({ }_{6386}^{6274}\) \& \({ }_{2367}^{2367}\) \& \({ }_{26 \pm}^{26 \frac{1}{2}}\) \& \({ }_{11814}^{11374}\) \& 3914
3696 \& 7344
7189 \& \begin{tabular}{l}
3246 \\
3106 \\
\hline
\end{tabular} \\
\hline 25 \& 8820 \& 2543 \& 6274 \& 2312 \& \& 11374 \& \& \& \\
\hline 24 \& 7962 \& 2152 \& 5849 \& 2127 \& 26 \& 10970 \& 3497 \& 7042 \& 2984 \\
\hline \({ }_{22}^{23}\) \& 7228
6585 \& 1832
1566 \& 5458
5096 \& 1980
1860 \& \& 10596
10248 \& 3316
3149 \& \({ }_{6}^{6900}\) \& 2874
2775 \\
\hline 20 \& 5502 \& 1150 \& 4437 \& 1672 \& \({ }_{25}^{254}\) \& 969 \& 2852 \& 6504 \& 2605 \\
\hline 19 \& 5036 \& 984.5 \& 4135 \& 1597 \& 24 \& 8555 \& 2367 \& 6031 \& 2340 \\
\hline 18 \& 4609 \& 841.6 \& 3847 \& 1532 \& 23 \& 7682 \& 1987 \& 5605 \& 2142 \\
\hline 17 \& 4215 \& 7173 \& 3572 \& 1474 \& 22 \& 6940 \& 1679 \& 5216 \& 1986 \\
\hline 16 \& 3849 \& 608.9 \& 3309 \& 1422 \& 21 \& 6296 \& 1426 \& 4855 \& 1860 \\
\hline 15 \& 3507 \& 514.2 \& 3055 \& 1376 \& 20 \& 5726 \& 1213 \& 4519 \& \\
\hline 14 \& 3187 \& \({ }^{431^{1} 3}\) \& \({ }_{2811}^{285}\) \& \(1 \begin{aligned} \& 1334 \\ \& 1296\end{aligned}\) \& 19
18 \& 5217
4755 \& \& \({ }_{3}^{4202}\) \& 1665
1589 \\
\hline 13 \& 2886 \& 358.9 \& 2575 \& 1296 \& 18 \& 4755 \& 8775 \& 3903 \& 1589 \\
\hline 12 \& 2601 \& 295.6 \& 2347 \& 1261 \& 17 \& 4333 \& 744 \& 3619 \& 1522 \\
\hline 11 \& 2330 \& \(240^{\circ} 6\) \& 2125 \& 1229 \& 16 \& 3945 \& 629:3 \& 3347 \& 1463 \\
\hline ı0 \& 2073 \& 192.9 \& 1909 \& 1200 \& 15 \& 3585 \& 529.5 \& 3087 \& 1410 \\
\hline 9 \& 1827
1592 \& 151.8
116.7 \& 1700
1495 \& \({ }_{1148}^{1178}\) \& \& \& =0. \& \& \\
\hline 7 \& 1367 \& \(87^{\circ}\) \& 1295 \& 1124 \& \& \& - \& \& \\
\hline 6 \& 1151 \& \(62 \cdot 3\)
\(42 \cdot 3\) \& 1099

908 \& 1103
1083 \& ϕ \& (x) \& (y) \& (t) \& (v)

\hline 5
4 \& 943
742 \& ${ }_{26}{ }^{22 \cdot 3}$ \& 720 \& ${ }_{1064}^{1083}$ \& \& \& \& \&

\hline \& 547 \& 14.6 \& 535 \& 1046 \& 271° \& 19528 \& \& 8909 \& 7561

\hline 2 \& 359 \& $\stackrel{6}{1} \cdot 6$ \& 354 \& $1 \mathrm{lo30}$ \& ${ }_{27}^{274}$ \& 17512
16090 \& ${ }^{6658}$ \& ${ }_{8}^{8575}$ \& 6150
5315

\hline - \& $\stackrel{177}{0}$ \& ${ }_{0}^{1} 6$ \& , ${ }_{0}^{176}$ \& 1015 \& ${ }_{26}^{27}$ \& 16090
14992 \& 5930
5373 \& 8296 \& ${ }_{4747}^{5315}$

\hline \& \& \& \& \& 26. \& 14996 \& 4924 \& 7829 \& 4328

\hline \& \& \& \& \& $26 \pm$ \& \& 4550 \& 7627 \& 4003

\hline \& \& \& \& \& $\xrightarrow{26}$ \& ${ }_{12113}^{12688}$ \& \[
$$
\begin{aligned}
& 4229 \\
& 3950
\end{aligned}
$$

\] \& ${ }_{7262}^{7439}$ \& \[

$$
\begin{aligned}
& 3742 \\
& 3525
\end{aligned}
$$
\]

\hline \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

IX. (continued).

$\lambda=0.9$					$\lambda=0.9$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(${ }^{\text {) }}$	(t)	(v)
$25 \frac{1^{\circ}}{}$	11599	3704	7097	3342	$7{ }^{\circ}$	1109	65.8	1167	912
254	11135	3484	6939	3184	8	1253	$84 \cdot 7$	1326	902
25	10712	3285	6789	3047	9	1393	1057	1485	893
$24 \frac{9}{7}$	10323	3105	6645	2926	10	1531	128.8	1642	884
$24 \frac{1}{2}$	9963	2940	6508	$25^{5} 8$	11	1666	153.8	1798	876
24.	9629	2789	6375	2721	12	1799	$180 \cdot 8$	1953	S69
24	9316	2649	6247	2633	13	1930	$209 \cdot 8$	2108	S61
23 年	9023	2519	6123	2553	14	2058	$240 \cdot 6$	2262	S55
$23 \frac{1}{2}$	8747	2398	6004	2480	15	2185	273.4	2416	S_{49}
$23 \ddagger$	8486	2285	5887	2413	16	2310	308.0	2569	843
23	8238	2179	5774	2351	17	2433	$344 \cdot 5$	2722	$\mathrm{S}_{3} 8$
22	7361	ISI6	5351	2142	18	2555	$382 \cdot 9$	2875	833
$=1$	6621	1524	4965	1981	19	2675	423.1	3027	828
20	5981	1285	4608	1851	20	2794	$465 \cdot 3$	3180	824
19	5418	1085	4276	1743	21	2912	$509 \cdot 3$	3333	S20
18	4916	917.1	3963	1652	22	3028	555*3	3487	816
17	4462	$774{ }^{\circ}$	3668	1574	23	3144	$\mathrm{CO}_{3} 3$	3641	813
16	4049	6514	3388	1506	24	3259	653°	3795	810
15	3668	$545 \cdot 8$	3121	1447	25	3373	705.2	3950	807
14	3316	$454 \cdot 8$	2865	1394	26	3487	7593	4106	805
13	2989	$376 \cdot 1$	2619	1347	27	3599	815.5	4263	SO3
12	2682	30S. 1	2382	1304	28	3711	873.9	4420	Sor
11	2394	2495	2153	1266	29	3 S 23	$934 \cdot 5$	4579	799
10	2123	199* 1	1932	1230	30	3934	997.5	4739	798
9	1865	156.0	1717	1198	31	4045	1063	4901	797
8	1621	1194	1508	1169	32	4156	1131	5064	796
7	1388	88.8	1305	1142	33	4267	1201	5228	796
6	1165	63.4	1106	1117	34	4377	1274	5395	795
5	952	$42 \cdot 8$	912	1094	35	4488	1350	5563	795
4	747	26.7	723	1072	36	4598	1429	5734	795
3	550	14.7	537	1052	37	4708	1511	5907	796
2	361	6.4	355	1034	38	4819	1595	6082	796
1	177	$1 \cdot 6$	176	1016	39	4930	1684	6259	797
o	0	\bigcirc	-	1000					
1	172	$1 \cdot 5$	173	985	40	5041	1775	6440	799
2	339	5.9	344	971	41	5153	1570	6623	Soo
3	501	12.9	512	957	42	5264	1969	6810	Sor
	659	22.6	678	945	43	5377	2072	7000	So3
5	813	$34^{\circ} 7$	843	933	44	5490	2180	7193	805
6	963	$49^{\circ} 1$	1006	922	45	5603	2291	7391	Sos

IX. (continued).

$\lambda=0.9$					$\lambda=0.95$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
46°	5717	2407	7592	810	26°	16125	5758	8057	5724
47	5832	2528	7798	813	254	14878	5153	7798	5007
48	5948	2655	8008	816	25立	13895	4682	7569	4506
49	6065	2787	8223	819	254	13084	4297	7361	4129
50	6182	2924	8444	823	25	12395	3974	7169	3832
51	6301	3068	8670	826	244	11794	3696	6991	3592
52	6421	3219	8902	830	$24 \frac{1}{2}$	11263	3452	6823	3391
53	6541	3376	9141	834	$24 \frac{1}{4}$	10787	3236	6665	3220
54	6664	3541	9386	838	24	10355	3043	6514	3073
55	6787	3714	9639	843	23 年	9961	2868	6371	2944
56	6912	3895	9899	847	$23 \frac{1}{2}$	9597	2709	6234	2830
57	7038	4086	10168	852	234	9261	2564	6102	2727
58	7165	4286	10446	857	23	8947	2430	5974	2636
59	7294	4497	10733	863	22	7872	1984	5506	2343
60	7425	4719	11031	869	21	7002	1641	5087	2129
61	7558	4953	11340	874	20	6273	1368	4706	1964
62	7692	5200	11661	880	19	5645	1146	4355	1833
63	7828	5462	11995	886	18	5094	961.5	4028	1724
64	7966	5739	12343	893	17	4603	806.5	3721	1633
65	8107	6033	12706	899	16	4160	$675 \cdot 3$	34.31	1555
66	8249	6345	I 3086	906	15	3757	$563^{\prime} 4$	3156	1487
67	8393	6677	13484	913					
68	8540	7031	I 3902	920					
69	8689	7409	14342	927					
70	8840	7814	14806	934					
71	8993	8247	15296	942					
72	9149	8714	15817	949					
73	9308	9217	16370	958					
74	9469	9761	16960	964					
75	9633	10351	17593	972					

IX. (continued).

$\gamma=1{ }^{\circ} 0$					$\lambda=I^{\prime} \cdot 1$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
255°	17685	6312	8079	7314	$23 \pm^{\circ}$	15625	5037	7305	6688
25	15804	5430	7763	5931	23	14026	4353	7018	5513
2.4	14484	4818	7499	5118	22.4	12875	3868	6775	4797
$24 \frac{1}{2}$	13467	4351	7267	4567					
24	12638	3976	7059	4162	$22 \frac{1}{2}$	11976	3493	6561	4302
		3664	6868	3848	222	11239	3189	6367	3934
24	11940	3684	6690			10614	2935	6189	3646
23,	10806	33164	6524	3386	21年	10071	2717	6023	3413
					$21 \frac{1}{2}$	9592	2527	5867	3219
$23 \pm$	10332	2959	6368	3210	219	9163	2359	5720	3055
23	9904	2777	6219	3058					
22.4	9514	2612	6077	2926	21	8775	2209	5581	2913
					203	8421	2074	5448	2700
$22 \frac{1}{2}$	9156	2.462	5942	2809	$20 \frac{1}{2}$	8094	1951	5320	2680
$22 \ddagger$	8824	2326	5812	2705					
22	8516	2201	5687	2612	$20 \pm$	7792	1839	5198	2583
					20	7511	1736	5080	2496
218	S22S	2085	5566	2528	193	7248	1641	4966	2416
21.2	7957	1978	5449	2451					
214	7703	1878	5336	2381	$19 \frac{1}{2}$	7002	1553	4856	2343
					$19 \pm$	6769	1471	4749	2277
21	7462	1785	5226	2317	19	6549	1395	4645	2216
20	6613	1468	4^{815}	2102					
19	5903	1216	4442	1938	IS	5771	1135	4257	2013
					17	5119	$928 \cdot 8$	3903	1857
18	5293	${ }^{1012}$	4098	1806	16	4558	$762 \cdot 5$	3577	1732
17	4758	$842 \cdot 8$	3777	1698					
16	4281	7016	3477	1608	15	4066	$625 \cdot 8$	3273	1630
	3852	$582 \cdot 5$	3193	1530	14 13	3627 3231	$512 \cdot 3$ $417 \cdot 2$	2987 2717	1544 1470
14	3461	481.5	2923	1463			4172	2717	1470
13	3103	395.4	2666	1404	12	2870	337.2	2460	1406
					11	2539	269.8	2215	1350
12	2772	321.9	2419	1352	10	2233	213°	1979	1300
11	2464	259.2	2183	1306					
10	2176	$205 \cdot 8$	1955	126.	9	1948	165.3	1753	1256
					8	1682	125.5	1535	1216
9	1905	160.5	1735	1226	7	1432	$92 \cdot 5$	1325	IISo
8	1650	122.4	1521	1192					
7	1409	$90 \cdot 6$	1314	1160	6	1195	65.6	1120	11.47
					5	972	44°	922	1117
6	1180	6.45	1113	1132	4	759	27.3	729	10,9
5	962	43.4	917	1105					
4	753	27°	726	$10{ }^{1}$	3	557	14.9	5.9	1065
		14.8			2	363	6.4	356	1041
3	362	6.4	535	1038	1	170	1.6	176	1020
1	${ }_{17}{ }^{8}$	1.6	176	1018		171	1.5	${ }^{\circ} 73$	1000 981
-		-	\bigcirc	1000	2	336	$5 \cdot 3$	343	964
					3	496	12.8	510	$94{ }^{\text {S }}$

IX. (continued).

$\lambda=I^{1} \mathrm{I}$					$\lambda=1 \cdot \mathrm{I}$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
4°	650	$22 \cdot 2$	674	933	43°	4977	1869	6714	751
5	800	$34^{\circ} \mathrm{O}$	836	919	44	5075	1962	6895	752
6	946	48°	996	906	45	5174	2059	7079	753
7	1087	$64 \cdot 1$	1155	894	46	5273	2160	7267	755
8	1224	$82 \cdot 2$	1311	882	47	5373	2265	7458	757
9	1358	102.2	1465	871	48	5473	2375	7654	759
10	1489	124.1	1619	861	49	5574	2489	7854	761
11	1617	147.9	1771	852	50	5676	2608	8059	764
12	1743	173.3	1922	843	51	5778	2731	8269	766
13	1865	$200 \cdot 5$	2071	834	52	5881	2861	8484	769
14	1986	229.4	2221	827	53	5984	2996	8705	772
15	2104	260°	2369	819	54	6089	3137	8932	776
16	2220	$292 \cdot 2$	2517	812	55	6194	3285	9166	779
17	2335	$326 \cdot 1$	2664	806	56	6301	3440	9406	783
18	2447	361.6	2811	Soo	57	6408	3602	9654	787
19	2558	398.7	2958	794	58	6517	3773	9911	791
20	2667	437.4	3104	789	59	6626	3952	10175	795
21	2775	$477 \cdot 8$	3251	784	60	6737	4140	10449	799
22	2882	5190	3397	780	61	6849	4338	10734	804
23	2988	$563 \cdot 6$	3544	776	62	6963	4547	11029	809
24	3092	$609 \cdot 1$	3692	772	63	7078	4768	11335	814
25	3196	$656 \cdot 2$	3840	768	64	7194	5002	11655	819
26	3299	705.2	3988	765	65	7312	5249	11988	824
27	3400	755.9	4137	762	66	7431	5511	12336	830
28	3501	808.5	4286	760	67	7552	5789	12701	836
29	3602	863.0	4437	757	68	7675	6086	13083	841
30	3702	919.5	4589	755	69	7799	6401	13485	847
31	3801				70	7926	6739	13909	853
32	3900	1039	4896	752					
33	3998	I 101	5051	751					
34	4997	I166	5208	750					
35	4195	1234	5367	749					
36	4293	1303	5527	748	ϕ	(x)	(${ }^{\prime}$)	(t)	(7)
37	4390	1376	5690	748					
38	4488	1451	5854	748					
39	4585	1528	6021	748	$21^{\frac{1}{2}}{ }^{\circ}$	13864	4059	6640	6133
					214	12496	3524	6378	5134
40	4683	1609	6190	748	21	11490	3135	6154	4503
41	4781	1692	6362	749	$20{ }^{3}$	10694	2831	5954	4059
42	4879	1779	6536	750	$20^{\frac{1}{2}}$	10035	2583	5773	3724

IX. (continued).

$\lambda=\mathrm{I} \cdot 2$					$\lambda=13$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(7)	ϕ	(x)	(y)	(t)	(v)
24°	9473	2375	5606	3460	183°	8569	1966	5127	3327
20	8984	2195	5450	3246	$18 \frac{1}{2}$	8116	$1 \mathrm{~S}_{1} 3$	4978	3122
$19 \frac{3}{4}$	S550	2038	5304	3065	$18 \frac{1}{4}$	7714	1679	4839	2951
192	8161	1899	5166	2912	18	7354	1561	4707	2804
$19 \pm$	7 So 7	1775	5034	2780	173	7026	1456	4581	2678
19	7484	1663	4903	2664	$17 \frac{1}{2}$	6726	1360	4461	2567
$18 \frac{3}{4}$	7186	1561	4788	2562	$17 \frac{1}{4}$	6450	1274	4346	2469
$18 \frac{1}{2}$	6910	1468	4672	2470	17	6193	1195	4235	2381
$18 \pm$	6653	1383	4561	2388	$16 \frac{3}{4}$	5954	1122	4129	2302
18	6412	1304	4453	2313	$16 \frac{1}{2}$	5730	1055	4026	2230
17	5578	$1{ }_{1041}$	4053	2071	$16 \pm$	5520	993.5	3926	2165
16	4895	$838 \cdot 2$	3693	1891	16	5321	936.0	3829	2104
15	4317	$677 \cdot 8$	3363	1752	15	4622	742.0	3466	1906
14	3817	$548 \cdot 2$	3058	1639	14	4039	591*I	3137	1754
13	3375	44^{2} I	2773	1545	13	3539	$470 \cdot 9$	2833	1634
12	29So	3544	2503	1466	12	3101	373.8	2550	1536
II	2622	281.5	2248	1399	II	2712	294.5	2284	1453
10	2295	$220 \cdot 9$	2005	1340	10	2361	229.5	2033	1383
9	1994	170.5	1773	1288	9	2043	176.1	1793	1322
8	1715	128.8	1550	1241	8	1750	132.3	1565	1269
7	1455	94.5	1335	1200	7	1479	96.7	1346	1222
6	1211	$66 \cdot 7$	1128	1163	6	1228	$68 \cdot 0$	1135	I180
5	982	$44^{\circ} 7$	927	1130	5	993	$45 \cdot 3$	931	1142
4	765	$27 \cdot 6$	732	1099	4	772	$27^{\circ} 9$	734	1108
3	560	15°	542	1071	3	563	15.1	543	1078
2	365	$6 \cdot 5$	357	1046	2	366	6.5	358	1049
-	178	1.6	176	1022	1	179	1.6	177	1024
0	\bigcirc	\bigcirc	-	1000	0	0	\bigcirc	0	1000
					1	171	1.5	173	978
					2	334	$5 \cdot 8$	342	958
$\lambda=1 \cdot 3$					3	491	12.6	507	939
					$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	642	$21 . S$	670	922
ϕ						788	$33 \cdot 3$	830	906
	(x)	(${ }^{\prime}$)	(t)	(v)		929	$46 \cdot 9$	988	891
					7	1065	62.4	1143	S77
						1198	$79^{\circ} 8$	1296	864
20°	12597	3391	6108	5844	9	1326	99°	1447	852
19.7	11351	2940	5860	4910					
191	10428	2611	5647	4316	10	1451	119.9	1 597	840
$19 \ddagger$	9696	2354	5458	$3 \mathrm{S96}$	11	1572	142.4	1745	829
19	9088	2143	5286	3578	12	1691	166.5	1892	819

IX. (continued).

$\lambda=1 \cdot 3$					$\lambda=1.3$				
ϕ	(x)	(${ }^{\text {(}}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
13°	1807	192.2	2038	810	52°	5441	2578	8129	720
14	1920	2194	2182	801	53	5532	2696	8335	722
15	2031	248.1	2326	793	54	5623	2820	8548	725
16	2140	278.2	2469	785	55	5715	2949	8766	728
17	2246	$309 \cdot 8$	2611	778	56	5808	3084	8991	731
IS	2351	$342 \cdot 8$	2753	771	57	5902	3226	9222	734
19	2454	$377 \cdot 2$	2894	765	58	5996	3374	9461	737
20	2555	413.1	3035	759	59	6092	3530	9708	741
21	2655	$450 \cdot 4$	3176	753	60	6188	3693	9964	745
22	2753	489.1	3317	748	61	6285	3865	10228	748
23	2850	529.3	3458	743	62	6383	4046	10503	752
24	2946	$571{ }^{\circ}$	3599	739	63	6483	4237	10788	757
25	3041	614.2	3740	735	64	6583	4439	11085	761
26	3135	658.9	3882	731	65	6685	4652	11394	766
27	3228	705 1	4024	727					
28	3320	753.0	4167	724	$\lambda=\mathrm{I} \cdot 4$				
29	3411	802.5	4311	721					
30	3502	$853 \cdot 7$	4455	719					
31	3591	906.7	4600	716	ϕ	(x)	(y)	(t)	(v)
32	3681	961.4	4747	714	ϕ	(x)	(y)	(()
33	3770	1018	4895	713					
34	3858	1076	5044	711	188^{3}	11923	3004	5724	5942
35	3946	1137	5194	710	$18 \frac{1}{2}$	10655	2576	5476	4920
36	4034	1200	5346	709	181	9736	2271	5265	4291
37	4121	1264	5500	708	18	9016	2035	5079	3853
38	4209	1331	5655	707	${ }_{17}^{17}$	8424	1844	4910	3527
39	4296	1401	5813	706	$17 \frac{1}{2}$	7921	1685	4754	3271
40	4383	1472	5973	706	174	7484	1548	4610	3064
41	4470	1547	6135	706	17	7098	${ }_{1} 129$	4474	2891
42	4557	1624	6299	707	163	6751	1324	4345	2745
43	4644	1704	6467	707	$16 \frac{1}{3}$	6438	1230	4223	2619
44	4731	1787	6637	708	$16 \pm$	6151	1146	4107	2508
45	4819	1873	6810	709	16	5888	1070	3995	2411
46	4907	1962	6987	710	15	5643	1000	3888	2323
47	4995	2055	7167	711	$15 \frac{1}{2}$	5416	936.5	3784	2245
48	5083	2151	7351	712	154	5203	877'9	3684	2174
49	5172	2251	7538	714	15	5003	823.8	3587	2109
50	5261	2356	7730	716	14	4305	643:2	3227	1898
51	5351	2465	7927	718	13	3729	$504 \cdot 8$	2901	1741

IX. (continued).

$\lambda=1 \%$					$\lambda=1.5$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
12°	3239	396.0	2601	1616	6°	1263	$70 \cdot 6$	1150	1217
11	2812	309.1	2323	1515	5	1015	$46 \cdot 6$	941	1169
10	2.434	$238 \cdot 9$	2062	1431	4	785	28.5	740	1128
9	2095	$182 \cdot 1$	1815	1359	3	570	15.4	546	1091
8	1787	$136 \cdot 0$	1581	1298	2	369	6.6	359	1058
7	1505	$98 \cdot 9$	1357	1245	1	179	1.6	177	1027
6	1245	69.2	1143	1197	1	170	$1 \cdot 5$	172	975
5	1004	46.0	936	1155	2	332	57	341	952
4	778	$28 \cdot 2$	737	1118	3	487	12.4	505	931
3	567	15.2	545	1084	4	635	21.5	666	911
2	368	6.5	358	1053	5	777	$32 \cdot 7$	824	893
1	179	1. 6	177	1026	6	914	$45^{\circ} \mathrm{s}$	979	877
\bigcirc						1046	$60 \cdot 8$	1132	861
					8	1173	77×6	$12 \mathrm{~S}_{2}$	847
$\lambda=1 \cdot 5$					9	1296	$95^{\circ} 9$	1430	833
					$\begin{array}{\|l\|l} 10 \\ 11 \\ 12 \end{array}$	1415	115.9	1577	820
						1531	1374	1721	809
\$	(x)	(y)	(t)	(v)		1044			795
					13		184.6	2006	787
$178{ }^{\text {a }}$1717	12110	2932	5513	6843	14	$\begin{aligned} & 1860 \\ & 1965 \end{aligned}$	$\begin{aligned} & 210^{\circ} 2 \\ & 237.2 \end{aligned}$	$\begin{aligned} & 2146 \\ & 2256 \end{aligned}$	778769
	10532	24312103	52385015	53334518	16	2067	265.5	2424	760
$17 \pm$	$9+85$								
17	8701	1861	4821	3989	17	2167	295 . 1	2562	752
163	8073	1671	4648	3611	18	2264	325.9	2699	745
163	$\begin{aligned} & 7550 \\ & 7102 \\ & \hline \end{aligned}$	$\begin{aligned} & 1515 \\ & 13 S_{3} \end{aligned}$	$\begin{aligned} & 4491 \\ & 4345 \end{aligned}$	$\begin{aligned} & 3323 \\ & 3094 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	2360	$\begin{aligned} & 358 \cdot 0 \\ & 391.4 \end{aligned}$	$\begin{aligned} & 2835 \\ & 2972 \end{aligned}$	738732
16)						2455			
16	6710	1270	4209	2906	21	2547	426.0	3107	726
15	$\begin{aligned} & 6362 \\ & 60.48 \end{aligned}$	1171	4081	$\begin{aligned} & 2749 \\ & 2615 \end{aligned}$	22	2638	462.0	3243	720715
$15 \frac{1}{2}$		$10{ }^{1}$			23	2728	499.2	3378	
15 \%	5763	1004	3844	2499	24	2817	$537 \cdot 6$	3514	710
15	55024632	$933 \cdot 8$$705 \cdot 6$	$\begin{aligned} & 3733 \\ & 333 \mathrm{I} \end{aligned}$	23962055	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	29042990	57775618.6	$\begin{aligned} & 3650 \\ & 37 \mathrm{~S} 5 \end{aligned}$	705701
14									
13	3953	5453	2977	1870	27	3076	$661 \cdot 1$	3922	697
12	3396	421.7	26582365	17101585	28	31603243	70507504	40594196	693690687
11	2924	3254			29				
10	2513	2493	2093	1484	30	3326	797°	4334	
9	$\begin{aligned} & 2151 \\ & \text { IS26 } \end{aligned}$	$\begin{aligned} & 188.6 \\ & 140^{\circ} 0 \end{aligned}$	$\begin{aligned} & 1838 \\ & 1597 \\ & 13688 \end{aligned}$	$\begin{aligned} & 1400 \\ & 1329 \\ & 1269 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	340834903571	$\begin{aligned} & 845 \cdot 6 \\ & 895.5 \\ & 947.0 \end{aligned}$	$\begin{aligned} & 4473 \\ & 4613 \\ & 4754 \end{aligned}$	$\begin{aligned} & 68_{4} \\ & 6 S_{2} \\ & 6 \mathbf{S}^{2} \end{aligned}$
8									
7	1532	101.3							

IX. (continued).

$\lambda=1.5$					$\lambda=1.6$					
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)	
34°	3651	100	4896	678	15°	6205	1094	3918	2845	
35 36	3731 3811	11055	5184	676	1442	5872	${ }_{1005}^{1005}$	3793 3675	${ }_{2556}^{2659}$	
	3890	1171	5330	673	$14 \pm$	5300	857 ${ }^{\circ}$	3562	2441	
38	3969	1231	5478	672	14	5051	794.3	3455	2340	
39	4048	1294	5628	671	11^{3}	4821	7375	3351	2251	
40	4126	135	5780	671	$13 \frac{1}{1}$	4608	685.9	3252	2171	
41	4205	1426	5934	670	13 1	4409	638.6	3157	${ }^{2100}$	
42	4283	1495	6090	670	13	4223	595*2	3064	2034	
43	4362	1567	6249	670	12	3578	$451 \cdot 8$	2720	1822	
44	4440	1641	6410	670	${ }^{11}$	3049	$344^{1 / 1}$	2410	1666	
45	4519	1718	6574	671	10	2603	$260 \cdot 9$	2126	1543	
46	4597	1798	6741	672	9	2211	1957	1862	1445	
47	4676	1882	6912	672	8	1868	1443	1614	1363	
48	4755	1968	7085	673	7	1560	103'7	1381	1294	
49	4834	2057	7263	675	6	1282	71.	1159	1235	
50	4914	2151	7444	${ }_{678} 6$	5	1027	$47 \cdot 4$	947	${ }_{1183}$	
31	4994	2248	7630	678	4	792	28.8	744	$113{ }^{3}$	
52	5074	2349	7820	679	3	574	15.5	548	1098	
53	5155	2454	8015	681	2	370	6.6	360	1062	
54	5236	2564	8215	683	$\stackrel{1}{1}$	150	1.6	177	1029	
$\begin{aligned} & 58 \\ & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & 5318 \\ & 5400 \\ & 5483 \\ & 5567 \\ & 5651 \\ & 5736 \end{aligned}$	$\begin{aligned} & 2678 \\ & 2798 \\ & 2923 \\ & 3054 \\ & 3192 \\ & 3337 \end{aligned}$	$\begin{aligned} & 8421 \\ & 8633 \\ & 8851 \\ & 9076 \\ & 9308 \\ & 9548 \end{aligned}$	$\begin{aligned} & 686 \\ & 688 \\ & 691 \\ & 694 \\ & 697 \\ & 700 \end{aligned}$						
					$\lambda=1.7$					
					ϕ	(x)	(y)	(t)	(v)	
$\lambda=\mathrm{I} \cdot 6$					$\begin{aligned} & 15 \frac{1}{2} 9 \\ & 15 \pm \\ & 15 \\ & 15 \\ & 149 \\ & 14 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8910 \\ & 8025 \\ & 7352 \\ & 6310 \\ & 6356 \end{aligned}$	$\begin{aligned} & 1789 \\ & 1545 \\ & 1363 \\ & 1219 \\ & 1101 \end{aligned}$	$\begin{aligned} & 4554 \\ & 4350 \\ & 4173 \\ & 4174 \\ & 4864 \\ & 3868 \end{aligned}$	$\begin{aligned} & 4884 \\ & 4173 \\ & 3702 \\ & 3702 \\ & 3362 \\ & 3100 \end{aligned}$	
ϕ	(x)	(y)	(t)	(v)						
161616	$\begin{aligned} & \begin{array}{l} 9924 \\ 8890 \\ 8125 \end{array} \end{aligned}$	$\begin{aligned} & 2153 \\ & 1849 \end{aligned}$	$\begin{aligned} & 4927 \\ & 4706 \\ & 4516 \end{aligned}$	$\begin{aligned} & 5320 \\ & 4472 \\ & 3932 \end{aligned}$	$\begin{aligned} & 1424 \\ & 14 \\ & 14 . \\ & \hline 18.9 \end{aligned}$	$\begin{aligned} & 5965 \\ & 5622 \\ & 5206 \end{aligned}$	$\begin{aligned} & 1000 \\ & 914.0 \\ & 938.6 \end{aligned}$	$\begin{aligned} & 3734 \\ & 3607 \end{aligned}$	289127202575	
									2575	
1817 7517 4 6582		$\begin{aligned} & 1455 \\ & 1314 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 4346 \\ 4192 \end{array}$	$\begin{aligned} & 3550 \\ & 32600 \end{aligned}$		$\begin{aligned} & 5041 \\ & 4790 \\ & 4560 \end{aligned}$	$\begin{aligned} & 771 \cdot 8 \\ & 712 \cdot 2 \\ & 65 \cdot \cdot 5 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 336 \\ 3268 \\ 3268 \\ 3165 \end{array} \end{aligned}$	$\begin{aligned} & 2452 \\ & \begin{array}{l} 234 \\ 2350 \end{array} \\ & 2250 \end{aligned}$	
			4050	3032						

IX. (continued).

$\lambda=1 \cdot 7$					$\lambda=1 \cdot 7$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
12°	3793	48S.1	2791	1961	25°	2781	545.1	3567	679
11	3191	365.6	2460	1761	26	2861	583.2	3697	674
10	2697	273.8	2162	1611	27	2939	$622 \cdot 6$	${ }_{3} 829$	670
9	2277	203.5	1887	1494	28	3017	$663 \cdot 1$	3960	666
S	1913	148.9	1632	1400	29	3094	705°	4092	663
7	1590	1064	1393	1321	30	3171	$748^{\circ} 1$	4225	659
6	1301	734	1167	1255	31	3246	$792 \cdot 6$	4358	656
5	1039	48.1	952	1198	32	3321	838.5	4492	654
4	799	29.2	747	1148	33	3395	$885 \cdot 8$	4627	651
3	577	15.6	550	1105	34	3469	934.5	4763	649
2	372	$6 \cdot 6$	360	1066	35	3542	984.9	4900	647
1	180	$1 \cdot 6$	177	1031	36	3615	1037	5039	645
-	\bigcirc	-	\bigcirc	1000					
1	170	$1 \cdot 5$	172	972	37	3688	1090	5178	643
2	330	$5 \cdot 7$	339	946	38	3760	1146	5320	642
3	482	$12 \cdot 3$	503	923	39	3832	1203	5463	641
4	627	21.2	662	901	40	3903	1262	5608	640
5	766	$33^{\circ} \mathrm{O}$	818	881	41	3975	1323	5754	639
6	898	$44 \cdot 8$	971	863	42	4046	1386	5903	639
7	1026	59.3	1121	S_{46}	43	4117	1451	6055	639
8	1148	$75 \cdot 5$	1268	830	44	4188	1519	6203	639
9	1266	93.1	1414	816	45	4260	1589	6365	639
10	1381	112.2	1557	802	46	4331	1661	6524	639
11	1491	$132 \cdot 7$	1698	790	47	4402	1736	6686	640
12	1598	154.5	1838	77 S	48	4474	$1 \mathrm{ISI}_{4}$	6851	640
13	1702	$177 \cdot 6$	1976	767	49	4545	1S95	7020	641
14	1804	201.9	2112	756	50	4617	1 cro	7192	642
15	1902	2274	2248	747	51	$46 \mathrm{S9}$	2067	7369	643
16	1998	$254{ }^{\circ} \mathrm{O}$	2382	738	52	4762	2158	7549	645
17	2092	281.8	2516	729	53	4834	2253	7734	646
18	2184	310 S	2649	722	54	4905	2352	7924	648
19	2274	$340 \cdot 8$	2781	714	55	49 SI	2455	8119	650
20	2362	$372 \cdot 1$	2913	707	56	5055	2562	8320	652
21	2449	404.4	30.44	701	57	5129	2675	8526	654
22	2534	$437 \cdot 9$	3175	695	58	5204	2793	8739	657
23	2617	$472 \cdot 5$	3305	659	59	52 So	2916	8959	659
24	2700	508.2	3436	684	60	5356	3045	9186	662

IX. (continued).

$\lambda=1 \cdot 8$					$\lambda=\mathrm{I} \cdot 9$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$14 \frac{1}{2}^{\circ}$	7729	1417	4148	4263	9°	2428	221.5	1944	1610
$14 \frac{1}{1}$	7034	1239	3969	3743	8	2012	159.3	1671	1482
14	6484	1101	3809	3376	7	1655	112.2	1420	1381
13 年	6029	988.2	3664	3099	6	1342	76.5	1185	1298
$13 \frac{1}{2}$	5639	893.9	3530	2880	5	1064	49.7	963	1229
134	5300	813.2	3405	2702	4	813	29.9	753	1171
13	4999	743°	3287	2553					
$12 \frac{3}{1}$	4729	681.2	3176	2427	3 2 2	585 375	15.9 6.7	553 362	1119 1075
$12 \frac{1}{2}$	4484	$626 \cdot 3$	3070	2317	1	181	1.6	178	1035
121	4259	$577{ }^{\circ}$	2968	2221	-	\bigcirc	-	0	1000
					1	169	1.5	172	969
12	4052	$532 \cdot 6$	2871	2136	2	328	$5 \cdot 6$	338	940
11	3356	$390 \cdot 6$	2516	1873	3	478	$12 \cdot 1$	500	915
10	2805	288.4	2200	1688	4	620	20.8	658	891
9	2349	$212^{\circ} \mathrm{O}$	1915	1549	5	755	31.5	${ }_{8} 12$	870
8	1961	153.9	1651	1439	6	884	43.9	963	850
7	1622	109\%2	1406	1350					
6	1321	$74^{\circ} 9$	1176	1276	78	1007	57.9 73.5	1111	832 815
5	1051	$48 \cdot 9$	957	1213	9	1239	90.5	1398	799
4	806	29.5	750	1159					
	581	157	551	111	$1{ }_{1}$	1349 1454	128.4	1538 1676	785 775
2	373	$6 \cdot 7$	361	1070	12	1557	149 ${ }^{\text {I }}$	1812	759
1	180	$1 \cdot 6$	177	1033					
\bigcirc	-	-	-	1000	13	1656	171.1	1947	747
					14	1752	194.2	2080	737
					15	184	2183	2212	727
		= 1			16	1936	2435	2343	717
					178	2025 2111	$269 \cdot 8$ 297	2473 2602	708
ϕ	(x)	(y)	($)$	(v)					
					19 $=0$	2196 2279	3254 354	2730 2857	
14°	8142	1475	4116	4980	21	2279 2360	3885	2984	678
13	7240	1253	3912	4170					
$13 \frac{1}{2}$	6576	1092	3737	3659	22	2439	416.3	3111	672
$13 \frac{1}{4}$	6051	$966 \cdot 5$	3581	3298	23	2517	$448 \cdot 7$	3237	666
13	5616	865°	3440	3027	24	2594	482.1	3363	661
129	5244	780.2	3310	2813	25	2670	516.5	3490	655
$12 \frac{1}{2}$	4921	707.7	3188	2638	26	2744	$552^{\circ} \mathrm{O}$	3616	651
124	4634	644.7	3073	2493	27	2818	588.6	3742	646
12	4376	589.4	2965	2369	28	2890			
11	3548	$420 \cdot 6$	2577	2011	29	2962	$665 \cdot 1$ $705 \cdot 1$	3996 4124	638 635
10	2926	$305 \cdot 1$	2242	1777	30	3032	705'1	4124	635

IX. (continued).

$\lambda=\mathrm{I} 9$					$\lambda=2{ }^{\circ}$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
31°	3102	$746 \cdot 3$	4252	631	114 4°	3998	500.0	2747	22 S 5
32	3171	$788 \cdot 7$	4381	628	11	3780	$457 \cdot 2$	2648	2184
33	3240	832.4	4511	626	10	3065	324.4	2289	1882
34	3308	877'5	4641	623	9	2515	232.I	1975	1679
35	3376	923.9	4773	621	8	2068	165.1	1693	1529
36	3443	971 7	4906	619	7	1691	1154	1434	1414
37	3509	1021	5040	617	6	1365	$78 \cdot 2$	1194	1322
38	3576	1072	5176	616	5	1077	$50 \cdot 5$	969	1245
39	3642	1124	5313	614	4	821	$30 \cdot 2$	757	1181
40	3708	1179	5452	613	3	588	16.0	555	1126
41	3773	1235	5592	612	2	376	$6 \cdot 7$	362	1079
42	3838	1293	5735	612	1	181	1.6	178	1037 1000
43	3904	1352	5880	611					
44	3969	1414	6027	6 II					
45	4034	1478	6176	611	$\lambda=2 \cdot 1$				
46	4099	1544	6328	611					
4748	4164	1613	6483	611	ϕ	(x)			
	4229	1684	6641	612			$\left(y^{\prime}\right)$	(t)	(21)
49	4295	1758	6802	612					
50	4360	1835	6967	613					
51	4426	1914	7135	614	$122^{\frac{1}{2}}{ }^{\circ}$	6556	1027	3544	4137
						5909	$885^{1} 1$	3372	3596
52	4492	1997	7308	615	12	5404	$776 \cdot 7$	3221	3223
53	4558	2083	7484	616	113	4990	$689 \cdot 6$	3083	2947
54	4624	2173	7665	618	II $1 \frac{1}{2}$	4639	$617 \cdot 4$	2957	2731
55	4691	2267	7851	619	114	4335	$556 \cdot 2$	2840	2556
56	4758	2365	80.42	621	II	4066	503.3	2729	2411
57	4826	2467	8239	623	103	3826	$457 * 1$	2625	2288
	$\lambda=2{ }^{\circ}$				$\begin{aligned} & 10 \frac{1}{3} \\ & 10 \frac{1}{4} \\ & 10 \end{aligned}$	3608	$416 \cdot 2$	2526	2183
						3409	$379 \cdot 7$	2431	2090
						3226	347°	2340	2008
ζ	(x)	$\left(y^{\prime}\right)$	(t)	(7)	9	2611	$244^{\circ}$$1711^{\circ} 5$	20091715	$\begin{aligned} & 1757 \\ & 19 S I \end{aligned}$
					7	2127 1728	171.5 118.8	1449	$\begin{aligned} & 19 S I \\ & 1450 \end{aligned}$
13°	6608	1068	3650	3924	6	1357	S0.0	1203	1346
123	6015	$932 \cdot$826.1	3485	3471	5	1091	$51 \cdot 3$30.6	$\begin{aligned} & 975 \\ & 760 \end{aligned}$	$\begin{aligned} & 1263 \\ & 1193 \end{aligned}$
$12 \frac{3}{2}$	51425142		3338	3146	4	828			
$12 \downarrow$		$738 \cdot 9$	3203	2897			3		
		$665 \cdot 6$	3078	2700	3	592378	$16 \cdot 2$	557	1134
12	4801						$6 \cdot 8$	363178	$\begin{aligned} & 1053 \\ & 1039 \end{aligned}$
114	4503	$602 \cdot 8$	2962	2537	1	ISI	1.6		
$11 \frac{1}{2}$	4237	$54{ }^{\text {P }}$ I	2852	2401	\bigcirc	0	-	-	1000

IX. (continued).

$\lambda=2{ }^{\circ} \mathrm{I}$					$\lambda=2{ }^{\circ} \mathrm{I}$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
I°	169	1.5	171	965	40°	3535	1106	5310	590
2	326	$5 \cdot 6$	337	934	41	3595	1158	5446	589
3	474	12.0	498	906	42	3656	I2II	5583	588
	613	$20 \cdot 5$		88I	43	3716	1267	5722	587
4	745	30.9	807	858	44	3776	1324	5863	587
6	871	$43^{\circ} 0$	955	837	45	3836	1383	6006	586
	990	$56 \cdot 6$	I IOI	818	46	3896	1444	6152	586
8	990 1104	71.6	1243	800	47	3956	1507	6301	586
9	1214	88.0	1383	784	48	4015	1572	6452	586
10		$105 \cdot 6$		769	49	4076	1640	6607	587
1 I	1319 1420	124.3	1520	769	50	4136	1710	6765	587
12	1420 1518	124.3 144.2	1655 1789	755	51	4196	1784	6926	588
13	1612	165 ${ }^{\text {I }}$	1920	730	52	4257	1860	7091	589
14	1704	187.1	1920	718	53	4317	1939	7260	590
14	1704 1793	187 210%	2179 2179	718 708	54	4378	2021	7433	591
5	1793		2179	708	55	4439	2107	7611	593
16	1879	234*0	2306	698					
17	1963	$258 \cdot 8$	2432	689			$=2 \cdot$		
18	2045	$284 \cdot 6$	2558	680					
19	2125	3113	2682	672					
20	2203	$338 \cdot 9$	2806	665	ϕ	(x)	(y))	(v)
2 I	2279	367.5	2929	658					
22	2354	396.9	3052	651	12°	6398	965.9 823.9	3419	4254
23	2427	$427 \cdot 3$	3174	645	118	5723	823.9	3243	3652
24	2499	458.6	3297	639	112	5207	$717 \cdot 6$	3090	3249
25	2570	490*9	3419	634	$11 \frac{1}{4}$	4788	633.4	2952	2955
26	2640	524.1	354 I	629	11	4437	564.3	2826	2729
27	2708	$558 \cdot 3$	3663	625	103	4134	506*0	2709	2548
						3867	$456 \cdot 0$	2600	2398
28 29	2776	593.5 629.7	3786 3908	620 616	101	3630	412.5	2496	2272
30	2908	$667{ }^{\circ}$	4031	613	10	3415	$374{ }^{\circ}$	2398	2164
						2720	257.6	2045 .	1848
31 32	2973 3038	705.3 744.8	4155 4279	606	8	2193	178.5	1739	1639
33	3102	785.4	4405	603	7	1768	122.5	1464	1488
34	3165	827.3	4530	600	6	1411	$8 \mathrm{I} \cdot 8$	1213	1373
34 35	3165 3227	8273 $870 \cdot 4$	4530 4657	598	5	1105	$52 \cdot 2$	981	1280
36	3290	9147	4785	596	4	836	31°	763	1205
37	3351	$960 \cdot 5$	4915	594	3	596	16.3 6.8	558	1142 1088
38	3413	1008	5045	592	2	379 182	6.8 1.6	364 178	1088
39	3474	1056	5177	591	0	1820	16	1	1000

IX. (continued).

$\lambda=2 \cdot 3$					$\lambda=2 \cdot 3$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(1)	(v)
$11 \frac{1}{\frac{1}{2}}$	6129	$885 \cdot 7$	3273	4248	16°	1826	225.2	2271	681
119	5459	$750 \cdot 9$	3099	3628	17	1905	$244^{\circ} \cdot 8$	2394	671
11	4951	$650 \cdot 9$	2947	3217	18	1983	273.2	2516	662
$10 \frac{3}{4}$	4541	$572 \cdot 2$	2811	2921	19	2059	298.5	2637	654
$10 \frac{1}{2}$	4198	507.9	2687	2693	20	2132	324.6	2758	646
$10 \frac{1}{4}$	3903	453.9	2572	2512	21	2204	351.6	2877	639
10	3645	4077	2464	2363					
$9{ }^{\frac{3}{1}}$	3414	$367 \cdot 5$	2362	2237	22 23	2275 2344	379.4	2997	632 626
$9 \frac{1}{2}$	3206	$332 \cdot 3$	2265	2130	24	2412	$437 \cdot 5$	3234	620
9	3017	3010	2173	2036	25	2479	467.8	3352	615
9	2843	273.1	2085	1954	26	2544	499.0	3471	610
8	2264	186.3	1764	1704	27	2608	$53 \cdot 1$	3589	605
7	1810	126.4	1480	1530	28	2672			600
6	1437	$83 \cdot 8$	1223	1400	29	2734	598.1	3827	596
5	1120	53.2	987	1299	30	2796	633.0	3946	593
4	844	31.4	767	1217	31	2857	668.9	4066	
3	600	16.4	560	1150	32	2917	$705 \cdot 8$	4186	586
2	381	$6 \cdot 8$	364	1092	33	2977	7437	4307	583
1	182	$1 \cdot 6$	178	1043					
\bigcirc	68	\bigcirc	\bigcirc	1000	34	3036	$782 \cdot 8$	4429	580
1	168	1.4	171	962	35	3094	823.0	4551	578
2	324	$5 \cdot 5$	336	929	36	3152	864.3	4675	575
3	470	11.9	496	899	37	3210	906.9	4799	573
4	606	20.2	651	872	38	3267	950.8	4925	571
5	735	$30 \cdot 4$	801	848	39	3324	996.0	5053	570
6	857	$4^{2} \cdot 1$	948	825	40	3380	1043	5181	568
8	973	55.3	1091	805	41	3437	1091	5312	567
8	1084	69.8 8.6	1231	786	42	3493	1140	5444	566
9	1190	85.6	1368	769	43	3549	1191	5578	565
10	1291	102.5	1503	754	44	3604	1244	5714	565
11	1388	120.6	1635	739	45	3660	1299	5852	564
12	1482	139.6	1766	726	46	3716	1356	5992	564
13	1572	159.6	1894	713	47	3771	1414	6135	564
14	1659	150.6	2021	701	48	3827	1475	6281	564
15	1744	202.4	2147	691	49 50	3882 3938	$\begin{array}{r} 1537 \\ 1603 \end{array}$	$\begin{aligned} & 6430 \\ & 6581 \end{aligned}$	564 565

IX. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{$\lambda=2.4$} \& \multicolumn{5}{|c|}{$\lambda=2.5$}

\hline ϕ \& (x) \& (y) \& (t) \& (v) \& ϕ \& (x) \& (y) \& (t) \& (v)

\hline 11° \& 5760 \& 791•7 \& 3111 \& 4120 \& 3° \& 608 \& 16.7 \& 564 \& 1166

\hline $10 \frac{3}{4}$ \& 5129 \& 670.3 \& 2942 \& 3528 \& 2 \& 384 \& 6.9 \& 366 \& 1101

\hline $10 \frac{1}{2}$ \& 4647 \& 579.9 \& 2794 \& 3134 \& 1 \& 183 \& 1.6 \& 179 \& 1047

\hline $10 \frac{1}{4}$ \& 4259 \& 508.7 \& 2662 \& 2848 \& o \& 0 \& - \& 0 \& 1000

\hline 10 \& 3932 \& 4504 \& 2541 \& 2628 \& 1 \& 167 \& 1.4 \& 171 \& 959

\hline \& \& \& \& \& 2 \& 322 \& $5 \cdot 5$ \& 335 \& 923

\hline $9{ }^{3}$ \& 3651 \& $401 \cdot 5$ \& 2428 \& 2452 \& 3 \& 466 \& 11.7 \& 493 \& 891

\hline $9 \frac{1}{2}$ \& 3404 \& $359 \cdot 6$ \& 2323 \& 2308 \& \& \& \& \&

\hline 9.1 \& 3184 \& 323.3 \& 2224 \& 2186 \& 4 \& 600 \& 19.9

29.8 \& 647 \& 863

\hline \& 2986 \& 2914 \& 2130 \& 2082 \& 5 \& 786
845 \& $41 \cdot 3$ \& 7940 \& 814

\hline 83 \& 2805 \& 263.2 \& 2040 \& 1991 \& \& \& \& \&

\hline \multirow[t]{2}{*}{$8 \frac{1}{2}$} \& 2639 \& 238.0 \& 1954 \& 1911 \& 7 \& 957 \& 54^{1} \& 1081 \& 793

\hline \& \& \& \& \& 8 \& 1064 \& 68.2 \& 1219 \& 773

\hline \multirow[t]{2}{*}{$8{ }_{8}^{81}$} \& 2486 \& 2154 \& 1871 \& 1840 \& 9 \& 1166 \& 83.4 \& 1354 \& 756

\hline \& 2343 \& $195^{\circ} \mathrm{O}$ \& 1791 \& 1776 \& \& \& \& \&

\hline 7 \& 1856 \& $130 \cdot 7$ \& 1497 \& 1575 \& 10 \& 1264 \& 997 \& 1486 \& 739

\hline \& \& \& \& \& 11 \& 1357 \& $117{ }^{\circ}$ \& 1616 \& 724

\hline 6 \& 1464 \& $85^{\circ} 9$ \& 1234 \& 1430 \& 12 \& 1447 \& 135.3 \& 1744 \& 710

\hline 5 \& 1135 \& $54 \cdot 1$ \& 993 \& 1319 \& \& \& \& \&

\hline 4 \& 852 \& $31^{*} 8$ \& 771 \& 1230 \& 13 \& 1534 \& 154.4 \& 1870 \& 698

\hline \& \& \& \& \& 14 \& 1617 \& 174.5 \& 1994 \& 686

\hline 3
2 \& 604 \& 16.6 \& 562 \& 1158 \& 15. \& 1698 \& $195{ }^{\circ}$ \& 2117 \& 675

\hline +1 \& 382 \& 6.9 \& 365 \& 1097 \& \& \& \& \&

\hline + 1 \& 182 \& 1.6 \& 178 \& 1045 \& 16 \& 1776 \& 217* \& 2238 \& 664

\hline - \& - \& - \& - \& 1000 \& 17 \& 1852 \& $239^{\circ} 5$ \& 2358 \& 655

\hline \multicolumn{5}{|c|}{\multirow[t]{2}{*}{$\lambda=2.5$}} \& 19 \& 1997 \& 286.8 \& 2595 \& 637

\hline \& \& \& \& \& 20 \& 2067 \& 311.6 \& 2712 \& 629

\hline \& \& \& \& \& \& 2136 \& 3371 \& 2529 \& 622

\hline \multirow[t]{2}{*}{ϕ} \& (x) \& (y) \& (t) \& (v) \& 22 \& 2203 \& 363.4 \& 2945 \& 615

\hline \& \& \& \& \& 23 \& 2268 \& $390 \cdot 5$ \& 3060 \& 608

\hline \multirow[b]{2}{*}{$101{ }^{\circ}$} \& \& \& \& \& 24 \& 2332 \& 418.3 \& 3176 \& 603

\hline \& 4754 \& 586.8 \& 2774 \& 3370 \& \& \& \& \&

\hline \& 4312 \& 507.9 \& 2633 \& 3010 \& 25 \& 2395 \& $447{ }^{\circ}$ \& 3291 \& 597

\hline 9 \& 3952 \& 445.2 \& 2506 \& 2745 \& 26 \& 2456 \& $476 \cdot 4$ \& 3406 \& 592

\hline $9 \frac{1}{2}$ \& 3648 \& $393 \cdot 7$ \& 2389 \& 2540 \& 27 \& 2517 \& $506 \cdot 6$ \& 3521 \& 587

\hline \& 3385 \& $350 \cdot 3$ \& 2281 \& 2374 \& 28 \& 2576 \& \& 3636 \& 583

\hline \multirow[t]{2}{*}{} \& 3154 \& 313.0 \& 2179 \& 2237 \& 29 \& 2635 \& 569.6 \& 3751 \& 578

\hline \& 2947 \& 280.7 \& 2083 \& 2122 \& 30 \& 2693 \& $602 \cdot 4$ \& 3867 \& 574

\hline \& 2759 \& 252.3 \& 1991 \& 2022 \& \& \& \& \&

\hline \& \& \& \& \& 31 \& 2750 \& $636 \cdot 2$ \& 3983 \& 571

\hline 8 \& 2589 \& 227.2 \& 1904 \& 1936 \& 32 \& 2807
2863 \& $670 \cdot 8$
$706 \cdot 4$ \& 4099
4216 \& 568
564

\hline 7 \& 2432
1906 \& 204.7
135% \& 1820
1515 \& 1859
1625 \& 33 \& 2863 \& 7064 \& 4216 \& 564

\hline 7 \& \& \& \& \& 34 \& 2918 \& $743 \cdot 1$ \& 4334 \& 562

\hline 6 \& 1492 \& 88.1 \& 1245 \& 1461 \& 35 \& 2973 \& $780 \cdot 7$ \& 4453 \& 559

\hline 5 \& 1151 \& 55^{1} \& 1000 \& 1339 \& 36 \& 3027 \& 8194 \& 4572 \& 557

\hline 4 \& 861 \& $32 \cdot 2$ \& 774 \& 1243 \& \& \& \& \&

\hline
\end{tabular}

IX. (continued).

$\lambda=2.5$					$\lambda=2.7$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
37°	3081	859.3	4693	555	$9 \frac{1}{2}^{\circ}$	4383	$500 \cdot 1$	2564	3340
$3{ }^{3}$	3134	$900 \cdot 3$	4815	553	91	3952	428.9	2425	2966
39	3188	$942 \cdot 6$	4938	551	9	3603	$372 \cdot 9$	2300	2695
40	3240	986. 1	5062	549	83 8.1 8.	3311 3060	$327 \cdot 3$ 289	2186 2080	2486 2320
41	3293	1031	5188	548					
42	3345	1077	5316	547	83	2839	$256 \cdot 6$	1981	2183
					8	2642	$22 \mathrm{~S} \cdot 5$	1887	2067
43 44	3397 3449	1125 1174	5445 5577	546 545	$7{ }^{\text {星 }}$	2465	204%	1799	1969
45	3501	1225	5710	545	$7 \frac{1}{2}$	2303	182.3	1714	1883
46		1278	5846		74	2154	$163 \cdot 1$	1633	1807
47	3604	1333	5984	544	7	2017	$145{ }^{\circ} 9$	1555	1740
48	3656	1389	6124	544					
49	3708	1447	6267	544	6	1553	92.9	1269	1531
50	3760	1503	6414	545	5	1185	$57 \cdot 3$	1014	1383
$\lambda=2 \cdot 6$					3	616	$17^{\circ} 0$	568	1183
					2	387	$7{ }^{\circ}$	367	1111
ϕ					1	$1 \mathrm{I}_{3}$	$1 \cdot 6$	179	1051
	(x)	(y)	(t)	(v)	I	$\stackrel{\bigcirc}{167}$	\bigcirc	\bigcirc	1000
					2	320	5.4	334	918
10°	4855	592.5	2751	3627	3	461	11.6	492	884
									$\begin{aligned} & 854 \\ & 827 \\ & 803 \end{aligned}$
$9{ }^{9}$	4354	50.3 438.2	2601	3175	4	593	19.6	643	
9	3959	$438 \cdot 2$	2468	2859	5	716	29.3	791	
94	3632	384.2	2347	2621	6	832	$40 \cdot 5$	933	
9888$8 \frac{1}{2}$	3354	$339 \cdot 5$301.7269.1	$\begin{array}{r} 2235 \\ 2131 \end{array}$	$\begin{array}{r} 2434 \\ 2283 \end{array}$	78	9421045	52.966.6	$\begin{aligned} & 1072 \\ & 1208 \end{aligned}$	$\begin{aligned} & 78 \mathrm{I} \\ & 76 \mathrm{I} \end{aligned}$
	31122897								
			2033	2156	9	1144	$8 \mathrm{I} \cdot 3$	1341	743
	$\begin{aligned} & 2704 \\ & 2530 \end{aligned}$	$240 \cdot 8$215819	$\begin{aligned} & 1940 \\ & 1852 \end{aligned}$	2048	10	$\begin{aligned} & 1238 \\ & 1328 \end{aligned}$	$\begin{array}{r} 97^{\circ} 0 \\ 113^{\circ} 7 \end{array}$	$\begin{aligned} & 1471 \\ & 1598 \end{aligned}$	726710
				1955	11				
	2370	193.7	1768	1874	12	1414	$\begin{aligned} & 113.7 \\ & 131.3 \end{aligned}$	1723	696
$7 \frac{1}{2}$	22232086	1740°156150	$\begin{aligned} & 1687 \\ & 1609 \end{aligned}$	$\begin{aligned} & 1802 \\ & 1737 \end{aligned}$		1497 1577	149.7168.8	IS471968	683671660
7					13				
7	1959	$140 \cdot 4$	1534	1679	15	1654	IS8.8	2088	
6	15221167	$\begin{aligned} & 90 \cdot 4 \\ & 56 \cdot 2 \end{aligned}$	$\begin{aligned} & 1256 \\ & 1007 \end{aligned}$	$\begin{aligned} & 1495 \\ & 1360 \end{aligned}$	16	1729	209.5	2207	649639630
5									
4	869	327	778	1257	17 18	1802 1872	$230 \cdot 9$ 253.1	2324 2440	
3	$\begin{gathered} 612 \\ 385 \\ 1 S_{3} \\ 0 \end{gathered}$	$\begin{aligned} & 16.9 \\ & 7 \circ 0 \\ & 1.6 \\ & 0 \end{aligned}$	$\begin{array}{r} 566 \\ 367 \\ 179 \\ 0 \end{array}$	1174		$\begin{aligned} & 1940 \\ & 2007 \\ & 2072 \end{aligned}$	$\begin{aligned} & 276 \cdot 0 \\ & 299.5 \\ & 323.8 \end{aligned}$	$\begin{aligned} & 2555 \\ & 2669 \\ & 2793 \end{aligned}$	$\begin{aligned} & 622 \\ & 614 \\ & 606 \end{aligned}$
2				1106	19				
1				1049	20				
-				1000	21				

IX. (continued).

IX. (continued).

$\lambda=2.9$					$\lambda=2.9$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
4°	587	19.4	640	846	40°	3000	$890 \cdot 3$	4850	516
5	708	$28 \cdot 8$	785	817	41	3047	930\%	4968	515
6	821	$39^{\circ} 7$	926	792	42	3093	970.8	5088	514
7	927	51.8	1064	770	43	3139	1013	5210	513
8	1028	$65^{\circ} 1$	1197	749	44	3185	1056	5333	512
9	1123	$79^{\circ} 3$	1328	730	45	3230	1101	5458	511
10	1214	94.5	1455	713	46	3276	1148	5586	510
II	1301	110.6	1581	697	47	3321	1196	5715	510
12	1384	127.5	1704	683	48	3367	1245	5847	510
13	1464	$145{ }^{1} 1$	1824	669	49	3412	1296	5981	510
14	1540	163.6	1943	657	50	3457	1350	6118	510
15	1614	$182 \cdot 7$	2061	645					
16	1686	$202 \cdot 5$	2177	635					
17	1755	$223{ }^{\circ} \mathrm{O}$	2291	625	$\lambda=3{ }^{\circ}$				
18	1822	$\begin{aligned} & 266.0 \\ & 288.5 \\ & 311.6 \end{aligned}$	2405	616					
19	1887		2517	607					
20	1951		2629	599					
21	2013		2740	591	ϕ	(x)	$\left(y^{\prime}\right)$	(t)	(v)
22	2073	$\begin{aligned} & 335 \cdot 3 \\ & 359 \cdot 8 \\ & 384^{\circ} \cdot 8 \end{aligned}$	2850 2960 3069	584					
23	2132			578			$585 \cdot 1$		
24	2189			572	9° 83 $8 \frac{1}{2}$	5106		2606	4735
						4337	465.0	2421	3748
25	2246	$410 \cdot 6$	3178	566		3816	385.9	2269	3198
26	2302	437*	3287	561			385		2835
27	2356	464^{1}	3396	556	81	3421	327.7	2136	
					8	3103	$282 \cdot 3$	2017	2573
28	2409	491.9	3505	551	$7{ }^{\text {星 }}$	2837	$245 \cdot 5$	1909	2373
29	2462	$520 \cdot 4$	3614	547		2608			
30	2514	5497	3723	543	$7 \frac{1}{2}$		214.9	1808	22132081
						2407	188.9	1713	
31	2565	579*8	3833	539	7	2228	$166 \cdot 5$	1624	1970
32	2615	$610 \cdot 7$	3943	536		1661	1016	1308	
33	2665	$642 \cdot 4$	4053	532	6				$\begin{aligned} & 1657 \\ & 1457 \end{aligned}$
					5	1241	$61^{\circ} \mathrm{O}$	1036	
34	2714	$\begin{aligned} & 674.9 \\ & 708 \cdot 4 \\ & 742.8 \end{aligned}$	$\begin{aligned} & 4164 \\ & 4276 \\ & 4389 \end{aligned}$	529527	4	907	$34 \cdot 6$	794	1316
35	2763								
36	2811			524	3	629	17.5	573	1209
					2	392	711	370	1126
	2859	$\begin{aligned} & 778 \cdot 1 \\ & 814 \cdot 5 \\ & 851 \cdot 8 \end{aligned}$	$\begin{aligned} & 4502 \\ & 4617 \\ & 4733 \end{aligned}$	$\begin{aligned} & 522 \\ & 520 \\ & 518 \end{aligned}$	0	184	$1 \cdot 6$	179	$\begin{aligned} & 1057 \\ & 1000 \end{aligned}$
38	2906					\bigcirc	0	0	
39	2953								

IX. (continued).

$\lambda=3 \cdot \mathrm{I}$					$\lambda=3.1$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$8 \frac{1}{2}^{\circ}$	4263	445.5	2361	3823	19°	1838	$256 \cdot 8$	2482	593
$8{ }_{8}^{18}$	3727	$366 \cdot 5$	2207	3230	20	1899	278.2	2591	585
8	3327	309.3	2073	2849	21	1958	$300 \cdot 3$	2699	578
$7{ }^{\text {8 }}$	3008	$265 \cdot 1$	1954	2575					
$7 \frac{1}{2}$	2742	229.5	1846	2368	22 23	2015	323.0 346.2	2807 2914	571 564
74	2514	$200 \cdot 0$	1745	2204	24	2126	$370 \cdot 1$	3021	558
7	2315	$175{ }^{1}$	1651	2070					
6	2138	153.8	1563	1958	25 26	2180 2233	$394 \cdot 6$ 419	3127 3233	552 547
$6 \frac{1}{2}$	1979	135.3	1479	1862	27	2284	445.5	3340	542
6	1835	119.2	1399	1779			475.9	3446	537
6	1702	105*0	1322	1707	28 29	2335 2385	$471 \cdot 9$ $499 \cdot 1$	3446 3552	537
5	1262	$62 \cdot 3$	1044	1485	30	2435	526.9	3659	529
4	917	$35^{.1}$	798	1332					
3	634	17×7	575	1219	31 32	2483 2531	5554 584	3765 3872	525 521
2	394	7.2	371	1131	33	2578	614.7	3980	518
1	185	1.6	180	1059					
-	\bigcirc	\bigcirc	\bigcirc	1000	34	2625	645.6	4088	515
1	166	1.4	170	950	35	2671	677.3	4197	513
2	316 454	II.3	332 487	907 870	36	2716	$709 \cdot 8$	4307	510
3	454	113	487	870	37	2761	743^{2}	4417	508
4	581	19.1	636	837	38	2806	$777 \cdot 6$	4529	506
5	699	28.4	780	808	39	2851	$813{ }^{\circ}$	4641	504
6	809	39°	920	782	40	2895			
7	913	$50 \cdot 8$	1055	759	4 I	2939	886.8	4870	501
8	IOII	63.6	1187	738	42	2982	$925 \cdot 4$	4987	499
9	1103	$77 \cdot 4$	1315	718			965.2		
10	1191	92.1	1441	701	44	3069	1006	5224	497
11	1275	1076	1564	685	45	3112	1049	5346	496
12	1355	123.9	1684	670	46	3155	1092	5469	496
13	1432	$140{ }^{\circ} 9$	1803	657	47	3198	1137	5595	495
14	1505	158.6	1920	644	48	3240	1184	5723	495
15	1577	177*	2035	632	49	3283	1232	5853	
16	1645	196.0	2148	621	50	3326	1282	5986	495
17	1711	215.7	2261	612					
18	1776	$235{ }^{\circ} 9$	2372	602					

> 1X. (continued).

$\lambda=3 \cdot 2$					$\lambda=3 \cdot 3$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$8 \mathrm{t}^{\circ}$	4158	422.1	2295	3852	1°	165	14	170	947
8	3617	$344 \cdot 8$	2140	3233	2	314	53	331	902
$7{ }^{\text {9 }}$	3218	$289 \cdot 5$	2007	2840	3	450	11.2	485	863
$7 \frac{1}{3}$	2901	$247 \cdot 1$	1888	2562	4	575	18.8	633	829
74	2638	21311	1780	2353	5	691	27.9	776	799
7	2414	185°	1680	2187	6	798	$38 \cdot 3$	913	772
63	2218	161.4	1587	2052	7	899	$49 \cdot 8$	1047	748
$6 \frac{1}{2}$	2045	141.2	1500	1940	8	994	$62 \cdot 2$	1177	727
6	1889	123.8	1417	1844	9	1084	$75 \cdot 6$	1303	707
6	1747	108.6	1338	1761	10	1169	89.9	1427	689
5	1283	$63 \cdot 7$	1052	1514	11	1250	104.9	1548	673
4	927	$35^{\circ} 6$	802	1349	12	1327	120.6	1666	658
3	639	17.9	$577{ }^{\circ}$	1229	13	1401	137°	1783.	644
2	395	7.2	371	1136	14	1472	$154^{\circ} \mathrm{O}$	1897	632
1	185	$1 \cdot 6$	180	1061	15	1540	1717	2010.	620
\bigcirc	-	-	\bigcirc	1000	16	1606			609
$\lambda=3 \cdot 3$					17	1670	208.8	2231	599
					18	1731	228.2	2340	589
ϕ	(x)	(y)		(v)	$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 1791 \\ & 1849 \\ & 1906 \end{aligned}$	$\begin{aligned} & 248 \cdot 2 \\ & 268 \cdot 8 \\ & 289^{\circ} 9 \end{aligned}$	$\begin{aligned} & 2448 \\ & 2554 \\ & 2660 \end{aligned}$	581
			(t)						581 565
8°	4021	$395 * 4$	22232069	3834	22	19612014	311.6333	2766	558551
					23			2870	
$7{ }^{3}$	3487	321.4268.9		38342813	24	2067	$356 \cdot 6$	2975	545
$7 \frac{1}{2}$	3094		1937						
71	2784	228.6	1819	2535	25	2118	380.403.9428.5	307831823286	539534529
7	2527	196.5	1713	2326	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 2168 \\ & 2218 \end{aligned}$			
	2308								
$6 \frac{1}{2}$		$170^{\circ} 0$	1614 1522	2162 2028	28	2266	$453 \cdot 7$	3389	
61	1947	128.9	1436	1916	29	2314	479.5	3493	520
	1795	112.5	1354	1821	30	2361	5060	3597	516
6									
5	1306	$65^{\circ} 2$	1061	1546	31	2407	533.1	3701	512
4	938	36.2	807	1367	32	2452	561.0	3805	508
	643	18.0	580	1238	33	2497	589.5	3910	505
2	397	7.21.7	372180	$\begin{aligned} & 1141 \\ & 1063 \\ & 1000 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 2541 \\ & 2585 \\ & 2628 \end{aligned}$	$\begin{aligned} & 618 \cdot 8 \\ & 6.4 \cdot 9 \\ & 679 \cdot 8 \end{aligned}$	$\begin{aligned} & 4016 \\ & 4122 \\ & 4228 \end{aligned}$	$\begin{aligned} & 502 \\ & 499 \\ & 497 \end{aligned}$
1									
-	-	-	-						

1X. (continued).

$\lambda=3.4$					$\lambda=3.5$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$7{ }^{3}$	3856	366.1	2145	3769					
$7 \frac{1}{2}$	3340	296.9	1994	3155	4°	569	$18 \cdot 6$	630	821
74	2959	247%	1864	2768	5	682	27.5	771	790
7	2658	210°	1749	2496	6	788	$37 \cdot 6$	907	763
69	2409	1800	1644	2290	7	886	48.8	1039	738
$6 \frac{1}{2}$	2197	155.3	1547	2129	8	978	$60 \cdot 9$	1167	716
$6 \pm$	2012	134.5	1456	1997	9	1065	73.9	1292	696
6	1847	116.9	1371	1887	10	1148	877	1413	678
5	1330	$66 \cdot 8$	1070	1579	11	1226	102.3	1532	662
4	949	$36 \cdot 7$	8 II	1385	12	1301	1174	1649	647
3	648	18.2	582	1248	13	1372	13303	1763	633
2	399	73	373	1146	14	1441	149.7	1875	620
1	186	17	180	1065	15	1507	166.7	1986	608
\bigcirc	\bigcirc	\bigcirc	\bigcirc	1000					
					16	1570	184.3	2095	597
$\lambda=3.5$					18	1690	221.1	2310	578
					19	1747	240 3	2415	569
ϕ	(x)	(y)	(t)	(v)	20	1803	260°	2520	561
					21	1857	$280 \cdot 2$	2623	553
			$\begin{aligned} & 2246 \\ & 2062 \end{aligned}$	4789	2223	1910	3010	2726	546
77^{3}	44283669	437.1				1961	322.2	2829	539
$7 \frac{1}{2}$		335.3			24	2012	344°	2931	533
74	3179	271.8	1915	3664 3080					
7	2816	226.4	1789	2709	25	2061	$368 \cdot 4$ 389	$\begin{array}{r}3033 \\ 3134 \\ \hline\end{array}$	527 522
69	2527	$19 \mathrm{r} \cdot 6$	1676	2445	27	2156	412.8	3235	517
$6 \frac{1}{2}$	2288	163.7	1573	2246					
$6{ }^{4}$	2083	$140 \% 7$	1478.	2089	28	2202	$436 \cdot 8$	3336	512
					29	2247	$461 \cdot 4$	3438	508
6	1904	121.7		1961	30	2292	486.7	3539	504
5	961	68.5	816	1403					
4		$37 \cdot 3$			31	2336	512.6	3641	500
					32	2379	$539 \cdot 1$	3743	496
3	653	18.4	584	1259	33	2422	566.3	3845	493
2	401	7.3	374	1151					
1	186	$1 \cdot 6$	180	1067				3948	490
-	\bigcirc	\bigcirc	170	1000	35	2506 2547	622.9 $652^{\prime} 3$	4051 4156	487 485
1 2	165 312	1.4 5.3	170 330	944 897	36	2547	$652^{\circ} 3$	4156	485
3	446	${ }_{11} \cdot 1$	483	856					

IX. (continued).

$\lambda=377$					$\lambda=3.9$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$\begin{aligned} & 7^{\circ} \\ & 63 \\ & 6 \frac{1}{2} \\ & 61 \end{aligned}$	3254	2734	1890	3375	$1{ }^{1}{ }^{\circ}$	293	$4^{\circ} 0$	277	1121
	2832	222.4	1753	2882	1	188	$1 \cdot 7$	181	1076
	2511	185.1	1634	2556	O-1	90	0.4	89	1036
	2253	156.2	1527	2320	-	1	0	\bigcirc	1000
					1	164	1.4	169	938
6555	2036	1333°	1430	2140	2	309	$5 \cdot 2$	328	887
	1850	113.8	1339	1996	3	439	109	479	844
	1687	977	1254	1877					
51544	1541	$84^{\circ} \mathrm{O}$	1174	1778	4	556	18.1 26.7	624 762	806 774
	1410	$72 \cdot 2$	1098	1693	6	768	$36 \cdot 3$	895	745
	1180	$53^{.1}$	956	1553					
	985	38.6	825	1444	7 8	861	47% 58	1024	720 697
3 3,	814	27.4	703	1354	8	9619 1031	$70 \cdot 8$	1269	676
3	663	18.8	588	1280					
					10	1109	83.8	1387	658
$2 \frac{1}{2}$	527	12.3 7 7	479	1217	11	1182	97.4	1503	641
1212	404 291	7.4 3.9	375 276	11162	12	1252	11.6	1615	626
					13	1319	126.4	1726	612
$\stackrel{1}{1}$	187	$1 \cdot 7$	181	1072	14	1383	141.7	1834	599
	90	$0 \cdot 4$	89	1034	15	1444	157.6	1941	587
\bigcirc	-	0	-	1000					
					16	1503	173.9	2047	576
					17 18	1560 1615	$190 \cdot 7$ 208.0	2150 2253	555
$\lambda=3.9$					19	1668	$225 \cdot 8$	2354	547
					20	1719	244.0	2455	539
		(y)		(v)					53
ϕ	(x)		(t)		22	1818	281.8	2654	524
					23	1865	3014	2752	517
				30432650	24	1911	3214	2850	511°
6	2827 2476	216.1 176.9				1956			
6	2202	$147 \% 4$	1476	2379	26	2000	363.0	2948 3045	5
$5{ }^{3}$	1976	124*2	1377	2176	27	2043	$384 \cdot 6$	3142	495
$5 \frac{1}{2}$51	17851618	1058989	12851200	20181890	28	2086	$406 \cdot 6$	3239	490
					29	2127	429.2	3336	486
5	1471	76.4	1119	1784	30	2168	$452 \cdot 3$	3433	482
$4 \frac{1}{2}$	1220	55.540.0	9718358	16161488	31323	2208	$476 \cdot 0$	3530	478
4							$500 \cdot 3$	3627	475
$3 \underline{1}$	831	$28 \cdot 2$	710	1386	33	2287	$525 \cdot 1$	3725	47.1
$\stackrel{3}{2}$	674534	19.212.57.5	593482387	$\begin{aligned} & 1303 \\ & 1233 \end{aligned}$	34	$\begin{aligned} & 2326 \\ & 2364 \end{aligned}$	$\begin{aligned} & 550 \cdot 6 \\ & 576 \cdot 8 \\ & 603 \cdot 6 \end{aligned}$	$\begin{aligned} & 3 S 23 \\ & 3922 \\ & 4022 \end{aligned}$	$\begin{aligned} & 468 \\ & 465 \\ & 463 \end{aligned}$
	407	7.5	377	1173	36	2401			

IX. (continued).

$\lambda=4^{\prime} 1$					$\lambda=43$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
$\begin{aligned} & 64^{c} \\ & 6 \\ & 5 \frac{9}{4} \\ & 5 \frac{1}{2} \end{aligned}$	2797	2073	1663	3179	$1 \frac{1}{2}^{\circ}$	297	$4 \cdot 1$	279	1136
	2421	166.9	1534	2721	1	IS9	$1 \cdot 7$	182	1085
	2135	137.4	1422	2417	$0 \frac{1}{2}$	91	0.4	089	1040
	1904	114.6	1321	2196	0	-	0	0	1000
					1	163	$1 \cdot 4$	169	933
$5 \frac{1}{4}$544	1710	$96 \cdot 4$	1228	2027	2	305	$5 \cdot 1$	326	877
	1542	81.4	1143	1891	3	433	$10 \cdot 6$	475	83 I
	I 396	$68 \cdot 8$	1062	1780					
$4 \frac{1}{2}$	1265	$58 \cdot 2$	987	1686	4	548 652	17.6 $25^{\circ} 9$	617 753	792 758
$4{ }^{4} 1$	1039	41.4	846	1536	6	749	$35^{\circ} \mathrm{I}$	883	728
	849	29°	717	1419					
31					7	838	$45 \cdot 3$	1009	702
	685	19.6	597	1326	8	921	$56 \cdot 2$	1130	679
	540	12.7 7.6	485	1249	9	999	67.9	1248	658
2	411	$7 \cdot 6$	379	1184	10	1073	$80 \cdot 2$	1363	639
$1 \frac{1}{2}$	295	40	278	1129	11	1142	93.0	1475	622
I	188	$1 \cdot 7$	181	1080	12	1208	106.4	1584	606
	91	0.4	89	1038					
0	0	0	0	1000	13	1270	$120{ }^{\circ} 3$	1691	592
					14	1330	134.6	I 797	579
$\lambda=43$					15	1388	149.5	1900	567
					16				
					16	14436		2002	546
ϕ	(x)	(y)	(t)	(v)	18	1547	196.5	2201	536
					19	1596	213.1	2299	528
$6^{\circ}$$5{ }^{\frac{8}{4}}$5$5 \frac{1}{2}$54					20	1644	$230^{\circ} 0$	2396	519
	2737	$195 \cdot 8$	1607	3272	21	1690	$247 * 3$	2492	512
	2344	155.3	1476	2760					
	2052	126.5	1362	2432	22	1736	$265 \cdot 1$	2587	505
	1819	104.5	1261	2198	23	1779 1822	$283 \cdot 3$	2682	498
	1625	87. 1	I 169	2021	24	1822	301.9	2776	492
54$4 \frac{3}{1}$$4 \frac{1}{2}$	1460	73°	1083	1881	25	I 864	$320 \cdot 9$	2870	486
	1315	$61 \cdot 3$	1004	1766	26	1905	$340 \cdot 3$	2963	48 I
					27	1944	$360 \cdot 2$	3057	476
$4 \frac{1}{4}$	1186	51.4	929	1670					
4	1070	$43 \cdot 1$	857	1589	28	1984	$3 \mathrm{So} \cdot 6$	3150	471
$3^{\frac{1}{2}}$	869	29.8	724	1456	29 30	2022	401.4 422.7	3243 3336	467 463
3212	697	20'1	602	1351					
	548	12.9	488	1267					
	415	7×7	380	1196					

IX. (continued).

$\lambda=4.5$					$\lambda=4 \cdot 7$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(3)	(t)	(${ }^{\prime}$)
5 $5 .{ }^{\text {S }}$	2641	1814	1544	3310	$1^{\frac{1}{2}}{ }^{\circ}$	301	$4 \cdot 1$	280	1152
	2244	142.2	1412	2764	1	191	17	182	1094
	1953	114.8	1299	2422	Ot ${ }^{\frac{1}{2}}$	91	0.4	89	1044
	1722	94. 1	1198	2182	\bigcirc	-	\bigcirc	0	1000
5					1	162	1.4	168	927
$4{ }^{4}$	1532	$77 \cdot 8$	1107	2002	2	302	$5{ }^{\circ}$	324	868
	1370	64.7	1022	1860	3	426	$10 \cdot 4$	472	820
$4 \frac{1}{4}$	1228	53.9	943	1744		538	17.2	611	9
43$3 \frac{1}{3}$3	1103	44.9	869	1648	5	639	$25^{\prime} 1$	745	743
	991	37.2	799	1567	6	731	34°	872	713
	889	$30 \cdot 8$	732	1495					
2 2	709	20.5	607	1378	7	816 896	$43 \cdot 7$ 54.2	995 1114	686 662
	554	13.1	491	1285	9	970	$65^{\circ} 2$	1228	641
	419	$7 \cdot 8$	382	1208					
2					10	1039	76.9	1340	622
$1 \frac{1}{2}$	299	$4 \cdot 1$	279	1144	11	1105	89°	1449	605
ot	190	17	182	1089	12	1167	1017	1555	589
${ }_{0}^{02 \frac{1}{2}}$	91	0.4	89	1042					
	-	-	\bigcirc	1000	13	1226	1148	1659	575
					14	1282	128.3	1761	562
$\lambda=4.7$					15				550
					16	1388	156.5	1960	539
ϕ		((t)	(ข)	17 18	1437 1485	1712 186.3	2057 2153	528 519
		(y)	($)$)					
					19 20	1531 1576	$201 \cdot 7$ 2176	2247 2341	510
$5{ }^{10}$$52^{\circ}$544	2515	165°	1474	3286	21	1619	2337	2434	494
	2125	128.3	1343	2733					
	1841	102.7	1232	2389	22	1661	250.3	2526	487
	1618	$83 \cdot 6$	II33	2149	23	1702	$267 \% 2$	2617	481
					24	1742	284.5	2708	475
4	1433 1276	$68 \cdot 7$ 56.7	1043 960	1969 1828		1781	302.2		469
4	1140	$46 \cdot 8$	882	1714	26	1819	$320 \cdot 3$	2889	464
					27	1856	$338 \cdot 8$	2979	459
33$3 \frac{3}{1}$33	1019 910	$38 \cdot 6$ 31.8	809 740	1618 1537					
	910 812	$31 \cdot 8$ 26.0	740 675	1537 1467	28 29	1892 1928	$357 \cdot 7$ $377 \cdot 1$	3068	454 450
					30	1963	$396 \cdot 8$	3248	
321	722	21.0	612	1406					
	562	13.3	494	1304					
	423	7.9	$3 S_{4}$	1221					

IX. (continued).

$\lambda=4.9$					$\lambda=5^{1} \mathrm{I}$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
54°	2362	147×2	1399	3205	4°	528	16.8	606	766
5	1991	113.9	1271	2668	5	625	$24^{\circ} 5$	737	729
4	1720	$90^{\circ} 7$	1162	2335	6	714	$33^{\circ} \mathrm{O}$	862	698
$4 \frac{1}{3}$	1506	$73 \cdot 4$	1065	2101	8	796	$42 \cdot 3$	982	671
41	1330	59.9	977	1926	8	872	52.3	1098	647
4	1180	49.1	896	1788	9	942	$62 \cdot 8$	1210	625
3年	1049	$40^{\circ} 2$	820	1677	ı0	1008	73.9 85	1319	606
$3 \frac{1}{1}$	934	$32 \cdot 9$	749	1584	11	1071	85.4 97.4	1425	589
$3 \frac{1}{4}$	830	26.8	682	1505	12	1129	974	1529	573
3	735	21.6	617	1436	13	1185	109.8	1630	559
22	570	13.6	497	1323	14 15	1238 1289	122.5 135	1729 1826	546
2	427	8.0	386	1234	15	1289	135.6	1826	533
					16	1338	149.1	1922	522
$1{ }^{\frac{1}{2}}$	303	4.2	- 281	1160	17	1384	163.0	2016	512
1	191	$1 \cdot 7$	183	1098	18	1429	1771	2109	503
$\begin{aligned} & 0 \frac{1}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & 91 \\ & 0 \end{aligned}$	\bigcirc	8	$\begin{aligned} & 1046 \\ & 1000 \end{aligned}$	19	1473	1916	2201	494
					20	1515	$206 \cdot 5$	2291	486
$\lambda=5^{\circ} \mathrm{I}$					22	1595	$237{ }^{2}$	2470	472
					23	1633	$253{ }^{\circ}$	2559	465
ϕ		(y)	(t)	(v)					459
	(x)				$\lambda=5^{\circ} 3$				
4		12900	1319	3076			(${ }^{\prime}$)	(t)	(v)
	2192 1848				ϕ	(x)			
	1594	79°	1090	2263					
	I 393	$63^{\circ} 6$515	996	1874		2485		13801236	37562919
	1226		911		5°		151.8 111.3		
3	1084	41.9		17421634	$4 \begin{aligned} & 4 \frac{1}{2} \\ & 4 \\ & 4\end{aligned}$	1698	85.9	1119	2470
	959	$34^{\circ} \mathrm{O}$	758			14641276	67.9	1018	2180
$3 \frac{1}{4}$	849	27.5	689	$\begin{array}{r}1534 \\ \hline 1545\end{array}$	4		54.4	927	1973
		22.113.8	623	1468	$3{ }^{3}$	1120	$43 \cdot 8$$35 \cdot 3$	845768	18151690
$2 \frac{1}{2}$	578				$3 \frac{1}{2}$	986			
2	432	8.1	388	1247	3	869	28.4	697	1588
I $\frac{1}{2}$		4.2	282183	11691103	322	765586	$\begin{aligned} & 22 \cdot 7 \\ & 14: 1 \end{aligned}$	$\begin{aligned} & 629 \\ & 504 \end{aligned}$	15021366
	305 192								
${ }_{\text {I }}^{1}$	192	1.70.4	18389	1109 1048		436	$8 \cdot 2$	390	1261
${ }^{1} \frac{1}{2}$	92				2				
\bigcirc	\%	$\stackrel{1}{1} 4$	167323468	$\begin{array}{r} 1000 \\ 921 \\ 859 \\ 808 \end{array}$	III$0 \frac{1}{2}$0	307193910	$\begin{aligned} & 4 \cdot 2 \\ & 1 \cdot 7 \\ & 0 \cdot 4 \\ & 0 \end{aligned}$	283183890	$\begin{aligned} & 1177 \\ & 1108 \\ & 1050 \\ & 1000 \end{aligned}$
1	161								
2	299	5.0							
3	420	10.2	468						

IX. (continued).

$\lambda=5 \cdot 5$					$\lambda=5^{\prime} 7$				
ϕ	(x)	(3)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
43°	2238	127.8	1287	3443	$42^{\frac{1}{2}}$	2001	106.4	1193	3143
$4 \frac{1}{2}$	1828	94.6	1153	2746	$4 \ddagger$	1650	79.5	1069	2572
$4 \frac{1}{1}$	1547	$73^{1} 1$	1042	2352	4	1401	61.5	965	2229
4	1333	57.7	945	2089	$3{ }^{3}$	1207	$48 \cdot 4$	873	1995
3 ${ }^{3}$	1161	46.0	858	1899	32	1049	$38 \cdot 3$	790	1822
$3 \frac{1}{2}$	1016	36%	778	1753	$3 \frac{1}{\ddagger}$	915	30.4	713	1688
$3 \pm$	891	29.4	704	1636	3	799	$24 \cdot 1$	642	1579
3	781	23.4	635	1539	$2 \frac{3}{2}$	696	18.9	575	1489
$2 \frac{1}{2}$	595	14.4	508	1389	$2 \frac{1}{2}$	604	$14^{\circ} 7$	511	1413
2	440	$8 \cdot 3$	391	1275		445	$8 \cdot 4$	394	1290
$1 \frac{1}{2}$	309	4.3	284	1186	$1 \frac{1}{2}$	311	4.3	285	1194
,	194	1.8	184	1113	-	195	1.8	184	1118
$\mathrm{O}_{2} 2$	92	0.4	90	1052	O2,	92	0.4	90	1054
-	-	\bigcirc	-	1000	-	-	-	-	1000
1	160	14	167	916					
2	296	4.9	321	850	$\lambda=5{ }^{\circ} 9$				
3	414	10.0	465	798					
4	519	16.4	600	754					
5	519 613 699	23.8 32.0	729 85	716	ϕ		(y)	(t)	(v)
6	699	$3^{2} 0$	852	684	ϕ	(x)	(3)	($)$	(\%)
7	777 850	41.0	969	657					
9	850	60.6	1083	632	$4 \stackrel{1}{2}^{\circ}$	2247	123.6	1244	3782
	917		1192	611	4	1780 1480	877 66.1	1101 987	2867 2402
10	980	71.1	1299	591	$3{ }^{3}$	1259	$51 \cdot 1$	889	2108
11	1039	$82 \cdot 1$	1402	574					
12	1095	93.4	15031601	558	$3 \frac{1}{2}$	1085	$40^{\circ} \mathrm{I}$	Soi	1901
					3.1	940	31.5	722	1745
13	1148	105.2		544	3	817	24.8	648	1622
14	1198	$117 \% 3$	1698	531					
15	1247	129.7	1792	519	$2{ }^{3}$	709	19.4	580	1521
					$2 \underline{1}$	614	15°	515	1438
16	1293	142.5	1885	508	2	450	$8 \cdot 6$	395	1305
17	1337	1555	1977	498					
18	1379	168.9	2067	488	$1 \frac{1}{2}$	313	4.4	286	1203
					${ }_{\text {O }}^{1}$	195 92	1.8 0.4	185	1122
20	1459	196.5	2244	472	${ }^{1}$	9	\bigcirc	90	1050
21	1497	210.8	23312418	464	1	159	$1 \cdot 3$	166	911
					2	293	4*8	319	842
22	1535	225.4		457	3	408	$9 \cdot 8$	461	787
23	1571	$240 \cdot 3$	2503	451					
24	1606	255.5	2589	445	4	510	16.0	595	742
					5	601 683	23.2 31.1	721 842	704 671
								842	

IX. (continued).

IX. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{$\lambda=6 \cdot 7$} \& \multicolumn{5}{|c|}{$\lambda=7^{\prime} 1$}

\hline ϕ \& (x) \& (3) \& (t) \& (v) \& ϕ \& (x) \& (y) \& (t) \& (v)

\hline 4° \& 2073 \& 102.5 \& 1119 \& 4019 \& 7° \& 711 \& 36.4 \& 924 \& 608

\hline $3{ }^{3}$ \& 1574 \& 68.5 \& 972 \& 2880 \& 8 \& 772 \& 44.5 \& 1029 \& 583

\hline $3{ }^{\frac{1}{2}}$ \& 1279 \& $49 \cdot 8$ \& 859 \& 2362 . \& 9 \& 829 \& 53.0 \& 1130 \& 561

\hline 34 \& 1068 \& $37 \cdot 3$ \& 763 \& 2049 \& 10 \& 882 \& $61 \cdot 9$ \& 1227 \& 542

\hline 3 \& 995 \& 28.4 \& 678 \& 1836 \& 11 \& 932 \& $71 \cdot 1$ \& 1322 \& 524

\hline 24 \& 770 \& 21.6 \& 602 \& 1678 \& 12 \& 978 \& 80.5 \& 1414 \& 509

\hline 212 \& 657 \& 16.4 \& 531 \& 1554 \& 13 \& 1022 \& $90 \cdot 3$ \& 1503 \& 494

\hline 2 \& 558 \& $12 \cdot 3$ \& 466 \& 1455 \& 14 \& 1064 \& 100.2 \& 1591 \& 482

\hline 2 \& 471 \& 911 \& 404 \& 1372 \& 15 \& 1103 \& 110.5 \& 1677 \& 470

\hline $1 \frac{1}{2}$ \& 323 \& 4.5 \& 290 \& 1242 \& 16 \& 1141 \& 120.9 \& 1761 \& 460

\hline 1 \& 199 \& 1.8 \& 186 \& 1143 \& 17 \& 1177 \& 131.6 \& 1844 \& 450

\hline \multirow[t]{2}{*}{$$
\mathrm{O}_{0}^{\frac{1}{2}}
$$} \& 93 \& 0.4
0 \& 90 \& 1064
1000 \& 18 \& 1212 \& 142.5 \& 1925 \& 44^{1}

\hline \& \& \& \& \& 19 \& 1245 \& 153.6 \& 2006 \& 432

\hline \multicolumn{5}{|c|}{$\lambda=7{ }^{1}$} \& 21 \& 1308 \& 176.5 \& 2163 \& 418

\hline ϕ \& (x) \& (y) \& (t) \& (v) \& $$
\begin{aligned}
& 22 \\
& 23 \\
& 24
\end{aligned}
$$ \& 1338
1367
1395 \& 188.3
$200 \cdot 3$
212.6 \& $$
\begin{aligned}
& 2241 \\
& 2318 \\
& 2394
\end{aligned}
$$ \& $$
\begin{aligned}
& 411 \\
& 405 \\
& 399
\end{aligned}
$$

\hline $3{ }^{39^{\circ}}$ \& 1887 \& $86 \cdot 7$
57.7 \& $\begin{array}{r}1039 \\ 888 \\ \hline\end{array}$ \& 3826 \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{$\lambda=7^{\circ} 5$}}

\hline $3 \frac{1}{2}$
3

3 \& 1431
1157 \& 57.7
41.5 \& 898
789 \& 2769
2278 \& \& \& \& \&

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 34 \\
& 3 \\
& 2 \frac{3}{4}
\end{aligned}
$$} \& 961 \& 30.7 \& 696 \& 1981 \& \& \& \& \&

\hline \& 807 \& $23^{\circ} \mathrm{O}$ \& 614 \& 1776 \& \multirow[t]{2}{*}{ϕ} \& (x) \& (y) \& (t) \& \multirow[t]{2}{*}{(v)}

\hline $2 \frac{1}{2}$ \& 682 \& 17.2 \& 540 \& 1624 \& \& \& \& \&

\hline $2 \frac{1}{2}$ \& 575 \& 12.8 \& 472 \& 1505 \& \& \& \& \&

\hline \multirow[t]{2}{*}{2} \& \multirow[t]{2}{*}{482} \& \multirow[t]{2}{*}{9.4} \& \multirow[t]{2}{*}{408} \& \multirow[t]{2}{*}{1409} \& \multirow[t]{2}{*}{$3 \begin{aligned} & 3 \frac{1}{2} \\ & 3 \\ & 3\end{aligned}$} \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 1667 \\
& 1274
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 70^{\circ} 4 \\
& 47^{\circ} 0
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{951

820} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 3499 \\
& 2606
\end{aligned}
$$}

\hline \& \& \& \& \& \& \& \& \&

\hline 1212 \& \multirow[t]{2}{*}{327
201} \& \multirow[t]{2}{*}{4.6
1.8} \& \multirow[t]{2}{*}{292
187} \& 1262 \& \multirow[t]{2}{*}{$3{ }_{2}^{4}$} \& \multirow[t]{2}{*}{1029
850} \& \multirow[t]{2}{*}{$33 \cdot 6$
$24 \cdot 6$} \& \multirow[t]{2}{*}{717
628} \& \multirow[t]{2}{*}{2167
1895}

\hline \multirow[t]{2}{*}{O21} \& \& \& \& \multirow[t]{2}{*}{1153
1068} \& \& \& \& \&

\hline \& 93 \& 18
0.4
0 \& 90 \& \& $2{ }^{3}$ \& 850 \& \& \&

\hline \bigcirc \& \bigcirc \& ${ }^{-1}$ \& ${ }^{\circ} \mathrm{O}$ \& 1000 \& $2 \frac{1}{2}$ \& 710 \& 18.2 \& 550 \& 1704

\hline 2 \& 156
284 \& \& 165
314 \& \& ${ }_{2}^{2+}$ \& 594
495 \& 13.4 \& 479 \& 1562

\hline 2 \& 284 \& $4 \cdot 6$ \& 314 \& 818 \& \multirow[t]{2}{*}{} \& 495 \& \multirow[t]{2}{*}{97} \& 413 \& \multirow[t]{2}{*}{1284}

\hline 3 \& 392 \& 93 \& 452 \& 758 \& \& \& \& \&

\hline \multirow[t]{3}{*}{4
5

6} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 486 \\
& 569 \\
& 644
\end{aligned}
$$} \& \multirow[t]{2}{*}{15.0

21.6} \& \multirow[t]{2}{*}{580
701} \& 710 \& \multirow[t]{2}{*}{1} \& 202 \& 1.9 \& 158 \& 1164

\hline \& \& \& \& 670 \& \& 94 \& $0 \cdot 4$ \& 90 \& 1073

\hline \& \& $28 \cdot 7$ \& 815 \& 637 \& \bigcirc \& - \& - \& o \& 1000

\hline
\end{tabular}

IX. (continued).

$\lambda=7.9$					$\lambda=8 \cdot 3$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
34°	1442	$55^{\circ} 5$	860	3131	$3{ }^{\circ}$	1230	$42 \cdot 5$	771	2781
3	1115	37.4	741	2418	2	962	29.0	663	2226
$2{ }^{\frac{3}{4}}$	901	$26 \cdot 6$	644	2040	$2 \frac{1}{2}$	777	20.5	573	1909
$2 \frac{1}{2}$	741	19.3	561	1798	21	636	14.7	494	1697
24	614	14°	486	1625	2	522	10.4	424	1544
2	508	10.0	418	1495	$1{ }^{3}$	426	73	359	1425
$1 \frac{1}{2}$	338	$4 \cdot 8$	297	1307	$1{ }^{1}$	344	4.9	299	1331
	204	$1 \cdot 9$	189	1175	1	206	$1 \cdot 9$	189	1187
O ${ }^{\frac{1}{2}}$	94	$0 \cdot 4$	91	1077	- $\frac{1}{2}$	94	0.4	91	1081
-	-	0	0	1000	\bigcirc		-	-	1000
1	154	$1 \cdot 3$	164	885					
2	278	4.5	311	803					
3	382	$9 \cdot 0$	446	741					
4	471	14.4	571	691	$\lambda=8 \cdot 7$				
5	549 619	$20 \cdot 6$		650 616					
7	682	34.5	905	587					
8	740	$42 \cdot 1$	1006	562	¢	(x)	(${ }^{\prime}$)	(t)	(v)
9	793	50\%	1103	540					
10	842	58.2	1197	521	3°	1401	50.4	809	3399
11	888	$66 \cdot 7$	1288	504	$2{ }^{3}$	1039	$32 \cdot 1$	684	2473
12	931	$75^{\circ} 4$	1376	488	2 $\frac{1}{2}$	820	$22^{\circ} \mathrm{O}$	586	2043
13	971	84.3	1462	474	24	662	15.4	503	1780
14	1009	93.5	1546	462	2	538	10.8	430	1598
15	1046	102.9	1628	450	$1{ }^{\frac{3}{4}}$	436	7.5	363	1462
16	1080	112.5	1709	440	$1 \frac{1}{2}$	349	5.0	301	1356
17	1113	122.3	1788	430	1	208	$1 \cdot 9$	190	1199
18	1145	$132 \cdot 3$	1866	421	O2,	95	0.4	91	1086
					-	-	-	-	1000
19	1175	142.4	1943	313	1	153	$1 \cdot 3$	163	876
20	1205	152.8	2019	406	2	273	44	308	789
21	1233	163.4	2094	399	3	373	$8 \cdot 7$	440	724
22	1260	174.1	2168	392	4	458	13.9	562	673
23	1287	$185^{1} 1$	2241	386	5	532	$19 \cdot 7$	676	632
24	1312	196.2	2315	381	6	598	26°	784	597

IX. (continued).

$\lambda=8 \cdot 7$					$\lambda=9.5$				
ϕ	(x)	(y)	(t)	(v)	ϕ	(x)	(y)	(t)	(v)
7^{7}	657711760	$\begin{aligned} & 32 \cdot 8 \\ & 39 \cdot 9 \end{aligned}$	$\begin{aligned} & 886 \\ & 984 \end{aligned}$	568	$22^{\frac{3}{0}}$	1287	42.526.1	742618	33942426
				543	$2 \frac{1}{2}$	932			
9		$\begin{aligned} & 39^{\circ} 9 \\ & 47 \cdot 3 \end{aligned}$	$\begin{array}{r} 984 \\ 1078 \end{array}$	522	$2 \frac{1}{4}$	723	17.3	523	1989
	711 760				2	573	11.8	442	1545
10	806	54.9	1169	502	$1{ }^{\frac{3}{4}}$	457	8.0	371	
II	848	62.8	1256	486				307	
12	888	70.9	1342	470	$1{ }^{\frac{1}{2}}$	362	5.32.0		1411
						212		192	1223
13	926961	79.2877	14241505	$\begin{aligned} & 456 \\ & 444 \end{aligned}$	${ }_{0}^{1}$	950	$0 \cdot 4$	91	10951000
14					o		-	0	
15	995	96.4	${ }_{15} \mathrm{~S}_{4}$	433	1	151	$1 \cdot 3$	162	867
					3	268	43	305	776708
16	1027	105.2	1662	423	3	364	$8 \cdot 4$	434	
1618	10571086	123.5	1813	405					
					456	$\begin{aligned} & 445 \\ & 555 \\ & 578 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 18.9 \\ & 24.9 \end{aligned}$	554665	657615580
	1114								
19		132.8	1887	397389				770	
20	1141	142.4	1959		6	578	24.9		
21	1167	152.1	2031	383	7 8	$\begin{aligned} & 633 \\ & 684 \end{aligned}$	$31 \cdot 3$ 37.9	$\begin{aligned} & 869 \\ & 964 \end{aligned}$	551 527
22	1193	$\begin{aligned} & 162.0 \\ & 172.1 \\ & 182.3 \end{aligned}$	$\begin{aligned} & 2102 \\ & 2173 \\ & 2243 \end{aligned}$	$\begin{aligned} & 376 \\ & 370 \\ & 365 \end{aligned}$	9	731	$44^{\circ} 8$	1055	505
23									
24	1240				10	$\begin{aligned} & 773 \\ & 813 \\ & 850 \end{aligned}$	52.059.4	11421227	486469454
$\lambda=9^{\circ} \mathrm{I}$					12		66.9	1309	
					131415	$\begin{aligned} & 885 \\ & 918 \\ & 949 \end{aligned}$	$\begin{aligned} & 74 \cdot 7 \\ & 82 \cdot 6 \\ & 90 \cdot 6 \end{aligned}$	$\begin{aligned} & 1389 \\ & 1467 \\ & 1544 \end{aligned}$	$\begin{aligned} & 441 \\ & 428 \\ & 4 \mathrm{I} \end{aligned}$
	(x)	(y)	(t)	(v)					
ϕ									
					16	$\begin{array}{r} 979 \\ 1007 \\ 1034 \end{array}$	$\begin{array}{r} 98.9 \\ 107.3 \\ 115.8 \end{array}$	$\begin{aligned} & 1618 \\ & 1692 \\ & 170.4 \end{aligned}$	407398390
	1141	$36 \cdot 3$	710601	2827	1718				
22^{3}									
$2 \frac{1}{2}$	870690	23.8		2210	19	10601085	$\begin{aligned} & 124.5 \\ & 133.3 \\ & 142.3 \end{aligned}$		
$2 \ddagger$		16.3	513436	$\begin{array}{r}1876 \\ 1658 \\ \hline\end{array}$				183519051974	382375368
2	555	113							
$1{ }^{3}$	446	77	367	1502	21	1109			
$1 \frac{1}{2}$	$\begin{array}{r} 356 \\ 250 \\ 95 \\ 0 \end{array}$	$\begin{aligned} & 5.2 \\ & 2.0 \\ & 0.4 \\ & 0 \end{aligned}$	$\begin{array}{r} 304 \\ 191 \\ 91 \\ 0 \end{array}$	$\begin{aligned} & 1383 \\ & 1211 \\ & 1090 \\ & 1000 \end{aligned}$	222324	$\begin{aligned} & 1133 \\ & 1155 \\ & 1177 \end{aligned}$	$\begin{aligned} & 151.5 \\ & 160 \cdot 8 \\ & 170 \cdot 3 \end{aligned}$	$\begin{aligned} & 2042 \\ & 2110 \\ & 217 \end{aligned}$	362356351
1									
O2,									
-									

IX. (continued).

$\lambda=9.9$					$\lambda=10 \cdot 3$				
ϕ	(x)	(${ }^{\prime}$)	(t)	(v)	ϕ	(x)	(${ }^{\prime}$)	(t)	(v)
$2 \frac{1}{2}^{\circ}$	1011	29*0	639	2722	I°	149	$1 \cdot 2$	161	857
24	761	18.6	534	2125	2	263	42	302	763
2	594	12.4	449	1802	3	355	8.2	429	694
18	469	$8 \cdot 3$	375	1592	4	433	$12 \cdot 9$	546	642
$1 \frac{1}{2}$	369	$5 \cdot 4$	309	1442	5	500	18.2	654	599
14	286	3.4	249	1327	6	559	23.9	756	565
1	214	$2 \cdot 0$	193	1236	7	612	29.9	853	536
$0 \frac{3}{4}$	152	1.0	141	1162	8	660	$36 \cdot 1$	945	511
O $\frac{1}{2}$	96	$0 \cdot 4$	91	1100	9	703	$4^{2} 7$	1033	490
0	-	-	-	1000				118	71
					11	781	49.4 563	1200	454
$\lambda=10 \cdot 3$					12	816	63.4	1280	440
					13	849	$70 \cdot 6$	1357	426
ϕ	(x)	(y)	(t)	(v)	14	879 909	78.0 85.6	1432	414
$2 \frac{1}{1}$$2{ }^{\circ}$2							93.3ror-110	$\begin{aligned} & 1578 \\ & 1649 \end{aligned}$	394385376
	$\begin{array}{r} 1118 \\ 805 \\ 617 \end{array}$	$\begin{aligned} & 33^{\circ} \mathrm{I} \\ & 20^{\circ} 0 \\ & 13^{\circ} 0 \end{aligned}$	$\begin{aligned} & 663 \\ & 547 \end{aligned}$	$\begin{aligned} & 3161 \\ & 2202 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 936 \\ & 963 \\ & 988 \end{aligned}$			
							1090	1719	
			457	1889					
$1 \frac{3}{4}$	482376	8.6	380	1644	20	$\begin{aligned} & 1035 \\ & 1058 \end{aligned}$	$\begin{aligned} & 125.4 \\ & 133^{\circ} \end{aligned}$	1855	369 362 355
$1 \frac{1}{2}$		$5 \cdot 6$	312251	14741348	21			1922	355
$\underline{1}$	290	3.5						1088	$\begin{aligned} & 349 \\ & 344 \\ & 338 \end{aligned}$
					22	1079	1423		
	216	2.0	194	1250	23	1100	$150{ }^{\circ} 9$	2053	
$0{ }^{3}$	153	$1 \cdot 1$	141	1170	24	II2I	159.8	2118	
$0^{\frac{1}{2}}$	96	$0 \cdot 4$	92 0	1104					
	-	-	0	1000					

X.
$\{1000 \div 8\}^{2}$.

v	\bigcirc	I	2	3	4	5	6	7	8	9	Δ
f.s. 10	100*00	98.03	$96 \cdot 12$	94.26	92.46	90.70	89.00	$87 \cdot 34$	85.73	84.17	1×76
II	$82 \cdot 64$	81.16	79.72	78.31	76.95	75.61	$74 \cdot 32$	73.05	71.82	70.62	$1 \cdot 33$
12	$69 * 44$	$68 \cdot 30$	67-19	$66 \cdot 10$	$65^{\circ} 04$	$64 \cdot 00$	62.99	62.00	61.04	60.09	$1 \cdot 04$
13	59*17	$58 \cdot 27$	57*39	56.53	$55 \cdot 69$	54.87	54.07	53.28	52.51	51776	-83
14	51.02	50•30	49.59	$48 \cdot 90$	$48 \cdot 23$	$47 \cdot 56$	$46 \cdot 91$	$46 \cdot 28$	$45 \cdot 65$	45.04	66
15	44.44	$43 \cdot 86$	43.28	$42 \cdot 72$	$42 \cdot 17$	$41 \cdot 62$	41.09	$40 \cdot 57$	$40 \cdot 06$	39.56	54
16	39.06	$38 \cdot 58$	$38 \cdot 10$	$37 \cdot 64$	37-18	36.73	$36 \cdot 29$	$35 \cdot 86$	$35 \cdot 43$	$35^{\circ} \mathrm{OI}$	45
17	$34 \cdot 60$	34.20	$33 \cdot 80$	33.41	33.03	32.65	$32 \cdot 28$	31.92	$31 \cdot 56$	31.21	38
18	$30 \cdot 86$	$30 \cdot 52$	30'19	29.86	29.54	29:22	$28 \cdot 91$	$28 \cdot 60$	28.29	2S.00	32
19	27•70	27.41	27.13	$26 \cdot 85$	$26 \cdot 57$	$26 \cdot 30$	26.03	25.77	$25 \cdot 51$	25.25	27
20	$25^{\circ} 00$	24.75	24.51	24.27	24.03	23.80	23.57	23.34	$23 \cdot 11$	22.89	23
21	22.68	22.46	22.25	22.04	21.84	21.63	21.43	21.24	$21^{\circ} \mathrm{O} 4$	20.85	20
22	$20 \cdot 66$	20.48	20:29	20.11	19.93	$19 \% 75$	19.58	19.41	19.24	19.07	18
23	18.90	18.74	18.58	18.42	18.26	$18 \cdot 11$	17.96	$17 \cdot 80$	17.65	17.51	15
24	17*36	17.22	17.08	$16 \cdot 94$	$16 \cdot 80$	$16 \cdot 66$	$16 \cdot 53$	$16 \cdot 39$	16.26	16.13	14
25	16.00	15.87	1575	15.62	15.50	$15 \cdot 38$	15:26	15.14	15.02	14.91	12
26	14.79	14.68	14.57	14.46	14.35	14.24	14.13	14.03	13.92	13.82	11
27	13.72	13.62	13.52	13.42	13.32	13.22	I3.13	13.03	12.94	12.85	10
28	12.755	2.664	2.575	2.486	$2 \cdot 398$	2.311	$2 \cdot 226$	2.140	2.056	$1 \cdot 973$	87
29	1.891	1.809	1.728	1.648	1.569	1491	1413	1-337	I•26I	1.186	78
30	I•III	$1 \cdot 037$	0.964	0.892	0.821	$0 \cdot 750$	0.680	0.610	$0 \cdot 541$	$0 \cdot 473$	71
31	10.406	$0 \cdot 339$	0.273	$0 \cdot 207$	0.142	0.078	0.014	*9.951	*9•889	${ }^{*} 9.827$	64
32	9*766	9.705	9.645	9.585	9.526	$9 \cdot 467$	9.409	$9 \cdot 352$	$9: 295$	9:239	59
33	9^{\cdot} I 83	9-127	9.072	9018	8.964	8.911	$8 \cdot 858$	8.805	$8 \cdot 753$	8•702	53
34	$8 \cdot 651$	$8 \cdot 600$	$8 \cdot 550$	$8 \cdot 500$	8.451	8.402	$8 \cdot 353$	$8 \cdot 305$	$8 \cdot 257$	8.210	49
35	$8 \cdot 163$	$8 \cdot 117$	8.071	8.025	7.980	7.935	$7 \cdot 890$	$7 \cdot 846$	$7 \cdot{ }^{7} \mathrm{So} 3$	7759	45
36	$7 \cdot 716$	$7 \cdot 673$	$7 \cdot 631$	$7 \cdot 589$	7.547	77506	$7 \cdot 465$	$7 \cdot 425$	$7 \cdot 384$	$7 \cdot 344$	4 I
37	$7 \cdot 305$	7.265	7.226	$7 \cdot 188$	$7 \cdot 149$	$7 \cdot 111$	7.073	7.036	6.999	$6 \cdot 962$	3 S
38	6.925	$6 \cdot 889$	$6 \cdot 853$	$6 \cdot 817$	$6 \cdot 782$	$6 \cdot 746$	$6 \cdot 711$	6.677	$6 \cdot 643$	$6 \cdot 608$	35
39	$6 \cdot 575$	$6 \cdot 541$	$6 \cdot 508$	6.475	6.442	6.409	$6 \cdot 377$	6.345	$6 \cdot 313$	$6 \cdot 281$	33
40	6.250	6.219	$6 \cdot 188$	$6 \cdot 157$	$6 \cdot 127$	6.097	6.067	6.037	$6 \cdot 007$	5.978	30
41	5.949	$5 \cdot 920$	$5 \cdot 891$	5.863	$5 \cdot 834$	5.806	5.778	$5 \cdot 751$	$5 \cdot 723$	$5 \cdot 696$	28
42	$5 \cdot 669$	$5 \cdot 642$	$5 \cdot 615$	$5 \cdot 589$	5.562	5.536	5.510	$5 \cdot 485$	$5 \cdot 459$	$5 \cdot 434$	26
43	$5 \cdot 408$	$5 \cdot 383$	$5 \cdot 358$	$5 \cdot 334$	5-309	$5 \cdot 285$	$5 \cdot 260$	$5 \cdot 236$	$5 \cdot 213$	5.189	24
44	$5 \cdot 165$	$5 \cdot 142$	$5 \cdot 119$	5.096	5.073	5.050	$5 \cdot 027$	$5 \cdot 005$	4.982	$4 \cdot 960$	23
45	4938	4.916	$4 \cdot 895$	$4 \cdot 873$	$4 \cdot 852$	$4 \cdot 830$	4.So9	4.788	$4 \div 67$	$4 \cdot 747$	21
46	$4 \cdot 726$	$4 \cdot 705$	4.685	4.665	$4 \cdot 645$	$4 \cdot 625$	4.605	4.585	$4 \cdot 566$	4.546	20
47	$4 \cdot 527$	$4 \cdot 508$	4489	4.470	$4 \cdot 451$	4.432	4.414	$4 \cdot 395$	$4 \cdot 377$	4.358	19
48	$4 \cdot 340$	$4 \cdot 322$	$4 \cdot 304$	$4 \cdot 287$	$4 \cdot 269$	$4 \cdot 251$	$4 \cdot 234$	4.216	4.199	4.182	18

X. (continued).
$\{1000 \div v\}^{2}$.

2)	0	1	2	3	4	5	6	7	8	9	Δ
f. s.											
49	4.165	4.148	4.131	$4^{\circ 114}$	4*098	4.081	4.065	4.048	4.032	4*016	17
50	4.000	3.984	3.968	3.952	3.937	3.921	$3 \cdot 906$	$3 \cdot 890$	3.875	3.860	16
51	$3 \cdot 845$	3.830	$3 \cdot 815$	$3 \cdot 800$	$3 \cdot 785$	37770	$3 \cdot 756$	$3 \cdot 741$	3.727	$3 \cdot 713$	15
52	3.698	$3 \cdot 684$	3.670	$3 \cdot 656$	3.642	$3 \cdot 628$	3.614	$3 \cdot 601$	3.587	3.574	14
53	3.560	3.547	$3 \cdot 533$	3.520	$3 \cdot 507$	3.494	$3 \cdot 481$	$3 \cdot 468$	3.455	3.442	13
54	$3 \cdot 429$	3417	3404	$3 \cdot 392$	$3 \cdot 379$	$3 \cdot 367$	$3 \cdot 354$	$3 \cdot 342$	3.330	3.319	12
55	$3 \cdot 3058$	-2938	-2819	$\cdot 2700$	$\cdot 2582$	- 2464	- 2348	$\cdot 2232$	-2117	-2001	117
56	-1888	-1774	-1662	- 1549	-1437	-1325	-1215	-1105	-0996	-0887	III
57	-0779	-067 I	-0564	- 0457	-0351	-0245	- 0140	-0036	*-9933	*.9829	106
58	2.9727	. 9624	-9523	-942I	-9320	-6220	'9121	${ }^{\circ} 9022$	-8923	. 8825	100
59	. 8727	. 8630	. 8534	-8437	.8341	-8246	-8152	-8058	$\cdot 7964$	$\cdot 7871$	95
60	$\cdot 7778$	$\cdot 7685$	$\cdot 7594$	$\cdot 7502$	-7411	7320	$\cdot 7230$	7141	$\cdot 7052$	- 6963	91
61	$2 \cdot 6875$	-6787	-6699	-6612	-6525	-6439	. 6353	- 6268	-6183	-6099	86
62	. 6015	-593I	$\cdot 5848$	- 5765	$\cdot 5682$	- 5600	$\cdot 5518$	- 5437	- 5356	$\cdot 5276$	82
63	-5195	-5116	$\cdot 5036$	-4957	- 4878	- 4800	$\cdot 4722$	- 4645	- 4568	-4491	78
64	2.4414	- 4338	- 4262	-4187	-4III	-4037	- 3962	-3889	-3815	-3742	75
65	$\cdot 3669$	- 3596	- 3524	$\cdot 3452$	$\cdot 3380$	$\cdot 3308$	$\cdot 3237$	$\cdot 3167$	-3097	$\cdot 3027$	71
66	- 2957	$\cdot 2887$	-2818	- 2750	-2681	-2613	$\cdot 2545$	- 2477	-2410	- 2343	67
67 68	$\begin{array}{r}2.2277 \\ \hline 1626\end{array}$	- 2210	- 2144	- 2078	-2013	-1948	-1883	-1818	-1754	-1690	65
68	-1626	-1562	-1500	-1437	-1374	-1312	-1249	-1188	-1126	-1065	62
69	-1004	-0943	$\cdot 0883$	-0822	$\cdot 0762$	-0703	-0643	-0584	-0525	-0467	60
70	2.0408	-0350	-0292	-0234	-0177	- 0120	.0063	-0006	* 9950	*.9893	57
71	1.9837	-9782	-9726	$\cdot 967$	-9616	-9561	-.9506	-9452	. 9398	- 9344	55
72	-9290	$\cdot 9237$	$\cdot 9184$	-9130	-9077	-9025	$\cdot 8972$	-8920	-8869	-8817	53
73	I. 8765	-8714	-8663	-8612	-8561	-8511	-8460	-8410	-8361	-8311	50
74	-8262	-8212	. 8163	-8114	-8066	-8017	$\cdot 7969$	-7921	$\cdot 7873$	$\cdot 7825$	49
75	$\cdot 7778$	$\cdot 7730$	$\cdot 7683$	$\cdot 7636$	$\cdot 7590$	$\cdot 7543$	$\cdot 7497$	-7450	$\cdot 7405$	-7359	47
76	1.7313	$\cdot 7268$	$\cdot 7224$	$\cdot 7177$	$\cdot 7132$	$\cdot 7087$	$\cdot 7043$	- 6998	- 6954	- 6910	45
77	-6866	-6823	- 6779	-6736	- 6692	- 6649	- 6606	-6564	-652I	- 6479	43
78	-6437	-6395	$\cdot 6353$.63II	- 6269	- 6228	-6186	-6145	-6105	-6064	42
79	1.6023	-5983	- 5942	- 5902	$\cdot 5862$	$\cdot 5822$	$\cdot 5782$	- 5743	- 5704	-5664	40
80	- 5625	. 5586	$\cdot 5547$	- 5508	$\cdot 5470$	- 5431	$\cdot 5393$	- 5355	- 5317	- 5279	38
81	- 5242	$\cdot 5204$	${ }^{-5167}$	-5129	$\cdot 5092$	$\cdot 5055$	-5018	- 4982	-4945	-4908	37
82	1.4872	-4836	-4800	- 4764	- 4728	-4692	-4657	-4621	-4586	-4551	36
83	$\cdot 4516$	-4481	- 4446	-4412	- 4377	-4342	- 4308	- 4274	- 4238	- 4206	34
84	-4172	-4139	$\cdot 4105$	$\cdot 4072$	-4038	$\cdot 4005$	$\cdot 3972$	- 3939	$\cdot 3906$	- 3873	33
85	I. 384 I	-3808	-3776	$\cdot 3744$	-371 1	-3679	- 3647	$\cdot 3616$	- 3584	- 3552	32
86	-3521	$\cdot 3489$	- 3458	$\cdot 3427$	$\cdot 3396$	- 3365	- 3334	$\cdot 3303$	- 3273	- 3242	31
87	- 3212	-3181	-3151	$\cdot 3121$	$\cdot 3091$	-306I	-3031	$\cdot 3002$	- 2972	- 2943	30

X. (continued).
$\{1000 \div v\}^{2}$.

v	0	1	2	3	4	5	6	7	S	9	Δ
S.s.	1-2913	- 2884	-2855	-2826	-2797	-2768	-2739	-2710	-2682	-2653	29
S9	- 2625	- 2596	- 2568	- 2540	-2512	- 2484	- 2456	- 2428	-2401	- 2373	28
90	-2346	-2318	-2291	- 2264	-2237	-2210	- 2183	- 2156	-2129	-2 102	27
91	$1 \cdot 2076$	-2049	-2023	-1997	-1970	-1944	-1918	-1892	-1866	-1840	26
92	-1815	-1789	$\cdot 1764$	-1738	-1713	-1687	-1662	-1637	-1612	-1587	25
93	-1562	-1537	-1513	-1488	-1463	-1439	-1414	-1390	- 1366	-1341	25
9.4	$1 \cdot 1317$	-1293	-1269	- 1245	-1222	-1198	-1174	-1151	-1127	-1104	24
95	- 1080	-1057	-1034	-1011	-0988	-0965	-0942	-0919	-0S96	-0S73	23
96	-0851	-0828	-0806	-0783	-0761	-0738	. 0716	-0694	-0672	-0650	22
97	1.0628	-0606	-0584	-0563	-0541	-0519	-049S	-0476	-0455	-0434	22
98	. 0412	.0391	-0370	-0349	-0328	-0307	- 0286	- 0265	- 0244	. 0224	21
99	-0203	, 0182	-0161	. 0141	- 0121	- 0101	-0080	- 066	-0040	-0020	20
100	1.0000	*.9980	*-99€0	*9940	* 9920	*9901	*.98SI	* $\cdot 9861$	*.9842	* 9882	20
101	0.9803	$\cdot 9783$	-9764	-9745	- 9725	$\cdot 9707$	- 9688	-966S	-9649	-9631	19
102	'9612	'9593	-9574	-9555	-9537	-9518	. 9500	'94SI	-9463	-9444	19
103	0.9426	-9408	${ }^{-93} 89$	-9371	-9353	-9335	-9317	-9299	-928I	-9263	18
104	'92.46	-9228	-9210	-9192	-9175	-9157	-9140	-9124	$\cdot 9105$	-90S8	18
105	-9070	-9053	-9036	-9019	-9002	-8985	- S968	-8951	-S934	-8917	17
106	- 8900	- 8883	- 8866	-8S50	- 8833	-8817	-S800	- 8784	- 8767	-S751	17
107	- 8734	- 8718	- 8702	- 8686	- 8669	-8653	- 8637	- 8621	- 8605	-8589	16
108	-8573	-8558	-8542	-8526	-8510	-8495	- 8479	- 8463	- 8444^{5}	- 8432	16
109	0.8417	- S_{401}	-83S6	-8371	- 8355	. 8340	. 8325	-8310	-8295	- S2So	15
110	. 8264	- 8249	. 8234	- 8220	- 8205	-8190	- -175	-8160	- 8146	-8131	15
111	-8116	-8102	- 8087	- 8073	-3058	- $C 044$	- 8029	-So15	-8000	-7986	14
112	0.7972	-7958	7944	-7929	-7915	-7901	$\cdot 7887$	${ }^{-7873}$	7859	7845	14
113	-7831	$\cdot 7518$	- 7804	7790	-7776	$\cdot 7763$	-7749	- 7735	$\cdot 7722$	7708	14
114	-7695	$\cdot 7651$	$\cdot 7668$	$\cdot 7654$	7641	-7628	7614	$\cdots 601$	$\cdot 75$ SS	7575	13
115	0.7561	-7548	$\cdot 7535$	$\cdot 7522$	$\cdot 7509$	-7496	7483	$\cdot 7470$	7457	7444	13
116	7432	7419	7406	7393	$\cdot 7381$	7368	7355	7343	-7330	7318	13
117	-7305	$\cdot 7293$	7280	-7268	$\cdot 7255$	$\cdot 7243$	-7231	7219	$\because 206$	7194	12
118	0.7182	-7170	$\cdot 7158$	7145	-7133	-7121	7109	-7097	-7085	-7074	12
119	-7062	-7050	-703 ${ }^{\text {S }}$	$\cdot 7026$	-7014	$\cdot 7003$	-6991	-6979	-6y6S	-6956	12
120	-6944	-6933	-6921	-6910	-6S9S	$\cdot 6 S 57$. 6876	-6S64	-655j	-6S4 1	12
121	0.6830	-6819	-6SoS	-67c6	- 6785	-6774	-6763	-6752	-6741	. 6730	11
122	. 6719	- 5708	-6697	- 6086	-6675	-6664	. 6653	. 6442	. 6631	. 6621	11
123	-6610	-6593	-65S8	. 6578	-6567	. 6556	- 6546	-6535	. 6525	$\cdot 6514$	11
124	0.6504	-6493	-6483	-6472	-6462	-6452	-6.441	-6431	-6421	6.610	10
125	-6400	-6390	-6380	-6369	. 6359	-6349	-6339	-6329	-6319	. 6309	10
126	-6299	. 6289	. 6279	-6269	-6259	. 6249	. 6239	-6229	. 6220	. 6210	10

X. (continued).
$\{1000 \div v\}^{2}$.

v	\bigcirc	I	2	3	4	5	6	7	8	9	Δ
f.s. 127 128	0.6200	-6190	-6181	.6171	-6161	-6151	-6142	-6132	-6123	. 6113	-
128	. 6104	-6094	-6084	-6075	. 6066		. 6047		. 6028	. 6019	9
129	$\cdot 6009$	-6000	-5991	-5981	-5972	-5963	$\cdot 5954$	- 5945	-5935	-5926	9
130	- 5917	-5908	$\cdot 5899$	-5890	-588I	$\cdot 5872$	$\cdot 5863$	- 5854	-5845	$\cdot 5836$	9
131	$\cdot 5827$	-5818	$\cdot 5809$	-5801	-5792	-5783	- 5774	- 5765	-5757	-5748	9
132	-5739	-5731	-5722	5713	-5705	-5696	$\cdot 5687$	$\cdot 5679$	-5670	$\cdot 5662$	9
133	- 5653	- 5645	$\cdot 5636$	-5628	$\cdot 5619$	-5611	5603	-5594	5586	-5577	8
134	$\cdot 5569$	-5561	-5553	- 5544	'5536	- 5528	-5520	-5511	-5503	-5495	8
135	-5487	5479	-5471	$\cdot 5463$	- 5455	- 5447	5439	-5431	-5423	- 5415	8
136	0.54066	3986	3907	3828	3749	3670	3592	3513	3435	3357	79
137	3279	3202	3124	3047	2970	2893	2816	2739	2663	2586	77
138	2510	2434	2359	2282	2207	2132	2056	1981	1906	1832	75
139	- 51757	1683	1608	1534	1461	1387	1313	1240	1166	1093	74
140	1020	0947	0875	0802	0730	0658	0586	0514	0442	0370	72
141	0299	0228	0157	0086	0015	*9944	*9874	*9804	*9733	*9663	71
142	0.49593	9524	9454	9384	9314	9246	9177	9108	9039	8971	70
143	8902	8834	8766	8698	8631	8562	8494	8427	8360	8292	68
144	8225	8158	8092	8025	7959	7892	7826	7760	7694	7628	66
145	$0 \cdot 47562$	7497	7432	7366	7301	7236	7171	7106	7042	6977	65
146	6913	6849	6785	6721	6657	6593	6530	6466	6403	6340	64
147	6277	6215	6152	6089	6026	5964	5901	5839	5777	5716	62
148	0.45652	5592	5531	5469	5408	5347	5286	5225	5164	5104	61
149	5043	4983	4922	4862.	4802	4742	4682	4623	4563	4504	60
150	4444	4385	4326	4267	4208	4150	4091	4033	3974	3916	59
151	0.43858	3800	3742	3684	3626	3569	3511	3454	3397	3340	58
152	3283	3226	3169	3112	3055	2999	2943	2887	2831	2775	56
153	2719	2663	2607	2552	2496	2441	2385	2330	2275	2220	55
154	0.42166	2111	2056	2002	1947	1893	1839	1785	1731	1677	54
155	1623	1570	1516	1463	1409	1356	1303	1250	1197	1144	53
156	1091	1039	0986	0934	0881	0829	0777	0725	0673	0621	52
157	0.40570	0518	0466	. 0415	0364	0312	0261	0210	Or 59	0109	51
158	0058	0007	*9956	*9906	*9856	*9805	*9755	*9705	*9655	*9605	50
159	$0 \cdot 39555$	9506	9456	9407	9357	9308	9259	9209	9160	9 III	49
160	$\bigcirc \bigcirc 39063$	9014	8965	8916	8868	8820	8771	8723	8675	8627	48
161	8579	8531	8483	8435	8388	8340	8293	8245	8198	815.1	48
162	8104	8057	8010	7963	7916	7870	7823	7777	7730	7684	47
163	0.37638	7592	7546	7500	7454	7408	7362	7317	7271	7226	46
164	7180	7135	7090	7045	7000	6955	6910	6865	6820	6776	45
165	6731	6686	6642	6598	6554	6509	6465	6421	6377	6334	44

X. (continued).
$\{1000 \div v\}^{?}$.

v	。			3	4	5	6	7	8	9	Δ
${ }_{168} 8.5$	6290	6=46	6202	6159	61	6072	6029	96	5942	5899	43
167	5856	53	5771	5728	568	5643	5600	5558		5473	43
168	5431	5389	5347	5305	5263	5221	5179	5137	5096	5054	
169	$0 \cdot 35013$	4971	4930	4889	4848	48	4766	4725	84	4643	
170	4602	45^{61}	4521	4480	4440	43	4359	4319			
171	4199	4159	4119	4079	4039	3999	3960	3920	${ }_{3}{ }^{\text {SSI }}$	$3^{8} 41$	40
172	0.33802	3763	3724	3684	3645	3606	35	3529	0		
173	3412	3374	3335	3297	32	32	318				3
174	3029	2992	2954	2916	2878	2840	2803	2765	2728	2690	3
175	${ }^{\circ}$	2616	2579	2541	2504	2467		2394		-	37
177	2283 199	2286 1883	2210 1847	2173 1811	2137 1776	174	2064 1704	2028 1668	1991 1633	1955	36 36 36
178	0.31562	1526	1491	14	1421	1385	13		1280		35
179	1210	1175	1140	110	1071			0967	0933		34
180	0864	0830	0796	0762	0727	0693	0659	0626	0592	055^{8}	34
181	0.30524	049	0457	0423	-	0356	0323	0289	56		33
182	0190	O1	0123	0090	-0			9			33
183	0.29861	9828	9795	9763	9730	9698	66	9633	1	956	3^{2}
184	0. 2953		9473			9377		$\begin{aligned} & 9313 \\ & 900 \end{aligned}$			3^{32}
186	8905	8874	${ }_{8843}$	${ }^{98124}$	8781	9750	8719	8689	8658	8627	31 31
187	0. 28597	8566	8536	8505	84	8_{4}	8414	8384	54	8323	30
188	8293	8263	8233	8203	81		8114	8084	8054	So24	30
189	7995	7965	7936	7906	7877	7847	7818	7789	7759	7730	29
190	0.27700	7672	7643	7614	7585				7469		29
191	7412	7383	7354	7326	7297	6586		7212	${ }_{718}{ }^{18}$	7155	29
192	7127	7099	7070	7042	7014	6986	6958	6930	6902	6874	28
193	0. 26846	6819							6625	6598	28
$\begin{aligned} & 194 \\ & 195 \end{aligned}$	6298	6543 6272	$\begin{aligned} & 6516 \\ & 6245 \end{aligned}$	6488 6218	$\begin{aligned} & 6+61 \\ & 6191 \\ & 6191 \end{aligned}$	6434 6164	$\begin{aligned} & 6407 \\ & 6137 \end{aligned}$	$\begin{aligned} & 6350 \\ & 61150 \end{aligned}$	$\begin{aligned} & 6353 \\ & 6084 \end{aligned}$	6325 6057	27 27
196	0.26031	6004							5820		26
197	578	574	5715	5689	506	5637	567		5559	53	26
198	5508	5482	5456	5430	5405	5379	5354	5328	5303	5277	26
199	0.25252	5227	5201	5176	5151	5125	5100		5050		25
200	5000 4752	4975	4950	4925	4900	4875	$4{ }^{4} 51$	4826	4851	4777	25
201	475	4727	4703	4678	4654	4629	4605	4580	4556	4532	24
202	4507	4483	445	4435	4111	4387	4362	4338	4314	4290	24
${ }^{203}$	4267	4243		4195	4171	4147	4124	4100	4076	4053	24
204	4029	4006	3982	3959	3935	3912	3885	3865	3842	3819	23

X. (continued).
$\{1000 \div v\}^{2}$.

\%	0	I	2	3	4	5	6	7	8	9	Δ
$\begin{aligned} & \text { f.s. } \\ & 205 \end{aligned}$	0.2379	3772	3749	3726	3703	3680	3657	3634	3611	3588	23
206	3565	3542	3519	3496	3474	3451	3428	3406	3383	3360	23
207	3338	3315	3293	3270	3248	3225	3203	3181	3158	3136	22
208	0.23114	3092	3070	3047	3025	3003	2981	2959	2937	2915	22
209	2893	2871	2849	2827	2806	2784	2762	2741	2719	2697	22
210	2676	2654	2633	26II	2590	2568	2547	2525	2504	2483	21
211	0.22461	2440	2419	2398	2376	2355	2334	2313	2292	2271	21
212	2250	2229	2208	2187	2166	2145	2125	2104	2083	2062	21
213	2041	2021	2001	1980	1959	1938	1918	1897	1877	1856	21
214	0.21836	1816	1795	1775	1755	1734	1714	1694	1674	1653	20
215	1633	1613	1593	1573	1553	1533	1513	1493	1473	1453	20
216	1433	1414	1394	1374	1354	1335	1315	1295	1276	1256	20
217	0.21236	1217	1197	1178	1158	I 139	III9	1100	1081	1061	19
218	1042	1023	1003	0984	0965	09.46	0927	0908	0888	0869	19
219	0850	0831	0812	0793	0774	0755	0736	0718	0699	0680	19
220	$0 \cdot 20661$	0642	0624	0605	0586	0568	0549	0530	0512	0493	19
221	0475	0456	0438	0419	0401	0382	0364	-346	0327	0309	18
222	0291	0272	0254	0236	0218	O199	OI8I	0163	0145	0127	18
223	0.20109	0091	0073	0055	0037	0019	0001	*9983	*9965	*9948	18
224	0'19930	9912	9894	9877	9859	9841	9824	9806	9788	9771	18
225	9753	9736	9718	9701	9683	9666	9648	9631	9613	9596	17
226	O^19579	9561	9544	9527	9510	9492	9475	9458	9441	9.424	17
227	9407	9389	9372	9355	9338	9321	9304	9287	9270	9254	17
228	9237	9220	9203	9186	9169	9153	9136	9119	9102	9086	17
229	0.1 9069	9052	9036	9019	9003	8986	8970	8953	8937	8920	17
230	8904	8887	8871	8854	8838	88.22	8805	8789	8773	8757	16
231	8740	8724	8708	8692	8676	8659	8643	8627	86II	8595	16
232	0.18579	8563	8547	8531	8515	8499	8483	8467	8452	8436	16
233	8420	8404	8388	8373	8357	8341	8325	8310	8294	8278	16
234	8263	8247	8232	8216	8201	8185	8170	8154	8139	8123	16
	0.1 8108	8092	8077	8062	8046	8031	8016	8000	7985	7970	15
236	7955	7939	7924	7909	7894	7879	7864	7849	7834	7818	15
237	7803	7788	7773	7758	7743	7729	7714	7699	7684	7669	15
238	-.17 7654	7639	7624	7610	7595	7580	7565	7551	7536	7521	15
239	7507	7492	7477	7463	7448	7434	7419	7405	7390	7376	15
240	7361	7347	7332	7318	7303	7289	7275	7260	7246	7232	14
241	$0 \cdot 17217$	7203	7189	7175	7160	7146	7132	7118	7104	7089	14
242	7075	7061	7047	7033	7019	7005	6991	6977	6963	6949	14
243	6935	6921	6907	6893	6879	6866	6852	6838	6824	6810	14

X. (continued).
$\{1000 \div v\}^{2}$.

v	\bigcirc	I	2	3	4	5	6	7	8	9	Δ
f. s.											-
244	O. 16797	6783	6769	6755	6742	6728	6714	6701	6657	6673	14
2.45	6660	6646	6633	6619	6605	6592	6578	6565	6551	6538	14
246	6525	6511	$6+98$	$6_{4}{ }^{\text {S }}$	6471	6458	6444	6431	6418	6.404	13
247	0.16391	6378	6365	6351	633 S	6325	6312	6299	$62 \mathrm{S5}$	6272	13
248	6259	6246	6233	6220	6207	6194	6181	6168	6155	6142	13
249	6129	6116	6103	6090	6077	6064	6051	6038	6026	6013	13
250	$0 \cdot 16000$	5987	5974	5962	5949	5936	5923	5911	5898	$5 S_{5}$	13
251	5873	5860	5848	5835	5 S 22	5810	5797	5785	5772	5760	13
252	5747	5735	5722	5710	5697	56 S 5	5672	5660	5648	5635	12
253	0.15623	5610	5598	5586	5574	5561	5549	5537	$55^{2}+$	5512	12
254	5500	5488	5476	5463	5451	5439	5427	5415	5403	5391	12
255	5379	5367.	5355	5343	5331	5319	5307	5295	5283	5271	12
256	0.15259	5247	5235	5223	5211	5199	5188	5176	5164	5152	12
257	5140	5129	5117	5105	5093	5082	5070	5058	50.47	5035	12
258	5023	5011	5000	4988	4977	4965	4953	4942	4930	4919	12
259	0×14907	4896	4884	4873	4861	4850	4839	4827	4816	4804	II
260	4793	4782	4770	4759	4747	4736	4725	4714	4702	4691	11
261	4680	4669	4657	46.46	4635	4624	4612	4601	4590	4579	11
262	0.14568	4557	4546	4535	4524	4512	4501	4490	4479	4468	II
263	4457	4446	4435	4424	4413	4403	4392	4381	4370	4359	11
264	4348	4337	4326	4315	4305	4294	4283	4272	4261	4251	11
265	0.14240	4229	4218	4207	4197	4186	4176	4165	4154	4144	II
266	4133	4122	4112	4101	4091	4080	4070	4059	4048	403 S	11
267	4027	4017	4005	3996	3985	3975	3965	3554	3944	3933	10
268	O. 1392	3913	3902	3892	3881	$3{ }^{5} 71$	3^{861}	3 S 50	3840	$3{ }_{3}{ }^{3} 0$	10
269	3820	3809	3799	3789	3779	3768	3758	3748	373 S	3728	10
270	3717	3707	3697	3687	3677	3667	3657	36.47	3637	3626	10
271	0.13616	3606	3596	3586	3576	3566	3556	$35+6$	3536	3526	10
272	3516	3507	3497	3487	3477	3467	3457	$3+47$	$34: 7$	3427	10
273	3418	3408	3398	3388	3378	3369	3359	3349	3339	3330	10
274	0.13320	3310	3300	3291	$32 S_{1}$	3271	3262	3252	32.42	3233	10
275	3223	3214	3204	3194	3185	3175	3166	3156	3147	3137	10
276	3127	3118	3108	3099	3090	3080	3071	3061	3052	30.42	9
277	0.13033	3023	3014	3005	2995	2986	2977	2967	2958	29.49	9
278	2939	2930	2921	2911	2902	2 S 93	2884	2 S 74	$2 \mathrm{S65}$	2 S 56	
279	$2 S_{47}$	2838	2828	2 S 19	2810	2 SOI	2792	2782	2773	2;64	9
2 So	0.12755	2746	2737	2728	2719	2710	2701	2692	$26 S_{3}$	2674	9
281	2664	2655	2646	2637	2628	2619	2611	2602	2593	2584	9
282	2575	2566	2557	2548	2539	2530	2521	2513	250.4	2495	9
$2 S_{3}$	0.12 .486	2477	2.468	2460	2.451	2.442	2433	2.425	2416	2.407	9
$2 \mathrm{~S}_{4}$	2398	2390	2381	2372	2363	2355	2346	2337	2329	2320	9

XI.

Coefficients for the Cubic Law of the Resistance of the Air to Spherical Projectiles. ($\omega=534^{\circ 2}$ grains.)

$\begin{gathered} v \\ f . s . \end{gathered}$	K_{v}	$\frac{K_{v}}{g}$	$\begin{gathered} v \\ f . s . \end{gathered}$	K_{v}	$\frac{K_{v}}{g^{r}}$	f. s.	K_{v}	$\frac{K_{v}}{g}$
840	140	4.374	1390	$142 \cdot 7$	$4 \cdot 433$	1840	1119	3.476
to	140.8	4.374	1400	142.1	4.414	1850	1114	$3 \cdot 461$
960	$140 \cdot 8$	$4 \cdot 374$	1410	1414	$4 \cdot 393$	1860	1108	3.442
970	$140 \cdot 9$	4377	1420	$140 \cdot 8$	$4 \cdot 374$	1870	1103	$3 \cdot 426$
980	141.2	4388	1430	140.1	4.352	1880	109.8	3.411
990	141.5	4396	1440	139.5	4.334	1890	1094	3.398
1000	142.0	4.411	1450	138.8	4.312	1900	108.9	$3 \cdot 383$
1010	1428	4436	1460	138.1	4.290	1910	108.5	3.371
102	144.0	4.473	1470	1374	$4 \cdot 268$	1920	108.I	3.358
1030	145.5	4.520	1480	1367	4.247	1930	1077	3.346
1040	147.5	4.582	1490	$136{ }^{\circ}$	4.225	1940	107.3	3.333
1050	149.2	$4 \cdot 635$	1500	135.3	4.203	1950	106.9	3.32 I
1060	150.5	4675	1510	134.6	4.181	1960	$106 \cdot 5$	3.308
1070	151.6	$4 \cdot 709$	1520	133.9	4.160	1970	$106 \cdot 1$	3.296
1080	152.6	4740	1530	133.2	4.138	1980	1057	$3 \cdot 284$
1090	T53.4	$4 \cdot 765$	1540	132.5	4.116	1990	105.3	3.271
1100	154.I	4.787	1550	131.8	4.094	2000	104.9	3.259
1110	154.6	4-803	1560	$131 \cdot 1$	4*073	201	104.5	3.246
1120	155.1	$4 \cdot 818$	1570	$130 \cdot 4$	4.051	202	104.1	3.234
1130	1554	4.827	1580	1297	4.029	2030	${ }^{103}{ }^{6} 6$	3.218
1140	1557	$4 \cdot 837$	1590	129°	4*007	2040	103.2	3.206
1150	155.9	$4 \cdot 843$	1600	128.3	3.986	2050	102.7	3. 190
1160	156.0	$4 \cdot 846$	1610	127.6	3.964	2060	$102 \cdot 2$	3.175
1170	$156{ }^{\circ}$	4.846	1620	126.9	3.942	2070	1016	3.156
1180	$156{ }^{\circ}$	$4 \cdot 846$	1630	126.2	3.920	2080	101.1	$3 \cdot 141$
1190	155.8	$4 \cdot 840$	1640	125.5	$3 \cdot 899$	2090	1005	3.122
1200	155.5	$4 \cdot 831$	1650	124.8	3.877	2100	99.9	3.103
1210	155.1	$4 \cdot 818$	1660	$124^{\circ} \mathrm{I}$	$3 \cdot 855$	2110	$99 \cdot 3$	3.085
122	154.6	4.803	1670	1234	$3 \cdot 833$	2120	$98 \cdot 7$	$3 \cdot 066$
1230	154°	4.784	1680	122.7	$3 \cdot 812$	2130	$98 \cdot 2$	3.051
1240	153.4	4.765	1690	122.0	3790	2140	97.6	3.032
1250	152.7	4.744	1700	121.3	$3 \cdot 768$	2150	$97 \cdot 1$	3.016
1260	152°	4.722	1710	120.6	3.746	2160	$96 \cdot 5$	2.998
1270	151*3	4.700	1720	119.9	$3 \cdot 725$	2170	96°	2.982
1280	150.5	$4 \cdot 675$	1730	119.2	3.703	2180	95.4	2.964
1290	149.6	$4 \cdot 647$	1740	118.5	3.681	2190	94.9	2.948
1300	148.7	4619	1750	1178	$3 \cdot 659$	2200	94.4	2.933
1310	14779	4.594	1760	1171	3.638	2210	93.9	2.917
1320	147.2	4.573	1770	116.4	3.616	2220	93.4	2.901 2.886
1330	$146 \cdot 6$	4.554	1780	1157	3.594	2230	92.9	2.886
1340	$146 \cdot 0$	4.535	1790	$115{ }^{\circ}$	3.572	2240	92.4	2.870
1350	145.3	4.514	1800	1144	3.554	2250	91.9	2.855
1360	144.7	4495	1810	113.7	3.532	2260	91.4	2.839 2.824
1370	$144{ }^{\circ} \mathrm{O}$	4.473	1820	${ }^{113} 1$	3.513	2270	90.9	2.824 2.808
1380	143.4	4.455	1830	112.5	3.495	2280	$90 \cdot 4$	2.808

XII.

Coefficients for the Cubic Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega=534.22$ grains.)

$\begin{gathered} v \\ f . s . \end{gathered}$	K_{v}	$\frac{K_{v}}{g}$	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	K_{ν}	$\frac{K_{v}}{g}$	f. s.	K_{v}	$\frac{K_{v}}{g}$
10	605.0	18.79	590	102.5	$3 \cdot 184$	1360	107.2	3.330
110	550°	17.09	600	$100 \cdot 8$	3.131	1370	106.8	3.318
120	504.2	15.66	610	$99^{\circ} 2$	3.082	1380	105.3	3.302
130	465.4	14.46	620	$97^{\circ} 6$	3.032	1390	105.8	3.287
140	432'1	13.42	630	96.0	2.982	1400	105.2	3.268
150	403.3	12.53	640	$94 \cdot 5$	2.936	1410	104.6	3.249
160	$378 \cdot 1$	1175	650	$93^{1} 1$	2.892	1420	104*	3.231
170	$355^{\circ} 9$	11.06	660	$91 \cdot 7$	2.849	1430	103.4	3.212
180	336. 1	10.44	670	903	2.805	1440	102.8	${ }^{3} 193$
190	318.4	9.891	680	89°	2.765	1450	$102 \cdot 1$	$3 \cdot 172$
200	$302 \cdot 5$	9*397	690	87.7	$2 \cdot 724$	1460	1014	$3 \cdot 150$
210	288.1	$8 \cdot 950$	700	86.4	2.684	1470	100'7	$3 \cdot 128$
\bigcirc	275°	8.543	710	$85^{\circ} 2$	2.647	1480	99.9	3.103
230	263°	8.170	720	84.0	2.609	1490	$99^{\circ} 2$	3.082
240	252.1	$7 \cdot 831$	730	$82^{\circ} 9$	$2 \cdot 575$	1500	98.4	$3 \cdot 057$
250	242°	7.518	740	81.8	2.541	1510	97.7	3.035
260	$232 \cdot 7$	$7 \cdot 229$	750	$80 \cdot 7$	$2 \cdot 507$	1520	$96 \cdot 8$	3.007
270	224.1	6.962	760	79.6	2.473	1530	$96 \cdot 1$	2.985
280	216.1	$6 \cdot 713$	770	78.6	2.442	1540	$95 \cdot 3$	2.960
290	208.6	$6 \cdot 480$	780	77.6	2.411	1550	94.5	2.936
300	201.7	$6 \cdot 266$	790	$76 \cdot 6$	$2 \cdot 380$	1560	93.7	2.911
310	195*2	6.064	800	$75^{\circ} 6$	$2 \cdot 348$	1570	$92 \cdot 9$	2.886
320	189.1	$5 \cdot 874$	810	$74 \cdot 6$	$2 \cdot 317$	1580	$92 \cdot 1$	$2 \cdot 861$
330	183.3	$5 \cdot 694$	820	$73^{\circ} 9$	2.296	1590	91.3	2.836
340	177.9	$5 \cdot 526$	830	$73 \cdot 6$	$2 \cdot 286$	1600	90.5	2.811
350	$1722^{\circ} 9$	$5 \cdot 371$	840	$73^{\circ} 6$	$2 \cdot 286$	1610	89.8	2790
360	168.1	$5 \cdot 222$	to	73.6	$2 \cdot 286$	1620	89.1	$2 \cdot 768$
370	163.5	5.079	1000	$73^{\circ} 6$	2.286	1630	88.4	2.746
${ }_{3} 80$	159.2	4.946	1010	73.8	$2 \cdot 293$	1640	87.7	2.724
390	155^{1}	$4 \cdot 818$	1020	74.6	$2 \cdot 317$	1650	87°	$2 \cdot 703$
400	151.3	4.700	1030	$76 \cdot 6$	2.380	1660	86.3	2.681
410	1476	$4 \cdot 585$	10.40	$80 \cdot 8$	2.510	1670	$85 \cdot 6$	2.659
420	144°	4.473	1050	873	$2 \cdot 712$	1680	84.9	2.637
430	$140^{\circ} 7$	4.371	1060	94.	2.920	1690	84.2	2.616
440	137.5	4.271	1070	$98 \cdot 7$	3.066	1700	83.5	$2 \cdot 594$
450	134.4	4.175	1080	102.2	3.175	1710	82.8	2.572
460	131.5	$4.0{ }^{\circ}$	1090	104.9	3.259	1720	$82 \cdot 1$	2.550
470	128.7	3.998	1100	$106 \cdot 9$	$3 \cdot 321$	1730	81.5	2.532
480	126.0	3.914	1110	108.4	3.367	1740	80.9	2.513
490	123.5	$3 \cdot 836$	1120	$109^{\circ} 2$	3.392	1750	$80 \cdot 3$	2.495
500	121.0	3.759	1130	109.6	3.405	1760	797	2.476
510	118.6	3.684	to	109.6	$3 \cdot 405$	1770	79.2	2.460
520	116.3	$3 \cdot 613$	1290	109.6	3.405	1780	$78 \cdot 6$	$2 \cdot 442$
530	114.2	$3 \cdot 548$	1300	109.4	3.398	1790	78.0	2.423
540	112.0	3.479	1310	109.1	3.389	1800	77.4	2.404
550	1100	3.417	1320	IoS. 8	3.380	1810	$76 \cdot 8$	2.386
560	1080	3.355	1330	108.5	3.371	1820	$76 \cdot 2$	$2 \cdot 367$
570	$105 \cdot 1$	3.296	1340	108.1	3.358 3.346	1830 1840	$75 \cdot 7$ $75 \cdot 2$	2.352 2.336
5So	104.3	3.240	1350	1077	3.346	1840	$75 \cdot 2$	2.336

XII. (continued).

$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	K_{v}	$\frac{K_{v}^{\sim}}{g_{s}^{\prime}}$	$\begin{gathered} v \\ \text { f.s. } \end{gathered}$	K_{v}	$\frac{K_{v}}{g}$	v f.s.	K_{v}^{*}	$\frac{K_{v}}{g}$
1850 1860	74.7	2.308	2170	$66 \cdot 3$	2.060	2480	53.6	65
1860 1870	74:3	2.308	2180	${ }^{66 \cdot 1}$	2.053	2490	53.2	I.653
1880	73.3	$2 \cdot 277$	2190 2200	66.0	2.050	2500	52.9 52.7	I.643
1890	${ }_{7} 728$	2.262	2210	${ }^{65 \cdot 6}$	${ }^{2} .048$	2520	52.5	${ }_{1.631}$
1900	${ }^{72.2}$	3	2220	65.3	${ }_{2}$ 2029	${ }_{2530}$	52.3	1.625
1910	71.7	2.227	2230	65.1	$2 \cdot 0$	2540	52.2	${ }^{1} \cdot 622$
1920		$2 \cdot 2$	2240	64.9	2.016		$2 \cdot$	I-615
1930	8	2.199	2250	$64 \cdot 6$		560	9	12
1940	$70^{\circ} 4$	${ }^{2}$	2260	$64 \cdot 2$	1-994	2570	$51 \cdot 8$	I.609
1950	70° 696	$\xrightarrow{2 \cdot 175}$	2270	63.7	1.979	2580	517	1.606
1970	69.3	${ }^{2} \cdot 153$		$63^{\prime 2}$ 62	1.963	2590 2600		r.603 r.600
1980	69.0 68.8	-2.143 2.137	2300	62:2	${ }_{1} 1.932$	2610	51.4	1•597
1909	68.5	2.128	2310	$61 \cdot 7$	I. 917	-	$5{ }^{14}$	r.597
	68.2	2.119	2320 2330	$60 \cdot 7$	1-886	2640	S1.4	$\begin{array}{r}1.597 \\ 1.597 \\ \hline\end{array}$
202	68.0	2.112	2340	60^{\prime}	1.870	2650	514	r-597
203	${ }_{67 \%} 6$		2350	597	${ }^{1} 855$	2660	51.4	r.597
2050	67.5	2.097		58.6	1.820	2670	S1.4	r-597
206	67.4		2380	580		2690	$5 \mathrm{5} \cdot 3$	r.594
2070 2080	67.3 67.2	2.091	2390	57.5	${ }^{1} 788$	2700	51.3	r.594
2090	67.1	2.0	2400	${ }_{56}^{57}$		2720	${ }_{51}{ }_{51}$	I.594
2100	$67{ }^{\circ}$ 66.	2.081	2420	56\%	1740	2730	$51 \cdot 2$	1.591
2120	$66 \cdot 8$	2.075	2430	55.6	${ }^{1} 1727$	2740	${ }_{512}$	r.591
2130	66.7			55.		${ }_{2760}^{2750}$	${ }_{51}{ }_{5}$	r.591
2140 2150		2.069	2460	54.3	1.687	2770	512	I. 591
2160	66.4	$2 \cdot 063$	2470	539	74	2780	51×2	1.591

XIII.

Coefficients for the Cubic Law of the Resistance of the Air to Hemispherical-headed Projectiles. ($\omega=534: 22$ grains.)

v.	\mathcal{F}_{v}	$\frac{K_{v}}{g^{\prime}}$	κ_{1}	f. s.	K_{v}^{*}	$\frac{K_{v}}{\underline{g}}$	κ_{1}	f.s.	K_{v}	$\frac{K_{v}^{*}}{g^{r}}$	κ_{1}
1100	$133{ }^{\circ}$	4.13	$1 \cdot 24$	1670	$115{ }^{\circ}$	$3 \cdot 57$	1 34	1780	109*	3.39	1.32
1110	$133{ }^{\circ}$	4.13	$1 \cdot 23$	1680	114.7	$3 \cdot 56$	$1 \cdot 35$	1790	108.0	$3 \cdot 36$	$1 \cdot 3^{8}$
1120	$133{ }^{\circ}$	4.13	1.22	1690	114.4	$3 \cdot 55$	I•36	1800	1070	3.32	$1 \cdot 38$
1130	$133{ }^{\circ}$	$4 \cdot 13$	$1 \cdot 21$	1700	$114^{\circ} \mathrm{O}$	$3 \cdot 54$	$1 \cdot 37$	1810	$106{ }^{\circ}$	3.29	$1 \cdot 38$
1140	$133^{\circ} \mathrm{O}$	$4 \cdot 13$	1.21	1710	113.6	3.53	$1 \cdot 37$	1820	104.9	3.26	$1 \cdot 38$
1150	133°	4.13	$1 \cdot 21$	1720	113.2	3.52	1.38	1830	103.8	3.22	1.37
1160	$133{ }^{\circ}$	4.13	$1 \cdot 21$	1730	1127	3.50	1.38	1840	1027	3.19	1.37 1
				1740	112.1	3.48	1 39	1850	101.6	3.16	1-36
1640	115.6	3.59	$1 \cdot 32$	1750	1114	3.46	1.39	IS60	100.6	3.13	I•35
1650	$115{ }^{\circ} 4$	3.58	$1 \cdot 33$	1760	1107	3.44	$1 \cdot 39$	1870	$99^{\circ} 6$	3.09	I 35
1660	115.2	3.58	$1 \cdot 33$	1770	109.9	3.41	$1 \cdot 39$				

XIV.

Coefficients for the Cubic Law of the Resistance of the Air to Flat-headed Projectiles. ($\omega=534^{\circ 22}$ grains.)

$\begin{gathered} v \\ f . s . \end{gathered}$	K_{v}	$\frac{K_{v}}{g}$	κ_{3}	v.s.	K_{v}	$\frac{K_{v}}{g}$	κ_{2}	f.s.	K_{v}	$\frac{K_{v}}{g}$	κ_{2}
1530	174.3	5.41	I.8I	1650	173.6	5.39	2 -00	1760	$171{ }^{\prime} 5$	5.33	2.15
1540	174.4	$5 \cdot 42$	1.83	1660	1735	5.39	$2 \cdot 1$	1770	171.2	$5 \cdot 32$	$2 \cdot 16$
1550	174.4	$5{ }^{\prime} 42$	1.85	1670	173.3	$5 \cdot 38$	$2{ }^{\circ} \mathrm{O} 2$	1780	$170 \cdot 9$	5*31	$2 \cdot 17$
1560	174.5	5.42	1.86	1680	173.2	5.38	$2 \cdot 04$	1790	170.5	5.29	2'19
1570	174.5	$5 \cdot 42$	1.88	1690	173°	5'37	2.05	1800	170°	$5 \cdot 28$	$2 \cdot 20$
1580	$174{ }^{\circ} 4$	$5 \cdot 42$	1.89	1700	172.9	$5 \cdot 37$	2.07	1810	169.5	$5 \cdot 27$	2.21
1590	174.3	5.41	191	1710	172.7	5.36	2.09	1820	168.9	$5 \cdot 25$	2.22
1600	174.2	$5 \cdot 41$	I'92	1720	172.6	$5 \cdot 36$	$2 \cdot 10$	1830	$168 \cdot 3$	$5 \cdot 23$	$2 \cdot 22$
1610	$174^{\circ} 1$	$5{ }^{\circ} 1$	194	1730	172.4	5.36	2'12	1840	167.6	$5 \cdot 21$	$2 \cdot 23$
1620	174°	541	I'95	1740	172.1	5*35	2'13	1850	166.8	$5 \cdot 18$	2.23
1630	$173{ }^{\circ} 9$	$5 \cdot 40$	1.97	1750	171.8	$5 \cdot 34$	$2 \cdot 14$	I 860	1659	$5 \cdot 15$	$2 \cdot 23$
1640	173.7	$5^{\circ} 40$	1.98								

XV .

$P_{\phi}=3 \tan \phi+\tan ^{3} \phi$				$P_{\phi}=3 \tan \phi+\tan ^{3} \phi$			
ϕ	P_{ϕ}	$\log P_{\phi}$	$\log \Delta P_{\phi}$	ϕ	P_{ϕ}	$\log P_{\phi}$	$\log \Delta P_{\phi}$
I°	-05237	$8 \cdot 71909$		41°	3.26475	0.51385	
2	-10481	9.02038	8.71961 8.72067	42	3.43119	0.53545	$\begin{aligned} & 9.22128 \\ & 9.24859 \end{aligned}$
3	-15737	${ }^{9 \cdot 19691}$	$8 \cdot 72226$	43	$3 \cdot 60845$	$0 \cdot 55732$	9.24859 9.27687
4 5	$\begin{array}{r}\cdot 21012 \\ .26314 \\ \hline\end{array}$	9.32247 9.42018	8.72439	44	$3 \cdot 79762$ 4.00000	0.57951 0.60206	$9 \cdot 30617$
6	-31647	9.50034	8.72704 8.73023	46	$4 \cdot 21701$	0.62501	9.33649
7	-37021	9.56844	8.73023 8.73394	47	4.45030	0.64839	9.36790 9.40042
8	-42440	9.62777	8.73394 87	48	470173	$0 \cdot 67226$	9.40042
9	- 47913	$9 \cdot 68045$	8.74302	49	4.97344	$0 \cdot 69666$	${ }^{9} 4464600$
10	- 53446	9.72792	8.74836	50	5.26788	$0 \cdot 72164$	9.50514
11	- 59049	9.77121	8.75426	51	$5 \cdot 58787$	0.74725	9.54260
12	-64727	9.81109	-8.76070	52 53	5.93669 6.31812	0.77355 0.80059	9.58142
13	$\cdot 70491$	9.84813 9.88280	8.76770	53	6.31812 6.73660	0.80059 0.82844	9.62167
14	.76348 .82309	9.88280 9.91545	8.77527	54 55	6.73660 7 19730	0.82844	9.66342
16	. 883 SI	9.94636	8.78338	56	7.70633	$0 \cdot 88685$	9.70674
17	-94577	9.97579	8.801	57	8.27090	$0 \cdot 91755$	9.75171 9.79843
18	1.00906	0.00392	8.81121	58	8.89957	0.94937	
19	1.07381	0.03093	8.82164	59	9.60260	0.98239	9.89746
20	1.14013	$\bigcirc \cdot 05695$	8.83269	60	IO 3923	1.01671	9.95001
21	$1 \cdot 20816$	0.08212	8.84433	61 62	11.2836 12.2946	${ }_{1} \mathrm{I} \cdot 05245$	0.00475
22	1.27803	O. 10654 -. 13030	$8 \cdot 85658$	62 63	12.2946 13.4475	1.08971 1.12864	0.06179
23 24	1.34991	O. 13030 0.15349	8.86945 8.88295	63 64 6	13.4475 14.7699	1.12864 1.16938	-112136
25	$1 \cdot 50032$	- 1.17618	8.88295 8.89709	65	16.2959	1-21208	0.18358 0.24864
26	1.57922	$\bigcirc \cdot 19844$	8.91188	66	18.0687	$1 \cdot 25693$	0.184684 0.3168 I
27	I 666086	$0 \cdot 22033$	8.92733	67	20.1426	$1 \cdot 30412$	0.38830
28	1.74545	0.24191	8.94346	68	22.5878	$1 \cdot 35387$	0.46343
29	1.83324	0.26322	8.96027	69 70	25.4947 28.9820	1.40645	-0.54249
30	1.92450	0.28432 0.30525	8.97778	70	28.9820 33.2080	1.46213 1.52124	$0 \cdot 62593$
31 32	2.1919 2.11860	0.30525 0.32605	8.99600	71 72	33.2080 38.3853	1.52124 1.58417	0.71410
32 33	2.22210	-0.34676	9.01495 9.03464	73	44.8057	+1.65133	0.80756 0.90691
34	2.33040	0.36743	9.0	74	52.8763	1.72326	1.01288
35	2.44393	\bigcirc	$9 \cdot 07633$	75	63.1771	1.80056	1-12626
36		0.40877 0.42952	9.09837	76	76.5513 94.2603	1.88395 - 07433	1-24819
37 38	2.68856 2.82076	0.42952 0.45037	9.12122	77	94.2603 118.244	$\begin{aligned} & 1 \cdot 97433 \\ & 2.07278 \end{aligned}$	1.37992
39	2.96037	$0 \cdot 47135$	9.14491 ${ }^{\text {9.16947 }}$	79	151.592	2.18068	$\begin{aligned} & \mathbf{1} \cdot 52307 \\ & 1.67970 \end{aligned}$
40	3.10810	$0 \cdot 49250$	9'19492	80	199.422	$2 \cdot 29977$	- 6

XVI.

Table for $\gamma=0.00$ is the same as that for $\lambda=0.00$ (p. 8).

$\gamma=0.0 \mathrm{I}$					$\gamma=0^{\circ} \mathrm{O} 3$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(x)	(T)	(v)
45°	10119	5082	10059	1434	45°	10374	5259	10184	1476
44	9767	4736	9712	1408	44	10001	4892	9827	1448
43	9428	4413	9376	1384	43	9642	4551	9482	1421
42	9098	4111	9051	1362	42	9296	4234	9148	1395
41	8780	3830	8736	1340	41	8962	3939	8826	1371
40	8471	3566	8431	1320	40	8639	3663	8514	1348
39	8172	3320	8135	1300	39	8327	3406	8211	1327
38	7881.	3088	7847	1282	38	8024	3165	7918	1307
37	7599°	2872	7567	1264	37	7731	2940	7632	1288
36	7324	2668	7294	1247	36	7445	2728	7355	1270
35	7056	2477	7029	1231	35	7168	2530	7084	1252
34	6795	2297	6770	1216	34	6898	2345	682 I	1236
33	6540	2129	6517	1201	33	6635	2171	6564	1220
32	6291	1970	6270	1188	3^{2}	6378	2007	6313	1205
31	6047	1821	6028	1175	31	6127	1854	6068	1191
$\gamma=0.02$					$\gamma=0.04$				
\$	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
45°	10244	5168	10121	1454	45°	10510	5354	10250	1499
44	9881	4812	9768	1427	44	10126	4976	9887	1469
43	9532	4481	9428	1402	43	9756	4626	9537	1440
42	9195	4172	9099	1378	42	9401	4300	9200	1413
41	8869	3883	8780	1355	41	9059	3997	8873	13 SS
40	8554	3614	8472	1333	40	8728	3715	8557	1364
39	8248	3362	8173	1313	39	8409	3451	8251	1342
38	7952	3126	7882	1294	38	8099	3205	7954	1321
37	7664	2905	7599	1275	37	7800	2975	7666	1301
36	7384	2693	7324	1258	36	7509	2760	7386	1281
35	7111	2503	7056	1241	35	7226	2558		1263
34	6846	2321	6795	1226	34	6951.	2370	6847	1246
33	6587	2149	6540	1211	33	6684	2192	6588	1230
32	6334	1988	6291	1197	32	6423	2026	6335	1215
31	6087	1837	6048	1183	31	6169	1870	6088	1200

XVI. (continued).

$\gamma=0.05$					$\gamma=0.05$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
45°	10653	5454	10319	1523	1°	175	$1 \cdot 5$	175	999
44	10256	5065	9950	1491	2	349	$6 \cdot 1$	349	999
43	9876	4704	9595	1461	3	523	13.7	523	999
42	9511	4369	9252	1433	4	697	24.3	698	999
41	9159	4058	8922	1406	5	871	$38 \cdot 1$	873	1000
40	8820	3768	8602	1381	6	1046	54.9	1048	1000
39	8493	3499	8292	1357	7	1220	74.8	1224	1001
38	8177	3247	7992	1335	8	1396	97.8	1401	1003
37	7871	3012	7701	1314	9	1571	$124^{\circ} \mathrm{I}$	1578	1005
36	7574	2793	7418	1294	10	1748	153.7	1756	1007
35	7286	2587	7142	1275	II	1925	186.5	1935	1009
34	7006	2395	6874	1257	12	2103	$222 \cdot 7$	2114	1012
33	6734	2215	6613	1240	13	2282	$262 \cdot 5$	2296	1015
32	6469	2046	6358	1224	14	2463	305.7	2478	1018
31	6211	1888	6109	1209	15	2644	$352 \cdot 6$	2662	1021
30	5959	1739	5865	1194	16	2827	$403 \cdot 3$	2847	1025
29	5713	1600	5627	1181	17	3011	457.9	3034	1030
28	5473	1470	5394	1168	18	3197	516.5	3223	1034
27	5237	1347	5166	1156	19	3385	579	3414	1039
26	5007	1232	4941	1144	20	3574	$646 \cdot 4$	3607	1045
25	4781	1124	4721	1133	21	3766	718.0	3802	1050
24	4559	1023	4505	1122	22	3959	$794{ }^{\circ}$	4000	1057
23	4341	928.5	4293	1112	23	4155	875.5	4200	1063
22	4127	$839 \cdot 8$	4083	1103	24	4354	961.8	4403	1070
21	3917	756.9	3877	1094	25	4555	1053	4609	1077
20	3710	679.5	3674	1086	26	4759	1151	4818	1085
19	3506	607.2	3474	1078	27	4966	1254	5030	1093
18	3305	539.9	3277	1070	28	5176	1363	5246	1101
17	3106	$477 \cdot 4$	3082	1063	29	5389	1479	5465	1110
16	2910	419.3	2889	1056	30	5606	1602	5689	1120
15	2717	$365 \cdot 7$	2698	1050	31	5827	1732	5917	1130
14	2525	$316 \cdot 2$	2509	1044	32	6052	1870	6149	1140
13	2336	270*8	2322	1039	33	6281	2016	6386	1151
12	2149	229.2	2137	1034	34	6515	2170	6628	1163
11	1963	1914	1954	1029	35	6753	2334	6876	1175
10	1779	157.3	1771	1025	36	6996	2508	7129	1187
8	1597	$126 \cdot 8$	1590	1021	37	7245	2692	7388	1201
8	1415	997	1410	1017	38	7500	2887	7654	1214
7	1236	76.0	1232	1014	39		3095	8	1229
6	1057	$55^{6} 6$	1054	IOII	40	8027	3315	8206	1244
5	879	$38 \cdot 5$	877	1008	41	8300	3548	8494	1260
4	702	24.6	701	1006	42	8581	3797	8789	1277
3	526	13.8	525	1004	43	8869	4061	9093	1294
2	350 175	$6 \cdot 1$ 1.5	350	1002	44	9166	4342	9407	1312
$\stackrel{1}{1}$	175	$1 \cdot 5$	175	1001	45	9470	4641	9730	1331

XVI. (continued).

$\gamma=0.05$					$\gamma=0.07$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
46°	9784	4961	10064	1351	45°	10962	5674	10465	1577
47	10107	5301	10409	1371	44	10537	5257	10083	1541
48	10441	5665	10766	1393	43	10132	4873	9717	1507
49	10785	6054	11136	1416	42	9744	4517	9364	1475
50	11140	6470	11519	1439	41	9372	4188	9024	1445
51	11508	6916	11918	1464	40	9015	3883	8695	1417
52	11888	7395	12332	1489	39	8672	3600	8378	1390
53	12282	7909	12763	1516	38	8340	3336	8071	1365
54	12691	8461	13212	1544	37	8020	3091	7773	1342
55	13115	9056	13680	1574	36	7711	2862	7484	1320
56	13556	9697	14170	1604	35	7412	2648	7203	1300
57	14014	10389	14682	1636	34	7122	2449	6930	1281
58	14491	11138	15219	1669	33	6840	2262	6664	1262
59	14987	11948	15782	1704	32	6566	2087	6404	1244
60	15504	12826	16374	1740	31	6299	1924	6152	1227
$\gamma=0.06$					$\gamma=0.08$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
45°	10803	5561	10390	1550	45°	11129	5795	10543	1608
44	10393	5158	10015	1515	44	10689	5362	10154	1569
43	10001	4786	9655	1483	43	10270	4964	9781	1532
42	9625	4441	9307	1453	42	9869	4597	9422	1498
41	9264	4122	8972	1425	41	9486	4258	9077	1466
40	8916	3825	8648	1399	40			8744	1436
39	8581	3548	8334	1374	39	8766	3653	8423	1408
38	8257	3291	8031	1350	38	84.26	33^{83}	SIII	${ }_{1} 382$
37	7944	3051	7736	1328	37	8099	3132	7810	1357
36	7642	2827	7450	1307	36	7783	2898	7518	1334
35	7348	2617	7172	1287	35	7477	2680	7234	1313
34	7063	2421	6902	1269	34	7181	2477	6958	1292
33	6786	2238	6638	1251	33	6894	2287	6690	1273
32	6517	2067	6381	1234	3^{2}	6616	2109	6429	1255
31	6255	1906	6130	1218	31	6345	1943	6174	1237

XVI. (continued):

$\gamma=0.09$					$\gamma=\mathrm{O}^{\circ} \mathrm{IO}$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
45°	11307	5923	10624	1641	25°	4909	1165	4784	1165
44	10849	5.473	10228	1599	24	4675	1058	4562	1152
43	10414	5061	9848	1559	23	4445	$958 \cdot 6$	4344	1140
42	10000	4681	9483	1522	22	422 I	865.5	4129	1129
41	9605	4332	9133	1488	21	4001	$778 \cdot 8$	3918	1118
40	9227	4009	8795	1457	20	3784	$697 \cdot 9$	3711	1108
39	8864	3710	8469	1427	19	3572	$622 \cdot 7$	3507	1098
38	8516	3432	8154	1399	18	3363	552.8	3305	1089
37	8181	3175	7849	1373	17	3158	$488 \cdot 0$	3107	108I
36	7857	2936	7553	1349	16	2955	$428{ }^{\circ}$	2911	1073
35	7545	2713	7266	1326	15	2756	$372 \cdot 7$	2717	1065
34	7243	2506	6988	1304	14	2559	321.8	2526	1058
33	6951	2312	6717	1284	13	2365	$275 \cdot 2$	2336	1052
32	6667	2131	6453	1265	12	2173	232.6	2149	1045
31	6391	1962	6196	1247	11	1983	194*0	1963	1040
					10	1796	159.3	1779	1034
$\gamma=0.10$					9	1610	$128 \cdot 2$	1597	1029
					8	1426	$10 \cdot 7$	1416	1025
					7	$\begin{aligned} & 1243 \\ & 1062 \end{aligned}$		1236	1020
ϕ	(x)	(Y)	(T)	(v)				1057	1016
					4	883	$38 \cdot 7$	879	1013
45°	11495					704	$24^{\circ} 7$	702	1010
		6061	10709	1677	4 3	527	13.86.1	526	1007
44	11018	5592	10305	1630	2	350		350	1004
43	10567	5163	9918	1587	1	175	$1 \cdot 5$	175	1002
42	10138	4770	9547	1548					
41	9730	4409	9190	1512	0	0	0	0	1000
40	93408967	4076	8847	1478	1	174	$1 \cdot 5$	174	998
39		3769	8516	1447	2	348	$6 \cdot 1$	349	997
38	8609	3484	8197		3	521	$24^{\circ} 2$	523697	996996
37	8265	32202975	$\begin{aligned} & 7888 \\ & 7589 \end{aligned}$	$\begin{array}{r} 1390 \\ 1364 \end{array}$	4	694			
36	7934				5	867	$37 \cdot 8$	871	995
35	7615	2747	7300	1340	6	1040	54.5	1046	995
34	7307	2536		1318	7	1213	74.2	1220	995996
33	7009	2338	7018	1297		1386	97\%	1396	
32		2154	6478	1277	9	1559	122.8	15721748	997998
31	6439	1982	6219	1258	10	1733	151.9		
30	6167	1822	5966	1240	II	19072082	184.2	1925	9991001
29	5903	1672	57195478	1223	12		$219{ }^{\prime} 7$	2104	
2 S	5645	1532		1207	13	2257	258.6	2283	IOOI 1003 1006 1008
27	5394	1402	5242	1192	14	3433	$300 \cdot 8$	2463	
26	5148	1279	5010	1178	15	2610	$346 \cdot 6$	2644	

XVI. (continued).

$\gamma=0.10$					$\gamma=0^{\circ} 10$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
16°	2788	396.0	2827	1011	56°	12607	8769	13651	1478
17	2967	449°	3012	1015	57	12994	9355	14123	1502
18	3147	$505^{\circ} 9$	3198	1018	58	13394	9983	14615	1526
19	3329	$566 \cdot 7$	3386	1022	59	13808	10658	15129	1551
20	3512	631.5	3575	1027	60	14235	11383	15667	1577
21	3697	$700 \cdot 6$	3767	1031	$\gamma=0.12$				
22	3883	774* ${ }^{1}$	3961	1036					
23	4072	$852 \cdot 1$ 18	4157	1041					
24	4262	$934 \cdot 8$	4356	1047					
25	4455	1023	4557	1053					
26	4649 4846	1115	4761	1060 1066					
27	4846	1214	4969	1066	ϕ	(x)	(Y)	(T)	(v)
28	5046	1318 1428	5179	1073					
30	5454	1544	5611	1089	45°	11912	6369	10894	
					44	11390	5856	10471	1703
31	5663	1667	5832	1097	43	10899	5390	10067	1652
32	5874	1797	6058	1106	42	10436	4966	9682	1606
33	6090	1934	6288	1115	41	9998	4578	9312	1564
34	6309	2079	6522	1125					
35	6531	2232	6761	1135	40	9581	4222	8958	1525
					39	9185	3895	8617	1490
36	6758	2394	7006	1146	38	8806	3594	8289	1456
37	6990	2565	7256	1157	37	8444	3316	7972	1426
38	7225	2746	7511	1168	36	8096	3059	7665	1397
40	7466	2937	7773	1193					
	7712	3140	8042		35	7762	2820	7368	1371
					34	7440	2599	7081	1346
41	7963	3354	8317	1206	33	7130	2394	6802	1322
42	8219 8482	3581 3822	8599 8890	1220	32 31	6830	2202	6530	1300
43	8482	3822	8890	1234	31	6539	2024	6266	12So
45	8751	4077	9189	1249					
	9027	4348	9496	1264	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	6258 5985	1859 1704	6009 5758	1260 1242
46		4635	9813	1280	28	5719	1560	5513	1225
47	9599	4941	10140	1297	27	5461	1425	5274	1208
48	9896	5266	10477	1314	26	5209	1300	5040	1193
49	10202	5611	10825	1332					
50	10516	59796371	11186	1351	25	4964	1183	4810	1179
					24	4724	1073	4585	1165
51	10839		11559	1370	23	4490	971.5	4365	1152
52	11172	6789	11946	1391	22	4260	$876 \cdot 5$	4148	1140
53	11514	7236	12348	1411	21	4036	788.0	3936	1129
54	11867		12765	1433					
55	12231	8223	13199	1455	20	3816	7057	3726	1118

XVI. (continued).

$\gamma=0.14$					$\gamma=0.16$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
45°	12396	6734	11102	1859	35°	8091	2985	7519	1440
44	11815	6163	10655	1790	34	7737	2742	7217	1409
43	11275	5650	10232	1728	33	7397	2517	6925	1380
42	10770	5187	9829	1674	32	7071	2309	6642	1354
41	10296	4768	9445	1624	31	6757	2117	6368	1329
40	9848	4385	9078	1579	30	6454	1938	6101	1305
39	9425	4036	8725	1538	29	6162	1773	5841	1284
38	9022	3716	8386	1500	28	5879	1619	5588	1263
37	8638	3421	8060	1466	27	5605	1476	5342	1244
36	8271	3150	7745	1433	26	5339	1344	5101	1226
35	7920	2899	7441	1404	25	5080	1220	4865	1209
34	7583	2667	7147	1376	24	4828	1105	4635	1193
33	7259	2453	6862	1350	23	4583	998.7	4409	1178
32	6947	2254	6585	1326	22	4343	899.6	4188	1164
31	6645	2069	6316	1303	21 20	4110 3881	807.5 722.0	3971 3758	1151 1138
30	6354	1897	6054	1282					
29	6071	1737	5799	262	$\gamma=0.18$				
28	5797	1589	5550	1244					
$\begin{aligned} & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & 5531 \\ & 5273 \end{aligned}$	1321	5070	1209					
25	5021	1201	4837	1194	ϕ	(x)	(y)	(T)	(v)
24	4775	1089	4610	1179					
23	4535	${ }^{984}{ }^{8} \cdot 8$	4387	1165					
22	4301	$88 \% \cdot 8$	4168	1151	45°	13677	7732	11616	2162
21	4072	7976	3953	1139	44	12907	6976	11102	2040
20	3848	713.7	3742	1128	43	12217	6320	10624	1939
					42	11590	5746	10175	1854
$\gamma=0.16$					4	11014	4781	9351 8969 8	17161658
					$\begin{aligned} & 40 \\ & 39 \\ & 38 \\ & 37 \\ & 36 \end{aligned}$	$\begin{array}{r} 10481 \\ 9985 \\ 9520 \\ 9082 \\ 8668 \end{array}$			
ϕ	(x)	(Y)	(T)	(v)			4371 4001 		
							3665	8257	1561
							3359	7922	1519
45°	12970	71756528	1133910863	1988	3534	8276	$\begin{aligned} & 3079 \\ & 2822 \end{aligned}$	76017291	1481
44	$\begin{aligned} & 12112 \\ & 11708 \end{aligned}$			18991822		7902			1446
43		5955	10416		34 33	7545	$\begin{aligned} & 2822 \\ & 2586 \end{aligned}$	6992	
42	1115010631	$\begin{array}{r} 5444 \\ 4985 \end{array}$	99939591	17551695	32	72046876	23682168	$\begin{aligned} & 6702 \\ & 6422 \end{aligned}$	13841356
41					31				
40	101469689	4570	9208	1642	30	6561	1982	6150	1331
39		4193	$\begin{aligned} & 8842 \\ & 8491 \end{aligned}$	$\begin{array}{r} 1594 \\ 1550 \end{array}$	29	6258	$\begin{aligned} & 1810 \\ & 1651 \end{aligned}$	58855628	1307
38	92588850				2827	59655682			12841263
37		3850 3537	$\begin{aligned} & 8491 \\ & 8155 \end{aligned}$	$\begin{array}{r} 1550 \\ 1510 \end{array}$			$\begin{aligned} & 1651 \\ & 1504 \end{aligned}$	5378	
36	8461	3249	7831	1474	26	5408	1367	5133	1244

XVI. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{$\gamma=0.18$} \& \multicolumn{5}{|c|}{$\gamma=0.20$}

\hline ϕ \& (x) \& (9) \& (T) \& (v) \& ϕ \& (x) \& (y) \& (T) \& (v)

\hline 25° \& 5142 \& 1240 \& 4894 \& 1225 \& 15° \& 2840 \& 388.0 \& 2758 \& 1099

\hline 24 \& 4883 \& 1123 \& 4661 \& 1208 \& 14 \& 2631 \& 334° \& 2561 \& 1089

\hline 23 \& 4632 \& 1013 \& 4433 \& 1192 \& 13 \& 2426 \& 284*7 \& 2366 \& 1080

\hline 22 \& 4387 \& 911.8 \& 4209 \& 1177 \& 12 \& 2224 \& 2400 \& 2174 \& 1071

\hline 21 \& 4149 \& 817.8 \& 3989 \& 1163 \& II \& 2025 \& 199.6 \& 1984 \& 1062

\hline 20 \& 3915 \& $730 \cdot 6$ \& 3774 \& 1149 \& 10 \& 1830 \& 163.3 \& 1796 \& 1054

\hline \multicolumn{5}{|c|}{\multirow[b]{4}{*}{$\gamma=0.20$}} \& 9 \& 1637 \& $131 \cdot 1$ \& 1610 \& 1047

\hline \& \& \& \& \& 8 \& 1447 \& ${ }^{102} 7$ \& 1426 \& 1040

\hline \& \& \& \& \& 7 \& 1259 \& $78^{\circ}{ }^{\circ}$ \& 1244 \& 1034

\hline \& \& \& \& \& 6 \& 1074 \& 56.9 \& 1063 \& 1028

\hline \multirow{3}{*}{ϕ} \& \multirow{3}{*}{(x)} \& \multirow{3}{*}{(y)} \& \multirow{3}{*}{(T)} \& \multirow{3}{*}{(v)} \& \multirow[t]{3}{*}{5
4
3
2} \& 891 \& 39.2 \& 883 \& \multirow[t]{2}{*}{1022}

\hline \& \& \& \& \& \& 709
530 \& 24.9
13.0 \& 704 \&

\hline \& \& \& \& \& \& 530 \& 13.9
6.2 \& 527
351 \& 1012

\hline \& \& \multirow[b]{2}{*}{8474} \& \multirow[b]{2}{*}{11954} \& \multirow[b]{2}{*}{2418} \& 1 \& 175 \& $1 \cdot 5$ \& 175 \& 1004

\hline 45° \& 14592 \& \& \& \& - \& - \& 0 \& 0 \& 1000

\hline 44 \& 13650 \& 7548 \& 11385 \& 2235 \& 1 \& 174 \& 1.5 \& 174 \& 997

\hline 43 \& 12834 \& \multirow[t]{2}{*}{6773
6 tIO} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 10865 \\
& 10383
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
2094 \\
1980
\end{array}
$$} \& 2 \& 347 \& 6.0 \& 348 \& 994

\hline 42 \& 12110 \& \& \& \& 3 \& 519 \& 13.6 \& 521 \& 991

\hline 41 \& 11459 \& 6110
5533 \& $$
\begin{array}{r}
10383 \\
9933
\end{array}
$$ \& $$
\begin{aligned}
& 1980 \\
& 1886
\end{aligned}
$$ \& 4 \& 690 \& $24^{\circ} \mathrm{O}$ \& 695 \& 959

\hline 40 \& 10865 \& 5026 \& 9510 \& 1805 \& \multirow[t]{2}{*}{6} \& \multirow[t]{2}{*}{860
1030} \& \multirow[t]{2}{*}{53.7} \& \multirow[t]{2}{*}{1040} \& \multirow[t]{2}{*}{985}

\hline 39 \& 10319 \& 4576 \& 9109. \& 1735 \& \& \& \& \&

\hline 38 \& 9812 \& 4173 \& 8729 \& 1674 \& 7 \& 1199 \& $73^{\circ}{ }^{\circ}$ \& 1213 \& 984

\hline 37 \& 9339 \& 3810 \& 8367 \& 1619 \& 8 \& 1368 \& $95^{\circ} 2$ \& 1386 \& $9^{9} 3$

\hline 36 \& 8896 \& \multirow[t]{2}{*}{3481} \& \multirow[t]{2}{*}{So2 1} \& \multirow[t]{2}{*}{1571} \& \multirow[t]{2}{*}{9
10} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 1536 \\
& 1704
\end{aligned}
$$} \& \multirow[t]{2}{*}{$120 \cdot 4$
148.6} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
1560 \\
1733
\end{array}
$$} \& \multirow[t]{2}{*}{$9 S_{2}$
9
982}

\hline 35 \& \& \& \& \& \& \& \& \&

\hline 34 \& 8031 \& 2910 \& 7689 \& 1527 \& 11 \& 1872 \& 1797 \& 1908 \& $9 \mathrm{~S}_{2}$

\hline 33 \& 7705 \& 2661 \& 7063 \& 1450 \& 12 \& 20.41 \& 213.9 \& 2083 \& $9{ }^{\text {9 } 2}$

\hline 32 \& 7346 \& 2433 \& 6766 \& 1417 \& 13 \& 2203 \& $251{ }^{1} 2$ \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 2434 \\
& 2612
\end{aligned}
$$} \& 982

\hline 31 \& 7003 \& 2223 \& 6479 \& 1386 \& 14
15 \& $$
\begin{aligned}
& 2377 \\
& 2546
\end{aligned}
$$ \& $$
\begin{aligned}
& 291 \cdot 7 \\
& 335.4
\end{aligned}
$$ \& \& $$
\begin{aligned}
& 9 S_{3} \\
& 9 S_{4}
\end{aligned}
$$

\hline 30 \& 6675 \& 2029 \& 6201 \& 135 S \& \& \multirow[b]{2}{*}{2715} \& \& \multirow[b]{2}{*}{2790} \& \multirow[b]{2}{*}{985}

\hline 29 \& 6359 \& 1850 \& 5932 \& 1331 \& 16 \& \& $382 \cdot 3$ \& \&

\hline 28 \& 656 \& 1686 \& 5670 \& 1307 \& 178 \& 2885
3055 \& \& 2970
3150 \& 985
989

\hline 27
26 \& 5763
5480 \& 1533
1392 \& 5415
5167 \& 125.4
1263 \& 19 \& 3055
3226 \& 486.3
543 \& 3150
3333 \& 989
991

\hline 26 \& 54So \& 1392 \& 5167 \& 1263 \& 20 \& 3398 \& 6044 \& 3516 \& 994

\hline 25 \& 5206 \& 1261 \& \multirow[t]{2}{*}{4924
4688} \& \multirow[t]{2}{*}{1243} \& 21 \& \multirow[t]{2}{*}{3571
3745} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 669^{\circ} \circ \\
& 737.5
\end{aligned}
$$} \& \multirow[t]{2}{*}{3702
3859} \& \multirow[t]{2}{*}{997
1000}

\hline 24
23
23 \& 4941
4683 \& \multirow[t]{2}{*}{1028} \& \& \& \multirow[t]{2}{*}{22
23} \& \& \& \&

\hline 22 \& 4432 \& \& $$
\begin{array}{r}
4456 \\
4230
\end{array}
$$ \& 1207 \& \& 3920
4096 \& 8100 \& 4078 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 1003 \\
& 1007
\end{aligned}
$$}

\hline 21 \& 4158 \& 92.5

525.4 \& $$
4008
$$ \& 11170 \& \[

$$
\begin{aligned}
& 24 \\
& 25
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4096 \\
& 4274
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { SS6.7 } \\
& 9677
\end{aligned}
$$

\] \& \[

4463
\] \&

\hline 20 \& 3951 \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 739.5 \\
& 6573 \\
& 581.4 \\
& 5114 \\
& 4471
\end{aligned}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 3791 \\
& 3577 \\
& 3368 \\
& 3161 \\
& 2958
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 1160 \\
& 1146 \\
& 1134 \\
& 1121 \\
& 1110
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{26

27
28
29

30} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 4453 \\
& 4634 \\
& 4816 \\
& 5001 \\
& 5187
\end{aligned}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 1053 \\
& 1143 \\
& 1238 \\
& 1338 \\
& 1444
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 4659 \\
& 4857 \\
& 5059 \\
& 5263 \\
& 5470
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{1015 1020 1025 1030 1036}

\hline 19 \& 3719 \& \& \& \& \& \& \& \&

\hline 18 \& 3492 \& \& \& \& \& \& \& \&

\hline 17 \& 3270 \& \& \& \& \& \& \& \&

\hline 16 \& 3053 \& \& \& \& \& \& \& \&

\hline
\end{tabular}

XVI. (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{$\gamma=0.20$} \& \multicolumn{5}{|c|}{$\gamma=0.22$}

\hline ϕ \& (x) \& (y) \& (T) \& (v) \& ϕ \& (x) \& (y) \& (T) \& (v)

\hline 31° \& 5375 \& 1555 \& 5680 \& 1042 \& 40° \& 11314 \& 5318 \& 9689 \& 1916

\hline 32 \& 5566 \& 1671 \& 5894 \& 1048 \& 39 \& 10703 \& 4814 \& 9265 \& 1828

\hline 33 \& 5759 \& 1794 \& 6112 \& 1055 \& 38 \& 10144 \& 4369 \& 8866 \& 1753

\hline 34 \& 5954 \& 1924 \& 6333 \& 1062 \& 37 \& 9628 \& 3973 \& 8488 \& r688

\hline 35 \& 6152 \& 2060 \& 6559 \& 1069 \& 36 \& 9148 \& 3618 \& 8128 \& 1630

\hline 36 \& 6353 \& 2203 \& 6789 \& 1077 \& 35 \& 8699 \& 3298 \& 7784 \& 1579

\hline 37 \& 6557 \& 2354 \& 7024 \& 1085 \& 34 \& 8277 \& 3007 \& 7455 \& 1533

\hline 38 \& 6764 \& 2513 \& 7263 \& 1093 \& 33 \& 7878 \& 2743 \& 7138 \& 1491

\hline 39 \& 6975 \& 2680 \& 7508 \& 1102 \& 32 \& 7499 \& 2502 \& 6834 \& 1454

\hline 40 \& 7188 \& 2856 \& 7758 \& 1111 \& 31 \& 7139 \& 2282 \& 6540 \& 1419

\hline 41 \& 7406 \& 3042 \& 8014 \& II2I \& 30 \& 6796 \& 2079 \& 6255 \& 1387

\hline 42 \& 7627 \& 3238 \& 8277 \& 1131 \& 29 \& 6467 \& 1893 \& 5980 \& 1358

\hline 43 \& 7852 \& 3444 \& 8546 \& 1141 \& 28 \& 6152 \& 1722 \& 5713 \& 1331

\hline 44 \& 8081 \& 3662 \& 8821 \& 1152 \& 27 \& 5848 \& 1564 \& 5454 \& 1306

\hline 45 \& 8315 \& 3891 \& 9104 \& 1163 \& 26 \& 5556 \& 1418 \& 5201 \& 1283

\hline 46 \& 8553 \& 4134 \& 9395 \& 1174 \& 25 \& 5274 \& 1284 \& 4955 \& 1261

\hline 47 \& 8796 \& 4390 \& 9695 \& 1186 \& 24 \& 5001 \& 1159 \& 4716 \& 1241

\hline 48 \& 9044 \& 4660 \& 10003 \& 1198 \& 23 \& 4736 \& 1044 \& 4481 \& 1222

\hline 49 \& 9297 \& 4947 \& 10320 \& 1211 \& 22 \& 4479 \& 937.7 \& 4252 \& 1204

\hline 50 \& 9556 \& 5250 \& 10647 \& 1224 \& 21
20 \& 4230
3987 \& 839.4
748.7 \& 4028
3808 \& 1187
1172

\hline \multirow[t]{8}{*}{5
5
5
5
5

5
5
58
59

60} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
9820 \\
10090 \\
10367 \\
10649 \\
10939
\end{array}
$$} \& \[

$$
\begin{array}{r}
5570 \\
5910
\end{array}
$$
\] \& 10985 \& 1237 \& \& \& \& \&

\hline \& \& 6270
6652 \& 11694 \& 1268 \& \multicolumn{5}{|c|}{$\gamma=0.24$}

\hline \& \& 7058 \& 12455 \& 1295 \& \& \& \& \&

\hline \& \multirow[t]{2}{*}{| 11235 |
| :--- |
| 11538 |} \& \multirow[t]{2}{*}{7489

7948} \& 12856 \& 1310 \& ϕ \& (x) \& (y) \& (T) \& (v)

\hline \& \& \& 13273 \& I 326 \& \& \& \& \&

\hline \& 11849 \& 8435 \& 13707 \& 1342 \& \& \& \& \&

\hline \& \multirow[t]{3}{*}{12167
12493} \& 8955 \& 14158 \& 1358 \& 44° \& 16126 \& 9568 \& 12208 \& 3119

\hline \& \& \multirow[t]{2}{*}{9508} \& \multirow[t]{2}{*}{14628} \& \multirow[t]{2}{*}{1375} \& 43 \& 14682 \& 8192 \& 11517 \& 2672

\hline 60 \& \& \& \& \& 42 \& 13566 \& 7170 \& 10919 \& 2399

\hline \multicolumn{5}{|c|}{\multirow[t]{2}{*}{$\gamma=0.22$}} \& 41 \& 12644 \& 6353 \& 1038 \& 2207

\hline \& \& \& \& \& 40 \& 11851 \& 5676 \& 9894 \& 2061

\hline \& \multirow{3}{*}{(x)} \& \multirow{3}{*}{(x)} \& \multirow{3}{*}{(T)} \& \multirow{3}{*}{(v)} \& 39
38 \& 11152 \& 5100
4600 \& 9441
9018 \& 1945
1850

\hline ϕ \& \& \& \& \& 37 \& 9954 \& 4162 \& 8621 \& 1769

\hline \& \& \& \& \& 36 \& 9430 \& 3774 \& 8244 \& 1699

\hline 45° \& 15901 \& 9575 \& 12394 \& 2867 \& 35 \& 8944 \& 3427 \& 7887 \& 1639

\hline 44 \& 14637 \& 8332 \& 11736 \& 2537 \& 34 \& 8491 \& 3116 \& 7545 \& 1585

\hline 43 \& 13614 \& 7361 \& 11153 \& 2315 \& 33 \& 8066 \& 2834 \& 7219 \& 1537

\hline 42 \& 12747 \& 6566 \& 10626 \& 2150 \& 32 \& 7665 \& 2579 \& 6905 \& 1494

\hline 41 \& 11989 \& 5895 \& 10140 \& 2021 \& 31 \& 7285 \& 2346 \& 6603 \& 1455

\hline
\end{tabular}

XVI. (continued).

$\gamma=0.24$					$\gamma=0.28$								
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)				
30°	6925	2134	6312	1420	41°	14763	7911	11075	3003				
29	6581	1939	6031	1387	40	13421	6763	10439	2579				
28	6253	1761	5758	1357	39	12381	5905	9887	2318				
27	5938	1597	5494	1330	3^{8}	11519	5219	9391	2134				
26	5635	1446	5237	1304	37	10776	4649	8938	1995				
					36	LOI21	4.164	8517	1884				
25	5344	1307	4987	1280									
24	5062	1180	4744	1258	35	9532	3743	8123	1793				
23	4791	1061	4506	1238	34	8995	3375	7752	1716				
22	4527	$951 \cdot 7$	4274	1219	33	8501	3048	7400	1649				
21	4272	$851^{1} 1$	4047	1201	32	8044	2756	7065	1591				
20	4024	$758 \cdot 3$	3825	1184.	31	7616	2494.	6744	1541				
$\gamma=0.26$					3029282726	$\begin{aligned} & 7214 \\ & 6835 \\ & 6476 \\ & 6134 \\ & 5808 \end{aligned}$	$\begin{aligned} & 2257 \\ & 2043 \\ & 1847 \\ & 1669 \\ & 1507 \end{aligned}$	$\begin{aligned} & 6437 \\ & 6141 \\ & 5856 \\ & 5581 \\ & 5314 \end{aligned}$	$\begin{aligned} & 1495 \\ & 1453 \\ & 1416 \\ & 1383 \\ & 135^{2} \end{aligned}$				
¢	(x)	(צ)	(T)	(v)									
¢								5056					
					2524	$\begin{aligned} & 5496 \\ & 5197 \end{aligned}$	$\begin{aligned} & \mathrm{r} 358 \\ & 1221 \end{aligned}$		1323				
								4804	1297				
42°	14725	8052	11297	2827	23	4909	1096	4560	1273				
41	13504	6971	10681	2487	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	46314363	$981 \cdot 2$$875 \cdot 6$	4322	$\begin{aligned} & 1250 \\ & 1229 \end{aligned}$				
								4089					
40	12524	6133	$\begin{array}{r} 10137 \\ 9645 \end{array}$	2263	20	4103	$778 \cdot 5$	3862	1210				
39	11696	5451 4876											
38 37	10974	4876 4383	919187698	1972									
37 36	$\begin{array}{r} 10331 \\ 9751 \end{array}$	3953		1782									
35		3574	7999	1709	$\gamma=0.30$								
34	8729		7644	1645									
33	8272	2935	7305	1589									
32	7845	2663	6982	1540	ϕ	(x)	(y)	(T)	(v)				
31	7444	2416	6671	1495									
30	7064	2193	6372	1455									
29	6704	1989	6084	1419	40°	14791	7761	10848	3205				
28	6361	1803	5806	1386	39	13312	6541	10190	2670				
27	6033	1632	5536	1355	38	12213	5666	9631	2369				
26	5719	1475	5275	1327	3736	$\begin{aligned} & 11320 \\ & 10560 \end{aligned}$	49804418	$\begin{aligned} & 9133 \\ & 8680 \end{aligned}$	$\begin{aligned} & 2164 \\ & 2014 \end{aligned}$				
25	5418	1332	5021	1301									
24	5128	1200	4773	1277	35	9894	3942	8262	1896				
23	4848	1078	4532	1255	34	9298	3533	7870	1800				
22	4578	$966{ }^{\circ}$	4297	1234	33	8758	3176	7502	1720				
21	4317	863°	4068	1215	32	8263	2860	7154	1651				
20	4063	768.2	3843	1196	31	7805	2579	6822	1591				

XVI. (continued).

$\gamma=0^{\circ} 30$					$\gamma=0.30$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
30°	7378	2327	6505	1539	16°	2649	$369 \cdot 8$	2755	962
29	6977	2101	6201	1492	17	2810	4177	2930	962
28	6600	1896	5909	1450	18	2972	$468 \cdot 7$	3106	963
27	6242	1710	5628	1412	19	3134	$522 \cdot 8$	3284	964
26	5903	1540	5356	1378	20	3296	$580 \cdot 3$	3462	965
25	5579	1386	5092	1347	21	3459	$641 \cdot 1$	3642	966
24	5269	1244	4837	1318	22	3622	$705 \cdot 4$	3824	968
23	4972	1115	4588	1292	23	3786	$773 \cdot 3$	4007	970
22	4686	$997{ }^{\circ}$	4347	1267	24	3950	844.9	4191	972
21	4411	888.5	4111	1245	25	4116	920'3	4378	975
20	4145	$789 \cdot 2$	3881	1224	26	4282	999.6	4567	978
19	3888	$698 \cdot 1$	3656	1204	27	4449	1083	4758	981
18	3639	614.7	3437	I 186	28	4618	1171	4951	984
17	3397	538.5	3221	1169	29	4788	1263	5147	988
16	3162	$468 \cdot 8$	3010	1153	30	4959	1360	5346	992
15	2933	$405 \cdot 3$	2802	1138	31	5131	1461	5547	996
14	2710	$347 \cdot 6$	2599	1124	32	5305	I 568	5751	1001
13	2492	295.2	2398	1111	33	5481	1680	5959	1006
12	2279	248*0	2201	1099	34	5658	I 797	6170	1011
11	2071	$205 \cdot 6$	2006	1087	35	5837	1921	6385	1016
10	1866	167.7	1814	1076	36	6019	2050	6603	1022
9	1666	134.2	1624	1066	37	6202	2186	6826	1028
8	1469	104.8	1437	1057	38	6388	2328	7053	1035
7	1276	79.4	1252	1048	39	6576	2477	7284	1041
6	1086	$57 \cdot 7$	1068	1040	40	6766	2634	7520	1048
5	899	$39^{\circ} 7$	887	1032	41	6959	2799	7762	1055
4	715	25^{2}	707	1024	42	7155	2973	8009	1063
3	533	$14^{\circ} \mathrm{O}$	528	1018	43	7353	3155	8261	1071
2	353	$6 \cdot 2$	351	1011	44	7555	3346	8520	1079
	176	$1 \cdot 5$	175	1005	45	7760	3547	8785	1087
0	-	0	0	1000					
1	174	$1 \cdot 5$	174	995	46	7968	3759	9057	1096
2	346	$6 \cdot 0$	347	990	47	8179	3982	9336	1105
3	516	13.5	520	986	48	8394	4216	9622	1115
4	685	$23 \cdot 8$	692	982	49	8613	4464	9917	1124
5	853	37°	864	979	50	8836	4724	10221	1134
6	1020	$53^{\circ} \mathrm{O}$	1035	976	51	9062	4999	10533	1144
7	1185	71.9	1206	973	52	9293	5289	10856	I 155
8	1350	$93 \cdot 6$	1377	970	53	9528	5595	11189	I 166
9	1514	118.1	1548	968	54	9767	5919	11532	1177
10	1677	145.4	1719	966	55	10011	6261	11888	1188
11	1840	175.6	1891	965	56	10260	6623	12256	1200
12	2002	208.6	2063	964	57	10514	7006	12637	1211
13	2164	244.5	2235	963	58	10772	7413	13032	1223
14	2326	283.3	2408	962	59	11036	7843	13443	1236
15	2487	$3^{32} 5^{\prime}$ I	2581	962	60	11305	8300	13870	1248

X VI. (continued).

$y=0.35$					$\gamma=0.40$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
$\begin{aligned} & 37^{\circ} \\ & 36 \end{aligned}$	13690	6512	9864	3216	20°	4379	S50. 1	3986	1304
	12225	5427	9236	2638	19	4089	747.4	3747	1275
						3811	654.3	3515	1249
35	11159	4666	8707	2326	17	3544	$570 \cdot 1$	3288	1225
34	10301	4076	8237	2119	16	3287	493.9	3067	1203
33	9574	3595	7810	1968					
32	8939	3190	7415	1851	15	3038	425°	2851	1183
31	8372	2842	7046	1756	14	2798	362.9	2640	1164
					13	2565	307.0	2432	1146
30	7858	2539	6699	1677	12	2339	256.9	2229	1130
29	7387	2273	6369	1610	11	2120	212.2	2029	1114
28	6952	2036	6056	1551					
27	6546	1825	5756	1500	10	1905	172.5	1833	1100
26	6165	1635	5467	1455	9	1697	137.6	1639	1087
					8	1493	${ }^{10} 7.1$	1448	1074
25	5806	1463	5190	1414	6	1294	80.9	1260	1063
24	5466	1308	4922	1378	6	1099	$58 \cdot 6$	1075	1052
23	5143	1168	4663	1345					
22	4834	1040	4412	1314	5	908	$40^{\circ} 2$	891	1042
21	4539	$923 \cdot 8$	4168	1287	4	720	25.4	709	1032
20	4256	817\%9	3931	1261	3	536	14.1	530	1023
					2	354	6.2	352	1015
					1	176	$1 \cdot 5$	175	1007
$\gamma=0.40$					\bigcirc	-	\bigcirc	0	1000
					1	173	1.5	174	993
					2	344	$6 \cdot 0$	347	987
ϕ					4	514 681	13.4 23.6	519 690	${ }_{9} 976$
	(x)	(y)	(T)	(v)	5	846	$36 \cdot 6$	860	971
					6	1010	52.4	1030	966
34°	12157	5144	8813	2958	7	1172	$70 \cdot 9$	1200	962
33	10889	4304	8250	2480	8	1333	$92^{\circ} \mathrm{O}$	1369	95 S
323131	9938	3697	7767	2207	9	1493	115.9	1537	955
	9161	3221	7335	2022	10	1651	$142 \cdot 5$	1706	952
30	8498	2830	6940	1884	11	1809	171.7	1875	949
29	7914	2500	6574	1776	12	1966	$203 \cdot 6$	2044	947
28	7391	2215	6230	1689	13	2122	238.2	2213	945
	6916 6478	1968	5905	1615	14	2277	275.5	2382	943
26	6478	1750	5596	1552	15	2432	315.6	2552	942
25	6073	1556	5302	1498	16	2587	$35 S \cdot 5$	2722	940
24	5694	1383	5019	1450	17	2741	40.42	2894	940
23	5338	1229	4747	1407	18	2595	$452 \cdot 7$	3065	939
22	5002	1089	4485	1369	19	3049	504.2	3238	939
21	4683	$963{ }^{\circ} 7$	4231	1335	20	3203	$55^{8} 7$	3412	939

XVI. (continued).

$\gamma=0.40$					$\gamma=0.45$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
21°	3357	$616 \cdot 2$	3587	939	32°	11924	4776	8344	3276
22	3511	$676 \cdot 9$	3763	940	31	10463	3879	7754	2592
23	3665	$740 \cdot 8$	3941	941					
24	3820	$808 \cdot 1$	4120	942	30	9448	3281	7265	2257
25	3975	$878 \cdot 7$	4301	943	29	8646	2826	6836	2044
					28	7972	2460	6445	1892
26	4130	$953{ }^{\circ}$	4483	945	27	7387	2155	6085	1775
27	4287	1031	4668	947	26	6866	1895	5748	1682
28	4444	1113	4855	949					
29	4601	1198	5043	952	25	6395	1670	5430	1605
30	4760	1288	5234	955	24	5964	1474	5129	1540
					23	5565	1300	4841	1484
31	4919	1382	5428	958	22	5194	1147	4566	1435
32	5080	1480	5625	961	21	4845	1009	4301	1391
33	5242	1583	5824	965	20	4517	$886 \cdot 5$	4045	1353
34.	5405	1691	6026	969					
35	5569	1804	6232	973					
36	5735	1923	6441	977	$\gamma=0.50$				
37	5902	2046	6653	982					
38	6072	2176	6870	987	ϕ				
39	6242	2312	7090	992		(x)	(Y)	(T)	(v)
40	6415	2454	7315	997					
41	6589	2603	7545	1003	$2{ }^{\circ}$	9841		7211	
42	6766	2760	7779	1009			3387		2617
43	6945	2923	8019	1015	28	8820	2832	6731	2252
44	7126	3095	8264	1022	27	8026	2419	6311	2028
45	7309	3275	8515	1029	26	7364	2089	5932	1871.
46	7495	3465	8772	1036	25	6794	1816	5582	1752
47	7684	3663	9035	1043	24	6288	1586	5255	1658
48	7875	3872	9306	1050	23	5831	1387	4947	1580
49	8069	4091	9583	1058	22	5414	1214	4655	1515
50	8265	4322	9869	1066	21	5028	1062	4376	1459
51	8465	4564	10162	1074	20	4669	927.8	4109	1410
52	8668	4820	10465	1083	19	4333	808.7	3852	1367
53	8875	5088	10777	1092	18	4016	$702 \cdot 6$	3604	1329
54	9084	5372	11098	IIOI	17	3716	607.9	3364	1295
55	9298	5671	11430	1110	16	3430	523.4	3131	1264
56	9514	5986	11774	1119	15	3158	$447 \cdot 8$	2905	1235
57	9735	6319	12129	1128	14	2897	$380 \cdot 3$	2685	1210
58	9959	6671	12497	1138	13	2647	$320 \cdot 2$	2470	1186
59	10187	7043	12879	1148	12	2406	$266 \cdot 7$	2260	1165
60	10419	7437	13275	1158	11	2173	219.4	2054	1145

XVI. (continued).

$\gamma=0.50$					$\gamma=0.50$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(${ }^{\text {P }}$	(T)	(v)
10°	1948	1776	1852	1126	31°	4733	1313	5321	925
9	1730	141.1	1655	1109	32	4883	1405	5511	927
8	1518	109.5	1460	1093	33	5033	1501	5703	930
7	1312	82.4	1269	1079	34	5184	1601	5898	932
6	1112	$59 \cdot 6$	1081	1065	35	5337	1705	6095	936
5	916	$40 \cdot 7$	895	1052	36	5490	1815	6296	939
4	725	25.7	712	1040	37 38	5644 5800	1829 2049	6501 6708	943 947
3	539	14.2	531	1029			2049 2173	6708 6920	947 951
2	356	$6 \cdot 3$	352	1019	39 40	5957 6116	2173 2304	6920 7136	951 955
1	176	$1 \cdot 5$	175	1009			2304	7136	955
-	\bigcirc	-	\bigcirc	1000	41	6276	2441	7355	960
1	173	$1 \cdot 5$	174	992	42	6437	2584	7579	965
2	343	6.0	346	984	43	6600	2733	7808	970
3	511 676	13.3 23.4	517 688	976 970	44	6765	2890	8042	975
5	676 839	23.4 $36 \cdot 2$	688 857	970 963	45	6932	3054	8282	981
					46	7101	3226	8526	986
6	1000	$51^{\prime} 7$	1025	957	47	7272	3406	8777	992
7	1159	69.8	1193	952	48	7445	3594	9035	999
8	1317	90.5	1360	947	49	7620	3792	9298	1005
9	1472	113.8	1527	943	50	7798	4000	9570	1012
10	1627	139.7	1693	938	51	7978	4219	9848	1019
					52	8160	4448	10135	1026
11	1780	198.9	1859 2026	935	53	8345	4689	10430	1033
13	2082	$232 \cdot 3$	2192	928	54	8533	4943	10734	1041
14	2232	268.3	2358	925	55	8723	5210	11048	1048
15	2381	$306 \cdot 9$	2525	923	56	8916	5491	11373	1056
					57	9112	5787	11708	1064
16	2530	348.0	2692	921	58	9312	6100	12055	1072
17	2677	391.8	2859	919	59	9514	6430	12414	1081
18	2825	438.2	3027	918	60	9719	6779	12788	1089
19	2971	4873	3196	917					
20	3118	539.1	3366	916					
					$\gamma=0.60$				
22	3410	651.3	3708	915					
23	3556	711.8	3881	915	ϕ	(x)	(Y)	(T)	(v)
25	3848	$84^{\circ} \mathrm{O}$	4230	916					
					26°	9334	2908	6533	2970
26	3995	911.8	4407	916	25	8120	2327	6024	2379
27	4142	$985{ }^{\circ}$	4586	918	24	7261	1936	5599	2081
28	4289	1062	4767	919	23	6577	1638	5222	1890
29	4436	1142	4949	920	22	6000	1399	4879	1752
30	4585	1226	5134	922	21	5497	1200	4560	1647

XVI. (continued).

$y=0.60$					$y=0.60$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
20°	5048	1033	4261	1563	21°	3179	573.5	3489	893
19	4642	$888 \cdot 5$	3979	1493	22	3318	$628 \cdot 3$	3656	892
18	4268	763.5	3710	1434	23	3457	$685 \cdot 8$	3824	891
17	3923	$654{ }^{\circ}$	3452	1383	24	3595	$746 \cdot 0$	3994	891
16	3600	558.8	3204	1338	25	3734	$809 \cdot 2$	4165	891
15	3296	474.6	2966	1299	26	3872	$875 \cdot 2$	4337	891
14	3010	$400 \cdot 5$	2735	1264	27	4011	944.3	4511	891
13	2738	$335 \cdot 2$	2510	1233	28	4150	1017	4686	892
12	2479	277×7	2293	1204	29	4289	1092	4864	893
11	2231	227 \%	2081	1179	30	4428	1171	5043	894
10	1993	183.3	1874	1155	31	4568	1253	5224	895
9	1765	$145{ }^{\circ}$	1671	II 34	32	4708	1339	5408	897
8	1545	112.1	1473	III4	33	4849	1429	5593	899
7	1332	84°	1278	1096	34	4990	1522	5782	901
6	1126	$60 \cdot 5$	1087	1078	35	5132	1620	5973	904
5	925	41•3	900	1063	36	5275	1722	6167	906
4	731	$25^{\circ} 9$	715	1049	37	5419	1828	6364	909
3	542	14.4	533	1035	38	5564	1939	6564	912
2	357	6.3	353	1023	39	5709	2055	6768	916
1	176	$1 \cdot 6$	176	1011	40	5856	2176	6976	919
-	-	\bigcirc	0	1000					
1	173	1.5	174	990	4 I	6004	2303	7187	923
2	342	$5 \cdot 9$	346	981	42	6154	2435	7402	927
3	508	13.2	516	972	43	6304	2573	7622	931
4	672	23.2	685	964	44	6456	2717	7847	936
5	833	$35^{\circ} 8$	853	9.56	45	6610	2868	8077	941
6	991	$5{ }^{\prime} 1$	1020	949	46	6765	3026	8311	945
7	1147	$68 \cdot 9$	1187	942	47	6922	3192	8552	951
8	1301	89.1	1352	936	48	7081	3365	8798	956
9	1453	I I I.8	1517	931	49	7241	3546	9051	962
10	1603	137.0	1681	926	50	7403	3736	9310	967
11	1752	164.6	1845	921	51	7568	3935	9576	973
12	1899	194.5	2008	916	52	7734	4144	9850	979
13	2045	226.9	2172	913	53	7902	4364	10131	986
14	2190	261.6	2335	909	54	8073	4595	10422	992
15	2334	298.8	2499	906	55	8246	4837	10721	999
16	2476	$338 \cdot 3$	2663	903	56	8421	5092	11030	1006
17	2618	$380 \cdot 3$	2827	900	57	8599	5361	11349	1013
18	2759	424.8	2991	898	58	8779	5644	11679	1020
19	2900	$47 \mathrm{I} \cdot 8$	3156	S96	59	8962	5942	12021	1027
20	3040	521.4	3322	894	60	9147	6257	12375	1034

XVI. (continued).

$\gamma=0.70$					$\gamma=0 \% \% 0$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
23°	8132	2201	5692	28-6	21°	3101	$555^{\circ} \mathrm{O}$	3444	873
22	7012	1736	5215	2283	22	3233	$607 \cdot 3$	3608	872
21	6221	1424	4815	1997	23	3366	$662 \cdot 1$	3772	870
					24	3498	7195	3938	869
20	5590	1188	4461	1814	25	3630	779.6	4104	869
19	5059	1000	4138	1683					
18	4595	$844^{\circ} 6$	3838	1582	26	3761	$842 \cdot 3$	4272	868
17	4180	714°	3556	1501	27	3893	907.9	4442	868
16	3805	$602 \cdot 7$	3289	1435	28	4024	$976 \cdot 3$	4612	868
					29	4156	1048	4785	868
15	3460	507.0	3035	1378	30	4287	1122	4959	869
14	3140	424^{2}	2791	1330					
13	2841	$352 \cdot 5$	2556	1288	31	4419	1200	5135	870
12	2561	$290 \cdot 2$	2329	1250	32	4551	1281	5313	871
II	2295	$236 \cdot 2$	2109	1217	33	4684	1365	5494	872
					34	4817	1453	5676	874
10	2043	189.5	1896	1187	35	4950	1545	5861	876
9	1803	149.2	1689	1160					
8	1573	114.8	1486	1136	36	5085	1641	6049	878
7	1352	$85 \cdot 8$	1288	1113	37	5219	1741	6240	S80
6	1140	$61 \cdot 6$	1094	1093	38	5355	1845	6.434	882
					39	5491	1953	6631	885
5	9.35	$41 \cdot 8$	904	1074	40	5628	2066	6832	8S8
4	737	$26 \cdot 2$	718	1057					
3	545	14.5	534	1041	41	5766	2184	7036	891
2	358	$6 \cdot 3$	354	1026	42	5906	2307	7244	895
1	177	$1 \cdot 6$	176	1013	43	6046	2436	7456	S98
\bigcirc	O	\bigcirc	\bigcirc	1000	44	6187	2570	7673	902
1	173	1.5	174	988	45	6331	2710	7894	906
2	341	5.9	345	977					
3	506	13.1	515	967	46	6474	2857	8120	910
4	668	23.0	683	958	47	6620	3010	8352	915
5	826	35.5	850	949	48	6766	3170	8589	920
6	982		1016		49	6915	3338	83_{32}	925
7	1135	57.0	I 180	941	50	7065	3514	9081	930
8	1286	87.8	1344	926	51	7216	3698	9337	935
9	1434	1100	1507	919	52	7370	3891	9599	940
10	1581	134.5	1669	913	53	7525	4093	9870	946
					54	7682	4305	10148	952
11	1726	$161 \cdot 3$	1831	908	55	7841	4528	10435	957
12	1869	$190 \cdot 4$	1992						
13	2010	221.7	2153	898	56	So02	4762	10731	963
14	2150	255.4	2313	894	57	8165	5009	11037	970
15	2289	291.2	2474	890	58 59	8330 8498	5268 5541	11353 11680	976 982
16	2426	$329 \cdot 4$	2635	SS6	60	8667	5829	12019	989
17	2563	369.8	2796	883					
18	2699	412.6	2957	880					
19	2833	$457 \cdot 6$	3119	877					
20	2967	5051	3281	875				t	

XVI. (continued).

$y=0.80$					$\gamma=0.80$				
ϕ	(x)	(${ }^{\prime}$)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
20°	6536	1476	4764	2393	21°	3028	$538 \cdot 0$	3402	855
19	5695	1178	4358	2032	22	3155	$588 \cdot 1$	3562	853
18	5051	962.6	4004	1820	23	3282	$640 \cdot 6$	3723	851
17	4521	$795{ }^{\circ}$	3685	1675	24	3408	695.4	3885	850
16	4063	659.5	3391	1567	25	3534	$752 \cdot 7$	4048	848
15	3659	$547 * 2$	3115	1481	26	3659	812.6	4212	847
14	3294	452.9	2854	1412	27	3785	875°	4377	847
13	2961	$372 \cdot 8$	2606	1353	28	3910	$940 \cdot 1$	4544	846
12	2653	$304{ }^{\circ} 5$	2369	1304	29	4035	1008	4712	846
11	2366	$246 \cdot 2$	2141	1261	30	4160	1079	4882	846
10	2097	196.3	1920	1223	31	4285	1152	5053	847
9	1844	153.8	1707	1190	32	4410	1229	5226	847
8	1603	117.8	1500	1160	33	4535	1309	5402	848
7	1374	$87 \cdot 6$	1298	1133	34	4661	1392	5579	849
6	1155	$62 \cdot 6$	IIOI	1108	35	4787	1479	5759	851
5	945	42.4	909	1086	36	4914	1569	5942	852
4	743	26.5	721	1066	37	5041	1663	6127	854
3	548	14.6	536	1047	38	5168	1761	6315	856
2	360	$6 \cdot 3$	354	1030	39	5297	1863	6507	858
1	177	1.6	176	1015	40	5426	1970	6701	861
0	-	\bigcirc	-	1000					
1	172	1•5	173	987	41	5555	2080	6899	864
2	340	$5 \cdot 9$	345	974	42	5686	2196	7101	867
3	504	$13^{\circ} \mathrm{O}$	514	963	43	5818	2316	7306	870
4	663	22.8	681	952	44	5950	2442	7516	873
5	820	35° I	847	942	45	6084	2573	7730	877
6	973	$49^{\circ} 9$	IOII	933	46	6218	2710	7948	880
7	1124	$67{ }^{\circ}$	1174	924	47	6354	2854	8172	884
8	1271	$86 \cdot 4$	1336	916	48	6491	3003	8401	888
9	1417	$108 \cdot 2$	1497	909	49	6630	3160	$8{ }^{8} 36$	893
10	1560	132.1	1657	902	50	6769	3323	8876	897
11	1701	158.2	1817	896	51	6911	3495	9123	902
12	1840	186.5	1976	890	52	7053	3674	9377	907
13	1977	216.9	2134	884	53	7198	3862	9637	912
14	2113	249.5	2293	879	54	7343	4059	9906	917
15	2247	$284^{\circ} 2$	245!	875	55	7490	4266	10182	922
16	2380	$321^{\circ} 0$	2609	870	56	7640	4483	10467	928
17	2511	$360 \cdot 0$	2767	867	57	7791	4712	10761	933
18	2642	$401 \cdot 2$	2925	863	58	7944	4952	11065	939
19	2771	444.5	3084	860	59	8099	5204	11380	945
20	2900	$490 \cdot 1$	3243	857	60	8256	5471	11706	951

XVI. (continued).

$\gamma=0.90$					$\gamma=0.90$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
18°	5812	1169	4247	2331	21°	2961	522.3	3363	838
17	5016	917.9	3857	1973	22	3083	$570 \cdot 4$	3520	836
16	4410	$738 \cdot 3$	3518	1766	23	3204	$620 \cdot 8$	3677	834
					24	3325	673.4	3836	832
15	3911	$599 \cdot 7$	3211	1624	25	3446	$728 \cdot 3$	3995	830
14	3482	$488 \cdot 5$	2929	1518					
13	3102	397*2	2664	1435	26	3566	$785 \cdot 5$	4156	829
12	2759	321.2	2413	1368	27	3685	845.2	4317	828
11	2446	$257 \cdot 5$	2175	1312	28	3805	9073	4480	827
					29	3924	972°	4644	826
10	2157	203.9	1946	1264	30	4043	1039	4810	826
9	1888	158.8	1727	1222					
8	1635	1210	1514	1186	31	4162	1110	4977	826
7	1396	$8{ }^{8.6}$	1308	1153	32	4281	1183	5146	826
6	1170	$63 \cdot 8$	1108	1124	33	4400	1259	5317	827
					34	4520	1338	5490	828
5	955	$43^{\circ} \mathrm{O}$	914	1098	35	4640	1420	5666	829
4	749	$26 \cdot 8$	723	1075					
3	551	14.7	537	1054	36	4760	1505	5843	830
2	361	$6 \cdot 4$	355	1034	37	4880	1594	6024	831
1	177	1.6	176	1016	38	5001	1687	6207	833
					39	5122	1784	6392	835
-	\bigcirc	\bigcirc	\bigcirc	1000	40	5244	1884	6582	837
1	172	$1 \cdot 5$	173	985	41	5366	1989	6774	839
2	339	$5{ }^{\circ} 9$	344	971	42	5490	2098	6970	842
3	501	12.9 22.6	512	958	43	5614	2211	7169	844
4	659	22.6 3.8	679	946	44	5738	2330	7373	847
5	814	$34 \cdot 8$	844	935	45	5864	2453	7580	850
6	965	$49^{\circ} 3$	1007	925	46	5991	2582	7793	854
7	1113	$66 \cdot 1$	1168	916	47	6119	2717	8009	857
8	1257	85.2	1329	907	48	6247	2858	8231	861
9	1399	106.4	1488	898	49	6377	3004	8459	865
10	1539	129.8	1646	891	50	6508	3158	8692	869
11	1677	155.3	1804	884	51	6641	3319	8931	873
12	1812	182.8	1961	877	52	6775	3487	9176	877
13	1945	212.4	2117	871	53	6910	3663	9428	882
14	2077	$244{ }^{\circ} \mathrm{O}$	2273	866	54	7046	3847	9688	887
15	2207	$277 \cdot 6$	2428	861	55	7184	4041	9955	892
16	2335	313.2	2584	856	56	7324	4244	10231	897
17	2463	3509	2739	${ }_{8} 52$	57	7465	4457	10515	902
18	2589	$390 \cdot 6$	2895	8_{48}	58	7607	4681	10809	907
19	2714	$432 \cdot 4$	3050	844	59	7752	4917	11112	912
20	2838	$476 \cdot 3$	3206	841	60	7898	5165	11427	918

XVI. (continued).

$\gamma=10$					$\gamma=\mathrm{I}^{\circ} \mathrm{O}$				
ϕ	(x)	(V)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
$\begin{aligned} & \text { I } 7^{\circ} \\ & 16 \end{aligned}$	$\begin{aligned} & 5941 \\ & 4936 \end{aligned}$	$\begin{aligned} & 1161 \\ & 862^{\circ} 7 \end{aligned}$	$\begin{aligned} & 4127 \\ & 3691 \end{aligned}$	$\begin{aligned} & 2763 \\ & 2132 \end{aligned}$	21°	2898	507.8	3326	823
					22	3015	554.2	3480	820
					23	3132	602.6	3634	817
15	4254	673.4	3333	1844	24	3248	$653 \cdot 1$	3790	815
14	3720	534.9	3018	1667	25	3364	$705 \cdot 8$	3946	813
13	3272	$427 \cdot 4$	2730	1542					
12	2883	$341 \cdot 1$	2464	1447	26	3479	$760 \cdot 7$	4103	811
II	2537	$270 \cdot 6$	2213	1372	27	3594	817.9	4261	810
					28	3708	$877 \cdot 4$	4420	809
10	22241936	212.5	1975	1310	29	3822	9393	4581	808
$\begin{aligned} & 9 \\ & 8 \end{aligned}$		164.3	1748	1258	30	3936	1004	4743	808
	1670	124.5	1530	1214					
$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 1421 \\ & 1187 \end{aligned}$	$\begin{aligned} & 91 \cdot 7 \\ & 65^{\circ} \end{aligned}$	$\begin{aligned} & 1319 \\ & 1116 \end{aligned}$	$\begin{aligned} & 1175 \\ & 1142 \end{aligned}$	31	4050	1071	4906	807
					32	4163	1140	5071	807
					33	4277	1213	5238	807
5	965	437	919726	1111	34	4391	1288	5407	808
4	755	27.114.8		1085	35	4505	1367	5578	808
3	554362		539356	1060					
2		$\begin{array}{r} 14.8 \\ 6.4 \end{array}$		1038	36	4619	1448	5752	809
1	178	1.6	176	1018	37	4733	1533	5928	810
					38	4848	1621	6106	812
0	0	0	0	1000	39	4964	1712	6287	813
					40	5079	1808	6471	815
1	172	1.5	173	983968	4142	51955312	1907	$\begin{aligned} & 6659 \\ & 6849 \end{aligned}$	817
2	338		$\begin{aligned} & 343 \\ & 511 \end{aligned}$				2010		819
3	$\begin{array}{r} 499 \\ 655 \end{array}$	12.9		954	43	5430	2118	7044	822
4		$\begin{aligned} & 22.4 \\ & 34^{\circ} 4 \end{aligned}$	$\begin{aligned} & 677 \\ & 841 \end{aligned}$	$\begin{aligned} & 942 \\ & 929 \end{aligned}$	44	5548	2230	7242	824827
5	808				45	5667	2347	7444	
6	$\begin{array}{r} 957 \\ 1102 \end{array}$	$48 \cdot 7$	1002	918	46	5787	2469	7650	830833
7		$\begin{aligned} & 65^{\circ} 3 \\ & 84^{\circ} \end{aligned}$	1163	$\begin{aligned} & 907 \\ & 898 \end{aligned}$	47	59076029	2596	7861	
	1244		1321		48		$\begin{aligned} & 2729 \\ & 2868 \end{aligned}$	$\begin{aligned} & 8077 \\ & 8297 \end{aligned}$	837840
9	1383	84. 104	14791636	$\begin{aligned} & 898 \\ & 889 \end{aligned}$	49	$\begin{aligned} & 6152 \\ & 6275 \end{aligned}$			
10	1520	127.6		880	50		3013	$\begin{aligned} & 8297 \\ & 8524 \end{aligned}$	844
11	1654	152.5	1791	873866	51	6400	3164	8756	848
12	1785	179.3	1946		52	6526	33223488	89949239	852856
13	1915	$\begin{aligned} & 208 \cdot 1 \\ & 238 \cdot 8 \end{aligned}$	2100	859	53	6653			
14	2043		2254	853	54	6782	3662	9491	$\begin{aligned} & 856 \\ & 860 \\ & 865 \end{aligned}$
15	2169	271.4	2407	847	55	6912	3844	9750	
16	2294	305.9	2560	842	56	7043	4035	10017	869
17	2417	$\begin{aligned} & 342.4 \\ & 380 \cdot 8 \end{aligned}$	$\begin{aligned} & 2713 \\ & 2866 \end{aligned}$	$\begin{aligned} & 838 \\ & 833 \end{aligned}$	5758	7176	42354446	10293	874
18	25392659					7310			879
19		$\begin{aligned} & 380 \cdot 8 \\ & 421 \cdot 2 \\ & 463 \cdot 5 \end{aligned}$	$\begin{aligned} & 2866 \\ & 3019 \\ & 3172 \end{aligned}$	$\begin{aligned} & 833 \\ & 829 \\ & 826 \end{aligned}$	59	7445	4667	10872	884
20	2779				60	7582	4900	11177	889

XVI. (continued).

$\gamma=1{ }^{1}$					$\gamma=1 \cdot \mathrm{I}$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
15°	4789	793.3	3502	2272	25°	3399	737×9	4053	795
14	4044	$600 \cdot 3$	3130	1898	27	3509	$792 \cdot 8$	4208	794
13	3487	$466 \cdot 5$	2810	1688	28	3619	$850{ }^{\circ}$	4364	792
12	3032	365.4	2521	1548	29	3728	909.4	4521	791
11	2642	286.1	2255	1445	30	3837	971 2	4680	791
10	2299	$222 \cdot 3$	2006	1365	31	3946	1035	4840	790
9	1989	$170 \cdot 5$	1770	1300	32	4055	1102	5001	790
8	1707	128.3	1546	1245	33	4164	1171	5165	790
7	1446	93.9	1331	1199	34	4273	1243	5330	790
6	1204	66.3	1124	1160	35	4382	1318	5497	790
5	976	44.3	924	1125	36	4491	1396	5667	791
4	761	274	729	1094	37	4600	1477	5839	792
3	558	$14^{\circ} 9$	541	1067	38	4709	1561	6013	793
2	364	6.4	356	1042	39	4819	1648	6190	794
1	178	$1 \cdot 6$	176	1020	40	4929	1739	6370	796
\bigcirc	\bigcirc	-	\bigcirc	1000	41	5040	1834	6552	797
					42	5151	1932	6738	799
1	171	15	173	982	43	5263	2035	6928	801
2	337	$5 \cdot 8$	343	965	44	5375	2141	7121	804
3	497	12.8	510	950	45	5488	2252	7318	806
4	652	$22 \cdot 3$	675	935					
5	802	34^{1}	837	922					
6	9491091	48.2	9981157	910899	$\gamma=1 \cdot 2$				
7		64.5			ϕ			(T)	
8	1231	$82 \cdot 8$	1314	889		(x)	(y)		(v)
9	1367	10.2	1470	879					
10	1501	125.5	1625	870					
11	1632	149.8	1779	862	14°	4553	707.6	3287	2355
12	1760	$176{ }^{\circ}$	1932	855	13	3777	$520 \cdot 8$	2909	1914
13	1887	$204{ }^{\circ}$	2084	848	12	3217	396.4	2589	1685
14	2011	233.9	2235	841	11	2766	$304 \cdot 6$	2303	1537
15	2134	$265 \cdot 6$	2387	835					
					10	2384	233.6	2040	1429
16	2255	299.1	2537	830	9	2048	1774	1795	1347
17	2374	334.4	2688	825	8	1747	132.4	1564	1280
18	2492	$371 \cdot 6$	2838	820	7	1474		1343	1225
19	2609	4107	2989	812	6	1222	$67 \cdot 6$	1132	1179
20	2724	$451 \cdot 6$	3139						
					5	987	$45^{\circ} \mathrm{O}$	929	1139
21	2839	494.4	3290	808	4	768	27.7	733	1104
22	2952	539.1	3442	805	3	561	15°	542	1074
23	3065	5857	3593	802	2	365	$6 \cdot 5$	357	1047
24	3177	6344	3746	800	1	178	1.6	176	1022
25	3288	$685 \cdot 1$	3899	797	\bigcirc	-	-	-	1000

XVI. (continued).

$\gamma=12$					$\gamma=13$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(${ }^{\prime}$)	(T)	(v)
1°	171	$1 \cdot 5$	173	980	13°	4222	$607 \cdot 8$	3046	2325
2	336	$5 \cdot 8$	342	962	12	3460	438.4	2673	1889
3	494	12.7	509	945	II	2917	327.7	2359	1657
4	648	22.1	673	930					
5	796	$33^{\circ} 8$	834	916	10	2482	$246 \cdot 9$	2079	1508
					9	2114	185.2	1822	1401
6	941	$47 \cdot 7$	994	903	8	1792	$137^{\circ} 0$	1582	1320
7	1081	$63: 7$ 8.7	1152	891 880	76	1503	99°	1356	1254
	1218	$81 \cdot 7$ 101.7	1307 1462	880	6	1241	69°	1141	1200
9 10	1352	$101 \cdot 7$		861					
10	1483	123.5	1615	861	5	999	$45^{\circ} 7$	934	1154
11	1611	$147 * 3$	1767	852	4	775	$28^{\circ} 1$	736	1115
12	1736	172.8	1918	844	3	565	15.2 6.5	544	1081
13	1859	200.1	2068	837	2	366	6.5	358	1051
14	1981	229.2	2218	830	1	179	1.6	177	1024
15	2100	260°	2367	823	0	171	$1 \cdot 5$	173	1000 978
16	2217	292.6	2515	818	2	335	$5 \cdot 8$	342	959
17	2333	326.9	2664	812	3	492	12.6	508	941
18	2447	$363{ }^{\circ}$	2812	807	4	644	21.9	671	925
19	2561	$400 \cdot 8$	2960	803	5	791	33.5	831	910
20	2672	$440 \cdot 4$	3108	798	6	933	$47 * 2$	990	896
21	2783	$481 \cdot 8$	3257	795	7	1071	$62 \cdot 9$	1146	884
22	2893	$525{ }^{\circ}$	3405	791	8	1206	$80 \cdot 6$	1301	872
23	3002	$570 \cdot 1$	3555	788	9	1337	$100 \cdot 2$	1454	862
24	3110	$617{ }^{1} 1$	3704	785	10	1465	121.6	1605	852
25	3217	$666{ }^{\circ}$	3855	783	1				43
26	3324	716.8	4006	781	12	1713	169.8	1905	834
27	3430	$769 \cdot 7$	4158	779	13	1833	196.5	2053	826
28	3535	$824^{\prime 7}$	4311	777	14	1951	224.8	2201	819
29	3640	881.9	4465	776	15	2067	254.8	2348	812
30	3745	$941^{\circ} 2$	4621	775					
31	3850	1003	4778	774	16	2182	$286 \cdot 5$	2495	806 800
32	3955	1067	4936	774	18	2294	319 354	2787	795
33	4059	1133	5096	773	19	2515	$391 \cdot 6$	2933	790
34	4163	1203	5258	773	20	2624	$430{ }^{\circ}$	3079	786
35	4268	1274	5422	773					
36	4372	1349	5587	774	21	2731	470.1	3225	782
37	4477	1426	5755	774	22	2837	511.9	3371	778
38	4582	1507	5926	775	23	2942	555.5	3518	775
39	4687	1590	6099	776	24	3047 3150	$600 \cdot 9$ 648.2	3665 3813	772 769
40	4792	1677	6275	778	25	350	6482	381	769
41	4898	1767	6453	779	26	3253	697.3	3961	767
42	5004	1861	6635	781	27	3356	$748 \cdot 3$	4111	765
43	5111	1959	6820	783	28	3458	801.4	4261	763
44	5218	2061	7009	785	29	3559	856.4	44^{12}	762
45	5326	2167	7201	787	30	3660	913.6	4565	760

XVI. (continued).

$\gamma=13$					$\gamma=14$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
31 32 33 33 34 35	3761	973.0	4719	759	6°	. 926	46.7	986	890
	3861 3962	$1 \begin{aligned} & 1035 \\ & 109\end{aligned}$	${ }_{5031}^{4874}$	759	7	11062	$62^{2} 2$ 79	1141 1294	877 865
	4062	1165	5190	758	9	1323	98.8	1446	853
	4162	1234	5350	75^{8}	10	1448	1198	1596	843
333334444444	4263	1305	5513	758	11	1571	$142 \cdot 5$	1745	833
	4363 4464	1380 1457	${ }_{5845}^{5678}$	759	12	1691 1808	166.9 193	1892 2039	825 816 816
	4564	1537	6014	760	14	1923	$220 \cdot 6$	2185	809
	4665	1620	6186	761	15	2037	$249 \cdot 9$	2330	So2
	4767	1707	6361	763	16	2148	$280 \cdot 8$	2475	795
	4868	1797	6539	764	17	2258	$313^{2} 2$	2619	
	4971	1891	6720	766	18	2366	3473	2763	784
	5073 5176	198	${ }_{7} 693$	770	12	${ }_{2577}^{2472}$	$382 \cdot 9$ $420 \cdot 2$	2907 3050	7779
$\gamma=14$					22	$\begin{aligned} & 2681 \\ & 2784 \end{aligned}$	459 499	3194 3338	770 766
					23	${ }^{2886}$	541.9	3483	763
					24 25	3088	${ }_{631}{ }^{5} \mathrm{~F}$	3628 3773	785
ϕ									
		(v)	(T)	(v)	26	3187	679.1		
					27 28	3286 3385	$728 \cdot 4$	4066	752 750
1211	3817	502.1	2784	2250	29	${ }_{34}{ }^{3} 8$	8832	4362	748
	3110	357\%	2426	1827	30	3580	888.0	4512	747
10	2599	263°	2123	1608		3678	$945 \cdot 3$	4664	746
9	2189	194*2	1852	1466	32	3774	1005	${ }^{4816}$	745
7	${ }_{1535}$	114	1370	11364	33 34		${ }_{11306}^{1130}$	4970 5126	744 744
6	1261	$70 \cdot 5$	1150	1222	35	4064	1197	5283	744
	1012	$46 \cdot 5$	940	1170	36	4161	1266		744
4	${ }^{782}$	28.4	739	1126	37	4258	1337	5604	744
3	568 368	15.3	546 358	1088		4354	1411	5768	745
	368 179	\% 1.6	358 177	1055	49	4451	1488	5934 6903	745
1	179	1	17	1000	40	4548	1568	6103	746
1	171	$1 \cdot 5$	173	977	41	4646	1652	6275	747
2	333	5.7	341	956	42	4743	1738	6449	749
3	490	12.6	507	937	43	4841	${ }_{1828}^{182}$	6626	750
4	640 785	${ }^{217}$	${ }^{689}$	${ }^{920} 4$	44	4940 5039	$1{ }^{1921}$	${ }^{6507}$	752 754
									754

XVI. (continued).

$\gamma=1 \cdot 5$					$\gamma=15$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
11°	3373	$400 \cdot 5$	2511	2099	31°	3599	919.6	4611	733
10	2743	$283 \cdot 2$	2174	I 741	32	3693	977*	4761	732
9	2275	204.8	1885	1545	33	3787	1037	4912	731
8	1895	$147 \cdot 8$	1624	1415	34	3880	1098	5065	731
7	1569	104.9	1384	1320	35	3973	1162	5220	731
6	1282	$72 \cdot 2$	I 159	1246	36	4066	1229	5377	731
5	1025	$47 \cdot 3$	946	1187	37	4159	1298	5535	731
4	789	$28 \cdot 8$	742	1137	38	4253	1369	5696	731
3	572	15.4	547	1095	39	4346	1444	5859	732
2	369	$6 \cdot 6$	359	1059	40	4439	1521	6025	732
1	179	$1 \cdot 6$	177	1028					
-	0	\bigcirc	\bigcirc	1000	41 42	4533 4627	1601 1684	6193 6364	733 735
1	170	1.5	172	975	43	4722	1770	6538	736
2	332	$5 \cdot 7$	341	953	44	4816	1860	6715	738
3	488	12.5	505	933	45	4911	1954	6896	739
4	637	$21^{\circ} 6$	667	915					
5	780	$32^{\prime} 9$	826	898	$\gamma=\mathrm{I} \cdot 6$				
6	918	$46 \cdot 2$	982	883					
8	1053	61.5	1136	870			(Y)	(T)	(v)
	1183	$78 \cdot 6$	1288	857	ϕ	(x)			
9	1309	97.5	1438	845					
10	1432	118.1	1587	835					
11	1552	$140^{\prime} 3$	1734	825	10°	2927	$309 \cdot 8$	2236	1933
12	1669	164.2	1880	815	9	2377	217.5	1922	1644
13	1784	189.6	2025	807	8	1955	${ }^{1} 54.3$	1648	1475
14	1897	$216 \cdot 6$	2169	799	7	1606	$108 \cdot 3$	1399	1359
15	2007	245^{2}	2312	792	6	1305	73.9	I 169	1272
16	2116	$275 \cdot 3$	2455	785	5	1038	$48 \cdot 2$	952	1204
17	2223	$306 \cdot 9$	2598	779	4	797	$29^{\circ} 1$	746	1149
18	2328	$340 \cdot 1$	2740	773	3	576	15.6	549	1103
19	2431	374.7	2881	768		371	$6 \cdot 6$	360	1064
20	2534	411*0	3023	763	1	180	$1 \cdot 6$	177	1030
					0	\bigcirc	-	\bigcirc	1000
21	2635	$448 \cdot 8$	3165	759	1	170	1.5	172	974
22	2735	488.1	3307	755	2	331	$5 \cdot 7$	340	950
23	2834	529.1	3449	751	3	485	12.4	504	929
24	2932	571.8	3592	748	4	633	21.4	665	910
25	3029	616.1	3735	745	5	775	$32 \cdot 6$	823	893
26	3125	662^{\prime} I	3879	742	6	911	$45 \cdot 7$	978	877
27	3221	$709 \cdot 9$	4023	740	7	1044	$60 \cdot 8$	1131	863
28	3316	7594	4169	738	8	1171	77.6	1282	850
29	3411	810.9 864	4315	736	9	1296	$96 \cdot 2$	1430	838
30	3505	8643	4462	734	10	1416	116.4	1578	826

XVI. (continued).

$y=1 \cdot 6$					$\gamma=17$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
11°	1534	$138 \cdot 2$	1723	816	10°	3186	348.4	2316	2254
12	1649	161.5	1868	So7	9	2501	233.2	1966	1775
13	1761	186.4	2011	798	8	2025	161.9	1675	1546
14	1871	2129	2154	790	7	1647	112.1	1416	1403
15	1979	240'7	2296	782	6	1329	$75^{\circ} 8$	1179	1301
16	2085	$270 \cdot 1$	2437	776	5.	1052.	$49^{\circ} \mathrm{O}$	958	1223
17	2189	$300 \cdot 9$	2577	769	4	804	29.5	7.49	1162
18	2292	$333{ }^{2}$	2717	763	3	579	15%	551	1111
19	2393	$367{ }^{\circ}$	2857	758	2	372	$6 \cdot 6$	361	1068
20	2492	$402 \cdot 3$	2997	753	I	180	${ }^{1} \cdot 6$	177	1032 1000
21	2590	439.0	3137	748					
22	2688	$477 \cdot 3$	3277	744	$\gamma=1 \cdot \delta$				
23	2784	517.1 558.5	3417	740					
24	2879	$558 \cdot 5$	3558	737					
25	2973	601.5	3699	734		(x)			
26	3067	$646 \cdot 2$	3840	731	ϕ		(x)	(T)	(v)
27	3160	$692 \cdot 5$	3983	729					
28	3252	$740 \cdot 6$	4126	726					
29	3344	$790 \cdot 4$	4270	724	$9{ }^{\circ}$	2658	2537	2018	1961
30	3435	842.I	4415	723		2105	170.7	1704	1634
					7	1693	116.3	1434	1453
31	3526	895.7	4561	721	6	1356	$77 \cdot 8$	1190	1332
32	3617	951.2	4709	720					
33	3707	1009	4858	719	5	1067	$50 \cdot 0$	964	1243
34	3798	1069	5008	719	4	813	29.9	753	1175
35	3888	1131	5160	718	3	583	15.9	553	1119
36					2	384 180	6.7	361	1073
37	4068	1261	5314	718	1	150	16	177	1034
38	4158	1330	5628	718	1	169	1.5	172	1000 971
39	4248	1402	5788	719	2	329	$5 \cdot 6$	339	945
40	4338	14761554	59516116	720	3	481	12.3	502	922
					4	626	21.1	661	901
41	4429			720	5	765	$3^{2} 0$	817	882
42	4519	1634	6284	721					
43	4610	1717 1804	6455	723	6	898	44.8	971	865
44	4702	1804	6629	724		1026	59.4	1121	850
45	4793	1894	6807	726	8	1150	75.8	1270	836
					9	1270	93.7	1416	823
					10	1387	113.2	1560	SII

XVI. (continued).

$\gamma=\mathrm{I} \cdot 8$					$\gamma=I{ }^{\circ} 9$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
11°	1500	134.2	1703	800	9°	2874	282.7	2084	2262
12	1610	156.6	1845	790	8	2200	181.4	1738	1746
13	1718	180.5	1986	781	7	1743	121°	1453	1511
14	1823	$205 \cdot 8$	2125	773	6	1384	80°	1201	1366
15	1926	2324	2263	765					
					5	1083	$51 \times$	971	1265
16	2027	$260 \cdot 5$	2401	757	4	821	$30 \cdot 3$	757	1188
17	2127	$289 * 9$	2539	751	3	587	16.0	554	1127
18	2224	$320 \cdot 6$	2675	745	2	375	$6 \cdot 7$	362	1078
19	2320	352.7	2812	739	1	181	$1 \cdot 6$	178	1036
20	2415	$386 \cdot 2$	2948	734	0	\bigcirc	\bigcirc	-	1000
21	2508	421.1	3084	729	$\gamma=2{ }^{\circ} \mathrm{O}$				
22	2600	$457 \cdot 4$	3221	724					
23	2691	495*1	3357	720					
24	2782	5343	3494	717					
25	2871	$575{ }^{\circ}$	3631	713	ϕ	(x)	(Y)	(T)	(v)
26	2959	617.1	3769	710					
27	3047	$660 \cdot 9$	3907	708					
28	3134	$706 \cdot 2$	4046	705	8°	2316	194.8	1777	1896
29	3221	753.2	4186	703	7	1799	126.5	1474	1579
30	3307	801.9	4327	701	6	1414	$82 \cdot 4$	1214	1404
31	3392	852.3	4469	700	5	1099	$5^{\circ} \mathrm{O}$	978	1288
32	3478	904.6	4612	698	4	829	$30 \cdot 7$	761	1202
33	3563	958.8	4756	697	3	591	$16 \cdot 2$	556	1136
34	3647	1015	4902	697	2	377	$6 \cdot 8$	363	1082
35	3732	1073	5049	696	1	181	1.6	178	1038
					0	6	\bigcirc	\bigcirc	1000
36	3816	1133	5198	696	1	169	$1 \cdot 5$	172	968
37	3901	1196	5349	695	2	327	5.6	338	939
38	3985	1260	5502	695	3	477	12.1	500	914
39	4070	1328	5658	696	4	619	$20 \cdot 8$	658	892
40	4154	1397	5815	696	5	755	$31 \cdot 5$	812	872
41	4239	1470	5975	697	6	885	$44^{\circ} \mathrm{O}$	963	854
42	4324	1545	6137	698	7	1010	$58 \cdot 2$	1112	838
43	4409	1623	6302	699	8	1130	74°	1258	823
44	4494	1704	6471	700	9	1246	91.4	1402	809
45	4580	1788	6642	701	10	I 359	110.2	1544	797

XVI. (continued).

$\gamma=2.0$					$\gamma=2 \cdot \mathrm{I}$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
11°	1468	$130 \cdot 5$	1684	786	8°	2467	212.5	1824	2116
12	1574	152.1	1823	775	7	1864	$132 \cdot 8$	1498	1663
13	1678	$175{ }^{\circ}$	1961	766	6	1447	$85^{1} 1$	1227	1447
14	1779	1993	2098	757					
15	1878	$224 \cdot 8$	2233	749	5 4	1117 838 58	53.2 31.2	986	1312 1217
16	1974	2517	2368	741	3	596	16.3	558	1145
17	2069	2798	2502	734	2	379	$6 \cdot 8$	364	1087
18	2163	309.2	2636	728	1	181	$1 \cdot 6$	178	1040
19	2254	3398	2770	722	0	-	0	0	1000
20	2344	371.8	2903	716					
21	2433	405°	3036	711	$\gamma=2 \cdot 2$				
22	2521	$439 \cdot 6$	3169	707					
23	2608	$475 \cdot 4$	3302	702					
$\begin{aligned} & 24 \\ & 25 \end{aligned}$	2693	512.7 55	3435	699	ϕ		(y)	(T)	(v)
	2778	551×3	3569	695		(x)			
26	2862	591.3632.8	37033837	692 689					
27 28 28	2945 3028			689 687	8°	2680	238.4	1885	2.49517661
29	3110	7203	4109	684	76	1940	$140 \cdot 3$	1525	
30	3191	$766 \cdot 4$	4246	682		1483	88.0	1241	1496
31	3272	814.1	4384	681	5	1135	54.4	993	1339
32	3353	863.5	4523	679	4	848	31.7	769	1233
33	3433	914%	4663	678	3	600	$16 \cdot 5$	560	1154
34	3513	967.7	4805	677	2	380	6.8	364	1092
35	3593	1023	4948	676	1	182	1.6	178	1042
					\bigcirc	168	${ }^{1}$	\bigcirc	1000
36	3673	1079	5093	676	1	168	1.5	171	965
37	3752	1138	5240	675	2	325	$5 \cdot 6$	337	934
38 39	3832 3911	11263	5389 5539	675 675	3 4	473 613	12.0 20.5	498 654	907 883 88
40	3991	1328	5692	676	5	746	31.0	807	862
41	4071	1396	5847	676	6	873	$43^{2} 2$	956	S_{43}
42	4151	1467	6005	677	7	994	57°	1103	826
43	4231	1540	6165	678	8	1111	72.4	1247	811
44	4311	1617	6328	679		1224	89.2	1389	797
45	4391	1696	649.4	6So	10	I 333	1074	1529	784

XVI. (continued).

$y=2 \cdot 2$					$y=2 \cdot 3$								
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)				
11°	1438	127*	1667	772	7°	2032	149.5	1555	1902				
12	1541	$147{ }^{\circ} 9$	1803	761	6	1524	91.3	1256	1552				
13	1640	$170^{\circ} 0$	1938	751									
14	1738	193.3	2072	742	5	1155	55%	1001	I 368				
15	1833	2179	2205	734	4	858	$32 \cdot 2$	773	1249				
					3	604	16.6	562	1163				
					2	382	$6 \cdot 9$	365	1097				
16	1926	243.6	2337	726	1	182	$1 \cdot 6$	178	1044				
17	2017	$270 \cdot 6$	2469	719	\bigcirc	-	0	0	1000				
18	2106	$298 \cdot 8$	2600	712706									
19	2194	$328 \cdot 1$	2730		$y=2 \cdot 4$								
20	2280	$358 \cdot 7$	2861	700									
21	2365	$390 \cdot 4$	2991	695	ϕ	(x)	(Y)	(T)	(v)				
22	2449	423.4	3120	690									
23	2531	$457 \cdot 7$	3251	686									
24	2613	493.2	3381	682	7°6								
25	2694	530°	3511	679		21461569	161.3	1591	20931617				
							$95^{\circ} \mathrm{O}$						
26	2774	$568 \cdot 1$	3642	675	5	1176	$57^{1} 1$	1010	1400				
27	2853	$607 \cdot 6$	3773	672	4	868	$32^{\prime} 7$	777	1267				
28	2931	$648 \cdot 5$	3905	670	3	609	$16 \cdot 8$	564	1173				
29	3009	$690 \cdot 8$	4038	667	2	383	$6 \cdot 9$	366	1102				
30	3087	$734 \cdot 7$	4172	665	1	182	$1 \cdot 6$	179	1046				
					\bigcirc	0	\bigcirc	0	1000				
					1	168	1.5	171	962				
31	3164	$780 \cdot 0$	4306	663	2	324	$5 \cdot 5$	336	929				
32	3240	826.9	4442	662	3	469	11.9	496	900				
33	3317	875.5	4579	660	4	607	$20 \cdot 3$	651	875				
34	3393	925.8	4717	659	5	737	$30 \cdot 5$	802	853				
35	3468	$977 \cdot 8$	4856	658	6	86I	42.4	950	833				
					7	979	$55^{\circ} 9$	1095	815				
36	3544	1032	4997	658	8	1093	70.9	1237	799				
37	3619	1088	5140	657	9	1202	$87 \cdot 2$	1376	785				
38	3695	1145	5285	657	10	1308	104.9	1514	771				
39	3770	1205	5431	657									
40	3845	1267	5580	657	11	1410	123.8		759				
					12	1509 1605	143.9 165	1784	748				
					13	1605	165.3 187.8	1917	738				
41	3921	1332	5731	658	14	1699	187.8	2048	728				
42	3996	1399	5884	658	15	1791	211.5	2179	720				
43	4072	1468	6040	659									
44	4148	1540	6199	660	16	1880	$236 \cdot 3$	2308	712				
45	4224	1615	6360	661	17	1968	262.2	2437	705				
					18	2053	289.2	2566	698				
					18 19 20	2138 2220	317.4 346.7	2821	686				

XVI. (continued).

$\gamma=2.4$					$\gamma=2.6$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
$2 \mathrm{I}^{\circ}$	2302	$377 \cdot 2$	2948	681	6°	1678	104.3	1311	1790
22	2382	408.8	3075	676	5	1223	$60 \cdot 2$	1028	1474
23	2461	441.6	3203	671	4	889	$33 \cdot 8$	786	1305
24	2539	475.5	3330	667	3	618	${ }^{17} 71$	569	1193
25	2617	5107	3455	663	2	387	$7{ }^{\circ}$	367	1113
					1	183	$1 \cdot 6$	179	1050
26	2693	547.2	3586	660	-	-	-	-	1000
27	2769	584.9	3714	657	1	167	14	171	959
28	2844	624°	3843	654	2	322	$5 \cdot 5$	335	923
29	2918	664.4	3973	652	3	466	11.7	494	S93
30	2992	$706 \cdot 2$	4103	650	4	601	20.0	648	867
31		$749 \cdot 4$		648	5	728	$30^{\circ} 0$	797	844
32	3138	794*	4367	646	6	849	417	943	823
33	3211	$840 \cdot 4$	4500	645	7	965	$54 \cdot 8$	1086	805
34	3283	888.3	4635	643	8	1076	69.4	1226	788
35	3355	937.9	4771	642	9	1182	85%	1364	773
36	3427	989.2	4909	642	10	1284	102.4	1500	760
37	3499	1042	5048	641	11	1383	$120 \cdot 8$	1634	747
38	3571	1097	5189	641	12	1479	$140 \cdot 3$	1766	736
39	3642	1154	5332	641	13	1572	$160 \cdot 9$	-896	725
40	3714	1213	5477	641	14	1663	182.7	2025	716
					15	1751	$205 \cdot 5$	2154	707
41	3786	1275	5624	641					
42	3858	1338	5773	641	16	1838	229.4	2281	699
43	3929	1404	5925	642	17	1922	254.4	2408	692
44	4001	1472	6080	643	18	2005	$280 \cdot 5$	2533	685
45	4074	1543	6237	644	19	2086	$307 \cdot 6$	2659	678
					20	2165	335%	2784	672
$\gamma=2.5$					21	2243	365.0	2909	667
					22	2321	395.4	3033	662
					23	2397	$426 \cdot 8$	3158	658
					24	2471	459.4	3283	653
ϕ	(x)	(y)	(T)	(v)	25	2546	493.2	3408	650
					26	2619	528.1	3533	646
7^{7}					27	2691	564.3	3659	643
	1619	${ }^{1} 777^{\circ} 6$	1636	2395	28	2763	601.7	3785	640
		$99^{\circ} 3$	1291	1695	29	2834	$640 \cdot 4$	3912	638
					30	2905	$680 \cdot 3$	4039	635
5	$\begin{array}{r}1199 \\ 878 \\ \hline\end{array}$	$58 \cdot 6$	1019	1435					
4	878 613	33° 170 10	782 566	1285	31	2975	721.7	4168	633
3 2	613 385	$17^{\circ}{ }^{\circ}$	566	1183	32	3045	764.5	4297	632
2	385	$7{ }^{\circ}$	367	1107	33	3115	808.7	4428	630
1	183	1.6	179	1048	34	3184	854.5	4560	629
\bigcirc	0	\bigcirc	-	1000	35	3253	901.8	4693	628

XVI. (continued).

$y=2.6$					$\gamma=2 \cdot 8$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(x)	(T)	(v)
36°	3321	$950 \cdot 8$	4827	627	6°	839	$41^{\circ} 0$	937	814
37	3390	1002	4963	626	7	951	53.8	1078	795
38	3458	1054	5101	626	8	1059	$68 \cdot 0$	1217	778
39	3527	1108	5241	626	9	1163	$83 \cdot 5$	I 353	762
40	3595	1165	5382	626	10	1262	100'1	1486	749
41	3663	1223	5526	626	II	1358	118.0	1618	736
42	3732	1284	5672	626	12	1451	136.9	1748	724
43	3800	1346	5820	627	13	1542	156.9	1877	714
44	3868	1412	5971	628	14	1629	177.9	2004	704
45	3938	1479	6124	629	15	I715	200'0	2130	695
					16	1798	223.1	2255	687679
$y=2 \cdot 7$					17	1879	$247 \cdot 2$	2379	
					18	1959	272.3	2503	672
ϕ	(x)	(y)	(T)	(v)	19	2037	298.5	2626	666
					20	2114	$325 \cdot 6$	2749	660
6°		$110 \cdot 2$	1334	1912	21	2189	353.8	2871	655650
					22	2264	$383{ }^{\circ}$	2994	
5	1747 1250				23	2337	413.3	3116	645
4	901	34.4	791	1325	24	2409 2480	$\begin{aligned} & 444^{\circ} 7 \\ & 477^{\circ} \end{aligned}$	3238	
3	623	$17 \cdot 3$	5711204		25	2480		3361	$\begin{aligned} & 641 \\ & 637 \end{aligned}$
2	389	7.0	368	1118	26	2550	510'7	3484	633
0	$\begin{gathered} 184 \\ 0 \end{gathered}$	I• 6	1790	1052	2728	$\begin{aligned} & 2620 \\ & 2689 \end{aligned}$	$545 \cdot 4$	3607	630627
				1000			581.3	3731	
					$\begin{aligned} & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 2757 \\ & 2825 \end{aligned}$	$\begin{aligned} & 618 \cdot 5 \\ & 656 \cdot 8 \end{aligned}$	$\begin{aligned} & 3855 \\ & 3980 \end{aligned}$	625622
$y=2 \cdot 8$									
ϕ	(x)		(T)	(v)	31	2893	$696 \cdot 5$	4106	$\begin{aligned} & 620 \\ & 618 \\ & 617 \\ & 616 \\ & 614 \end{aligned}$
		(Y)			32	2960	$737 \cdot 6$	4233	
					33	3026	$780 \cdot 0$	4360	
					34	3092	823.8	4489	
	1831	117*6	1360	2075	35	3158	869.2	4620	
6°									614
5	1279	64°	1049	1566	36	3224		47514884	614613
4	913	35°	796	I 348	37	3290	$964 \cdot 7$		
3	628	17.5	$\begin{aligned} & 573 \\ & 369 \end{aligned}$	1215	38	$\begin{aligned} & 3355 \\ & 3421 \end{aligned}$	$\begin{aligned} & 1015 \\ & 1067 \end{aligned}$	50195156	613 612
2	390184	$7 \cdot 1$1.6		1123	39				612
1			$\begin{array}{r} 369 \\ 179 \end{array}$	1055	40	3486	I121	5294	612
0	0167	0	0	1000					
1		$1 \cdot 4$	171	956918	41	3552	1177	54355577	$\begin{aligned} & 612 \\ & 612 \\ & 613 \\ & 614 \\ & 614 \end{aligned}$
2	320	$5 \cdot 4$	334		42	3617	1235		
3	462	I $1 \cdot 6$	492	887	43	3683	1295	5722	
4	595	197	644	859	44	3748	1357	5870	
5	720	29.6	793	835	45	3814	1422	6020	

XVI. (continued).

$\gamma=2.9$					$\gamma=3{ }^{\circ}$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
6°	1939	1273	1392	2312	21°	2139	343.5	2836	643
5	1311		1061	1622	22	2210	3717	2956	638
3	626 633	357 177	802 575	${ }_{1227}^{1371}$	23 24 24	2281 2351	$400 \cdot 9$ $431 \cdot 1$	${ }_{3197}^{3076}$	633 629
2	392	711	370	1129	25	2419	$462 \cdot 4$	3317	625
1	184		179	1057					
-		-		1000	26	2487	494.7	3437	622
$\gamma=3.0$					29	2620 2686	$562 \cdot 7$ 598	${ }_{3801}^{3679}$	615 613
					30	2751	635.3	3924	610
ϕ	(x)	(Y)	(${ }^{\text {c }}$	(v)	3132333434	2816 2881	673.5 7129	4047	608 606
						2944	7537	4297	605
	1346	$68 \cdot 6$	1074	1687		$\begin{aligned} & 3008 \\ & 3072 \end{aligned}$	$839 \cdot 4$	4423	603
5					34 35			4551	602
	639	179	578	1239	36	31	884.5	46804811	
							${ }^{83} 10.15$		601
	185	1.6	180	1059	${ }^{37}$	3198 3261 3323	$979 \cdot 4$	49435076	600600
		-	\bigcirc	1000	39	3323	1029		
	166	1.4	170	953	40	3386	1081	5212	600
	318 458	5.4 115	333 490	914 880					
	589	19.5	${ }_{7} 61$	852827	$4{ }_{42}^{41}$	3449 3512	1135 1190	${ }_{5489}^{5350}$	600 600
		29.1	788		$\begin{aligned} & 43 \\ & 44 \\ & 45 \end{aligned}$	$\begin{aligned} & 3575 \\ & 3637 \\ & 3700 \end{aligned}$	$\begin{aligned} & 1248 \\ & 1307 \\ & 1369 \end{aligned}$	$\begin{aligned} & 5631 \\ & 5776 \\ & 5923 \end{aligned}$	600601602
6	828	$40^{\circ} 3$	${ }^{931}$	805					
7	8381044								
				775					
10	${ }_{1241}^{114}$	${ }_{98} 8$.	1342 1473	$\begin{aligned} & 752 \\ & 738 \end{aligned}$	$\gamma=3 \cdot 1$				
111212141515	133513251513	1153133153153	$\begin{array}{\|l\|l\|} \hline 1603 \\ 1731 \\ 1858 \\ \hline \end{array}$	725714703693684	ϕ	(x)	(v)	(T)	(v)
	$\begin{aligned} & 1513 \\ & 1598 \\ & 1680 \end{aligned}$	$\begin{array}{r} 153.5 \\ 179.9 \\ 194 \end{array}$	$\begin{aligned} & 1858 \\ & 19838 \\ & 2107 \end{aligned}$						
					5°	1386	$\begin{aligned} & 71 \cdot 4 \\ & 37 \cdot 2 \end{aligned}$	1088	1764
	1761		2230						
17	1840	$240 \cdot 5$	2353	668	433	1394644396	18.177.2	580372	1252
18	1917	$\begin{aligned} & 290 \cdot 1 \\ & 316 \cdot 3 \end{aligned}$		661					
19	(1992			654648	。	1850	${ }_{0}^{1.7}$	180	1061
20									

XVI. (continued).

$\gamma=3 \cdot 2$					$\gamma=3.2$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
5°	1431	74.7	1103	1857	36°	3052	855.5	4614	590
4	969	38.0	819	1454	37	3113	$900 \cdot 4$	4742	589
3	650	18.4	582	1265	38	3173	$946 \cdot 8$	4871	589
2	398	7.3	372	1146	39	3234	994.9	5002	588
1	185	17	180	1063	40	3294	1045	5135	588
-	\bigcirc	\bigcirc	\bigcirc	1000					
1	166	14	170	950	41	3354	1096	5270	588
2	316	$5 \cdot 4$	332	909	42	3415	1150	5407	588
3	455	11.4	488	874	43	3475	1205	5546	588
4	584	19.2	638	845	44	3536	1262	5688	589
5	704	28.7	784	819	45	3596	1322	5832	590
6	818	39.7	925	796	$\gamma=3.3$				
7	926	52.0	1063	777					
8	1029	65.5	1198	759					
9	1127	$8{ }^{8} 2$	1331	743					
10	1221	960	14611589	728715	ϕ	(x)	(x)	(T)	(v)
11	1312	112.8							
12	1400	$130 \cdot 7$	1715	703		1484985	78.538.9	1120	19731489
13	1485 1568	149.5 169.3	1840	693	$5{ }^{\circ}$				
14	1568 1648	169.3	1964	683				825	
15	1648	1900		673	3	656	18.6	585	1278
16	1726	21197	2207	665	2 1 1	400 186	7.3 1.7	373 180	1153
17	1802	234.3	2327	657		186		180	
18	1877	2578	2447	650					
19 20	1950 2021	3076	2685	644 638					
21	2092	$333 \cdot 9$	2803	632	$\gamma=3.4$				
22	2161	$361 \cdot 2$	2921	627					
23	2229	389.4	3039	622	ϕ	(x)	(y)	(T)	(v)
24	2296	418.5	3157	618					
25	2362	$448 \cdot 7$	3275	614					
26	2428	479.9	3394	611	5°	15471002	83.2	1139	2126
27	2492	512.2	3512	607	4		39.8	831	1522
28	2556	545.5	3631	604	3	662	18.8	588	1293
29	2620	5800	3751	602	2	402	7.4	374	1159
30	2683	615.5	3872	599	1	186	17	180	$\begin{aligned} & 1068 \\ & 1000 \end{aligned}$
31	27452807	$652 \cdot 3$$690 \cdot 3$	39934115	597	1	165	1.4	$\begin{aligned} & 170 \\ & 331 \end{aligned}$	$\begin{aligned} & 947 \\ & 904 \\ & 868 \\ & 88 \\ & 8 \mathbf{1 I} \end{aligned}$
32					2	314	$5 \cdot 3$		
33	2869	729.6	4238	593	3	451	11.3	486	
34	2930	$770 \cdot 2$	4362	592	4	578	19*0	635	
35	2991	812.I	44^{87}	591	5	697	$28 \cdot 3$	779	

XVI. (contimued).

$\gamma=34$					$\gamma=3.5$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
6°	808	$39^{\circ} \mathrm{I}$	919	788	4^{0}	1021	$40 \cdot 8$	838	1562
7	914	$51 \cdot 1$	1056	768	3	668	19:1	590	1308
8	1014	64.3	1190	750	2	404	74	375	1165
9	1110	78.6	1321	734	1	187	17	180	1070
10	1202	94°	1449	719	-	-	-	-	1000
11	1291	1104	1575	706	$\gamma=3.6$				
12	1376	1278	1700	694					
13	1459	146.1	1823	683					
1415	1539	165.4	1945	673					
	1617	185.5	2065	664	ϕ	(x)	(Y)	(T)	(v)
16	1693	$206 \cdot 6$	2185	655					
17	1767	228.5	2303	647					
18	1839	251.3	2421	640	4°	1041	4199	846	1605
19	1910	$275{ }^{\circ}$	2538	634	3	675	193	593	1323
20	1979	299.5	2655	628	2	406	7.5	376	1172
					1	187	$1 \cdot 7$	181	1072
21	2047	$325{ }^{\circ}$	2771	622	-	-	0	-	1000
22	2114	$351{ }^{\circ} 4$	2887	617	1	165	14	170	944
23	2180	$378 \cdot 7$	3004	612	2	313	$5 \cdot 3$	330	899
24	2245	$406 \cdot 9$	3120	608	3	448	11^{2}	484	862
25	2309	$436 \cdot 1$	3236	604	4	573	18.8	632	831
					5	689	$27^{\prime} 9$	775	804
27	2435	$497 \cdot 4$	3469	597	6	799	$38 \cdot 5$	914	780
28	2497	$529 \cdot 6$	3586	594	7	902	50. 3	914 1049	760
29	2558	562.9	3704	591	8	1001	$63 \cdot 2$	1181	741
30	2619	5973	3822	589	9	1094	77.2	1311	725
					10	1184	92*2	1438	710
31	2679	$632 \cdot 8$	3941	55^{5}					
32	2739	669.5	4061	585	11	1271	108.2	1562	697
33	2799	707.4	4182	583	12	1354	125.1	1685	685
34	2858	$746 \cdot 5$	4304	582	13	1434	1430	1807	674
35	2917	787.0	4427	580	14	1512	$161 \cdot 7$	1927	664
					15	1588	181.3	2045	654
36	2975	828.9	4551	579					
37	3034	872.1	4677	579	16	1662	201.7	2163	646
38	3092	916.9	4804	578	17	1734	$223{ }^{\circ} \mathrm{O}$	2280	638
39	3150	963.2	4933	578	18	1804	$245^{\circ} 2$	2396	631
40	3209	1011	5063	577	19	1872	$268 \cdot 1$	2512	624
41	3267			577	20	1940	2920	2627	618
42	3325	1112	5330	577	21	2006	316.7	2741	612
43	3383	1166	5467	578	22	2071	342.2	2856	607
44	3441	1221		578	23	2135	368.7	2970	603
45	3500	1278	5748	579	24	2198 2260	$396{ }^{\circ} \mathrm{O}$	3084	598
					25	2260	$4^{2} 4^{\circ} 3$	3108	594

XVI. (continued).

$\gamma=3.6$					$\gamma=3.8$				
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
26°	2321	453.5	3313	591	1°	164	$1 \cdot 4$	169	941
27	2381	483.7	3428	587	2	311	$5 \cdot 2$	329	895
28	2441	514.9	3543	584	3	445	$1{ }^{1} 1$	482	856
29	2501	547'1	3659	582	4	568	${ }^{18} 8.6$	629	824
30	2559	$580 \cdot 3$	3775	579	5	682	$27 \cdot 6$	771	797
31	2618	614.7	3892	577	6	790	37.9	909	773
32	2675	$650 \cdot 1$	4010	575	7	891	49.5	1042	752
33	2733	$686 \cdot 8$	4129	573	8	987	$62 \cdot 1$ 75	1173	733
34	2790	724.7	4249	572	9	1079	${ }^{75 \cdot 8}$	1301	717
35	2847	763.8	4370	571		1167	$90^{\circ} 5$	1426	702
36	2904	804.2	4492	569	11	1251	$106 \cdot 1$	1550	688
37	2960	846.0	4616	569	12	1332	$122 \cdot 6$	1671	676
38	3017	889.3	4741	568	13	1411	140°	1791	665
39	3073	$934{ }^{\circ}$	4867	568	14	1487	158.2	1910	655
40	3129	$980 \cdot 3$	4995	567	15	1560	1773	2027	645
					16	1632	197.2	2143	637
41	3185	1028	5126	567	17	1702	2179	2258	629
42	3241	1078	5258	567	18	1770	239.4	2372	622
43	3298	1129	5392	568	19	1837	261.7	2486	615
44	3354	1183	5529	568	20	1902	284.9	2600	609
45	3410	1238							
$\gamma=3 \cdot 7$					22	2030	$333 \cdot 7$	2825	598
					23	2092	359.4	2938	594
					24	2153	385.9	3050	589
					25	2213	413	3163	585
ϕ	(x)	(y)	(T)	(v)	26	2272	441×7	3276	582
					27	2331	$470 \cdot 9$	3389	578
433110					28	2389	501.2	3502	575
	$\begin{array}{r} 1063 \\ 682 \\ 408 \\ 187 \\ 0 \end{array}$	43.119.67.51.70	$\begin{gathered} 854 \\ 596 \\ 377 \\ \mathbf{1 8 1} \\ 0 \end{gathered}$	$\begin{aligned} & 1654 \\ & 1340 \\ & 1178 \\ & 1075 \\ & 1000 \end{aligned}$	29	2447	532.4	3616	573
					30	2503	564.6	3731	570
								3846	568
					32	2616	632.2	3962	566
					33	2672	$667 \cdot 7$	4079	564
					34	2727	704.4	4197	563
$\gamma=3 \cdot 8$					35	2782	742	436	561
					$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	2837	781.4	4436	560
ϕ	(x)	(x)	(T)	(v)		2946	863.7	468 I	559
						3001	907'0	4805	558
						3055	9518	4932	55^{8}
4 3 2	1086	44.419.8	862	1710	41	3109	998.2	5060	55^{8}
	689		599	1357	42	3164	1046	5190	558 558
2	410	7.6	378	1185	43	3218	1096	5322	558
	188	17	181	1077	44	3272	148	5456	558
-	0	-	-	1000	45	3327	201	5593	559

XVI. (continued).

XVI. (continued).

$y=44$					$\gamma=4 \cdot 6$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
1°	163	1.4	169	933	3°	758	22.6	626	1538
2	306	$5 \cdot 1$	327	882	2	428	$8 \cdot 0$	386	1246
3	435	10.8	477	840	1	191	1×7	183	1096
4	554	$18 \cdot 0$	621	806	\bigcirc	0	0	0	1000
5	663	26.5	759	777					
6	765	$36 \cdot 3$	893	752	$y=4 \cdot 8$				
7	860	$47^{\circ} 2$	1024	730					
8	951	59.2	1150	711					
9	1037	72.0	1274	694	ϕ		(y)	(T)	(v)
10	1119	85.7	1396	679		(x)			
11	1198	$100 \cdot 3$	1515	665652					
12	1273	115.7	1632		3°	780	23.5	634	1601
13	1346	131.9	1748	641	2	433	$8 \cdot 1$	388	$\begin{aligned} & 1263 \\ & 1103 \end{aligned}$
14	1417	$148 \cdot 8$	1862	631	1	192	$1 \cdot 7$		
15	1485	166.5	1975	622	0	,	$0 \quad 0$		$\begin{aligned} & 1103 \\ & 1000 \end{aligned}$
16	1552	185.0	2087	613	1	162	$1 \cdot 4$	168	928
17	1617	204.1	2197	605	2	303	$5 \cdot 1$	325	874
18	1680	224*O	2307	598	3	429	$10 \cdot 6$	474616	830
19	1741	$244 \cdot 7$	2417	591	45	545	17.6259		$\begin{aligned} & 795 \\ & 765 \end{aligned}$
20	1802	266.1	2526	585		650		752	
21	1861	288.2	2634	580	6	749	$35 \cdot 4$	884	739
22	1919	311.1	2742	574	8	841	45.9	1012	717697
23	1976	$334 \% 7$	2850	570		929	57.4	1136	
24	2032	359.1	2958	565	9	1011	69.7	1258	697 680
25	2088	$384 * 3$	3066	561	10	1090	82.9	1377	665
26	2142	$410 \cdot 4$	3175	558	II	1166	96.9	1493	651638
27	2196	$437 \cdot 3$. 3283	554	12	1238	111.7		
28	2250	465°	3392	551	13	1308	$127^{\circ} 2$	17211833	638 627
29	2302	$493 \cdot 6$	3501	548	14	1376	143.4 160%		617608
30	2355	523.2	3611	546	15	1441	$160 * 3$	1943	
31	2406	5537	3721	544	16	1504	177.9 196.2	$\begin{aligned} & 2052 \\ & 2161 \end{aligned}$	599591
32	2458	585.2	3832	542	17	1566 1626	196.2215.1		
33	2509	6177	3944	540	18	1626		2161	591 584
34	2559	651.3	4057	53 S	19	1685	234.8	$\begin{aligned} & 2375 \\ & 2481 \end{aligned}$	577
35	2610	$685 \% 9$	4171	537	20	1743	255.2	2481	
36	2660	7217	4286	536	21	1799	$276 \cdot 2$ 2980	2587	565560
37	2710	$758 \cdot 7$	4402	535	22	1854	2980320	2693	
38	2760	797.0	4519	534	23	1909			560 555
39	2810	$836 \cdot 6$	4638	534	24	1962	$343 \cdot 7$ $367 \cdot 7$	29033009	551547
40	2859	$877 \cdot 5$	4759	533	25	2015	3677		
41	2909	$919{ }^{\circ} 9$	4881	533	26	2067	392.5 418.0	3114	544
42	2958	$963 \cdot 7$ 1009	5006 5132	533 533	27 28	2118 2169	418.0 444.4	3220	540 537
43	3008 3058	1009 1056	5132 5260	533	$\begin{aligned} & 29 \\ & 30 \end{aligned}$	2219	$471 \cdot 6$499.6	34323539	53753453
44 45	3058 3107	1056 1105	5260 5391	533 534		2268			

XVI. (continued).

$\gamma=4.8$					$\gamma=5^{\circ} 2$				
ϕ	(x)	(v)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
31°	2317	528.6	3647	530	6°	${ }_{8} 73$	$34 \cdot 5$	875	727
32 33 3	2366 2414	558.4	3755 3864	528 526	7	824 908	447\%	11001	705 685
34	2463	621.1	3974	524	9	988	67%	1242	667
35	2510	654°	4085	523	10	1064	80.4	1359	652
36	2558	$687 \cdot 9$	4196	522	11	1136	93.8	1473	638
37	2605	723°	4310	521	12	1206	108.0	1586	626
38	2653	759 ${ }^{\text {\% }}$	4424	520	13	1273	122.8	1697	614
39	2700	${ }^{796 \cdot 8}$	4540	519	14	${ }_{1} 1388$	$138^{\circ} 4$	1806	604
40	2747	$835^{\circ} 5$	4657	519	15	1400	$154 \cdot 6$	1914	595
41	2794	875.7	4776	519	16	1461	1714	2021	586
42	${ }_{2888}^{2841}$	${ }_{9} 9172$	4897	519	17	1520	188.9	2127	578
43	2888	960\%2	5020	519	18	1578	2071	2232	571
44	2935	1005	5145	519	19	1634	225.9	2336	564
45	2982	1051	5272	519	20	1689	2454	2440	55^{8}
$\gamma=5^{\circ} \mathrm{O}$					$\begin{aligned} & 21 \\ & 22 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 1743 \\ & 1796 \\ & 1847 \\ & 1898 \\ & 1949 \end{aligned}$	$\begin{aligned} & 265 \cdot 5 \\ & 286 \cdot 3 \\ & 307.8 \\ & 329.9 \\ & 352 \cdot 8 \end{aligned}$	$\begin{aligned} & 2544 \\ & 2647 \\ & 2750 \\ & 2853 \\ & 2956 \end{aligned}$	$\begin{aligned} & 553 \\ & 548 \\ & 543 \\ & 538 \\ & 534 \end{aligned}$
¢									
					262728292930	19982047209521432190	$\begin{aligned} & 376 \cdot 4 \\ & 400.8 \\ & 425.9 \\ & 45 \cdot 9 \\ & 478 \cdot 6 \end{aligned}$	$\begin{aligned} & 3059 \\ & 3162 \\ & 3265 \\ & 3369 \\ & 3473 \end{aligned}$	531531528524522519
3°	804	$24 \cdot 6$	643	1676					
2	43^{8}	$8 \cdot 3$		1282					
1	193	${ }^{1} 7$	183	1107					
						$\begin{aligned} & \begin{array}{l} 2337 \\ 2284 \\ 22330 \\ 2375 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 506 \cdot 1 \\ & 534.6 \\ & 564.0 \\ & 594 \cdot 3 \\ & 625 \cdot 6 \end{aligned}$	$\begin{aligned} & 3578 \\ & 3684 \\ & 3790 \\ & 3897 \\ & 4006 \end{aligned}$	$\begin{aligned} & 517 \\ & 515 \\ & 513 \\ & 512 \\ & 510 \\ & 510 \end{aligned}$
$\gamma=5.2$					$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 25 \end{aligned}$				
ϕ	(x)	(y)	($\mathrm{T}^{\text {) }}$	(v)	36373838	24662511	657.9691.3	4115	509 509 508 507 507 506
						2556	$725^{\circ} 8$	4337	
$3 \cdot 5$	1239	49.1	839	2824	39	2601	761.4	4450	
3. 3 3	833	25^{-8}	${ }^{652}$	1768	40	2646	$798^{\circ} 3$	4564	
2.5	609	15.0	513	1466	41	2691			$\begin{aligned} & 506 \\ & 506 \\ & 506 \\ & 506 \\ & 506 \end{aligned}$
2\% 1\%	${ }_{193}^{444}$	8.4 1.8	393 184	11301					
${ }^{\circ} \mathrm{O}$	193	${ }^{1} 8$	184	1112	42	2735 2780 2	$876{ }^{\circ} \mathrm{C}$ 916.8	4798	
$\stackrel{1}{1}$	161	$1 \cdot 4$	168		4	2780 2825	${ }_{959.2}$	4940	
2	300	$5{ }^{\circ}$	323	866	45	2869	1003	5164	
3	424	${ }_{10}^{104}$	471 611	820					
4 5	536 639	172 25	$\stackrel{11}{ } 74$	784 753					

XVI. (continued).

XVI. (continued).

$\gamma=6.0$					$\gamma=6 \cdot 2$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)
1°	159	$1 \cdot 3$	167	913	$2{ }^{\circ} 5$	689	17%	542	1749
2	294	4.9	320	850	2.0	476	9.3	406	1420
3	413	$10 \cdot 0$	464	802	10	198	$1 \cdot 8$	186	1140
4	520	16.6	601	764	-	-	-	-	1000
5	618	24.2	732	732					
6	708	$32 \cdot 9$	858	705					
7	792	$42 \cdot 4$	980	682			$=6$		
8	870	$52 \cdot 8$	1098	662					
9	945	63.9 7.8	1213	645					
10	1016	75^{-8}	1326	629	ϕ	(x)	(Y)	(T)	(v)
11	1083	$88 \cdot 3$	1437	615					
12	1148	1014	1545	603					
13	1210	$115^{\circ} 2$	1652	591	2.5	712	18.5 0.5	550	1839
14	1270	129.6	1757	581	2.0	483	9.5 1.8	409	1449
15	1328	144.6	1861	572	$1 \times$	199		186	1146
16	1384	160.2	1963	563	1	158	13	166	908
17	1439	$176 \cdot 3$	2065	555	2	292	$4 \cdot 8$	319	843
18	1492	193.1	2166	548	3	408	$9 \cdot 9$	462	794
19	1544	2104	2267	542	4	513	$16 \cdot 3$	597	755
20	1594	228.4	2366	536	5	608	237	726	722
21	1644	246.9	2466	530	6	695	$32^{1} 1$	850	695
22	1692	$266{ }^{\circ}$	2565	525	7	777	41.4	970	672
23	1740	285.8	2663	520	8	853	51.5	1087	652
24	1787	306.1	2762	516	9	925	$62 \cdot 3$	1200	634
25	1833	327.2	2860	512	10	994	$73 \cdot 7$	1311	619
26	1879	$348 \cdot 8$	2959	509	11	1059	$85 \cdot 8$	1420	605
27	1923	$371{ }^{\circ} 2$	3058	505	12	1122	98.5	1526	592
28	1968	$394{ }^{\circ} 2$	3157	502	13	1182	111.8	1631	581
29	2011	$418{ }^{\circ}$	3257	499	14	1240	1257	1734	571
30	2055	442.5	3357	497	15	1296	$140 \cdot 2$	1836	562
31	2098	$467 \cdot 8$	3457	495	16	1350	155.2	1937	553
32	2140	$493 \cdot 8$	3558	493	17	1402	$170 \cdot 8$	2037	545
33	2182	$520 \cdot 7$	3660	491	18	1454	186.9	2136	538
34	2224	548.5	3762	489	19	1504	$203 \cdot 7$	2235	532
35	2266	5771	3866	488	20	1552	$220 \cdot 9$	2333	526
36	2307	606.7	3970	487	21	1600	238.8	2430	520
37	2349	$637{ }^{\circ} 2$	4076	486	22	1647	257.2	2527	515
38	2390	668.7	4183	485	23	1693	$276 \cdot 2$	2624	511
39	2431	701.3	4291	48.4	24	1738	295.8	2721	506
40	2472	$735{ }^{\circ}$	4400	48_{4}	25	1782	316.0	2818	502
41	2512	769.9	4511	484	26	1826	336.9	2914	499
42	2553	806.0	4624	483	27	1869	$355^{\circ} 4$	3011	495
43	2594	843.3	4738	483	28	1912	$380 \cdot 5$	3108	492
44	2635	8820	4854	483	29	1954	403.4	3206	490
45	2676	922.1	4973	484	30	1995	426.9	3304	$4{ }^{\text {S }} 7$

XVI. (continued).

$\gamma=6.4$					$\gamma=6.8$					
ϕ	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(${ }^{\text {r }}$)	(v)	
31°	2036	451.2	3402	485	6°	684	315	843	686	
32	2077	476.2	3501	483	7	763	$40 \cdot 5$	961	663	
33	2118	$502 \cdot 1$	3601	481	8	837	50.2	1076	642	
34	2158	$528 \cdot 7$	3702	480	9	907	$60 \cdot 7$	1188	625	
35	2198	556.2	3803	478	10	973	71.8	1297	609	
36	2238	584.6	3905	477	11	1037	83.5	1404	595	
37	2278	613.9	4009	476	12	1097	$95 \cdot 8$	1508	583	
38	2317	644.2	4114	475	13	1155	108.7	1612	572	
39	2356	675.5	4219	475	14	1211	122.1	1713	561	
40	2396	707.9	4327	474	15	1265	136.1	1814	552	
41	2435	741×3	4435	474	16	1318	$150 \cdot 6$	1913	544	
42	2474	$776 \cdot$	4546	473	17	1368	165.7	2011	536	
43	2513	811.8	4653	473	18	1418	181.3	2108	529	
44	2552	848.9	4772	474	19	1466	1974	2205	522	
45	2591	$887 \cdot 4$	4888	474	20	1513	214.1	2301	516	
$y=6 \cdot 6$					212223	1559	231.3249	2397	511506	
					1604	2492				
ϕ	(x)	(y)		(v)		2425	$\begin{aligned} & 1692 \\ & 1735 \end{aligned}$	$286 \cdot 3$305	26822777	$\begin{aligned} & 497 \\ & 493 \end{aligned}$
			(T)							
$\begin{aligned} & 2.5 \\ & 2.0 \\ & 1.0 \\ & 0 \end{aligned}$	$\begin{gathered} 737 \\ 491 \\ 200 \\ 0 \end{gathered}$	$\begin{gathered} 19.4 \\ 9 \cdot 7 \\ 1.8 \\ 0 \end{gathered}$	$\begin{gathered} 55 \cdot 8 \\ 41 \cdot 2 \\ 18 \cdot 7 \\ 0 \end{gathered}$	$\begin{aligned} & 1951 \\ & 148 \mathrm{I} \\ & 1152 \\ & 1000 \end{aligned}$	2627282930	177718191860	325.9346.6	2872	490486	
								2968		
							367.9	3063	483	
						1900	389.9	3159	481	
						1940	$412 \cdot 6$	3255	478	
					3132	1980	$436 \cdot 0$	3351	476	
$\gamma=6 \cdot 8$						2019	$460 \cdot 1$	3449 3546	474	
					33	2058	4850	3546	472	
ϕ	(x)	(y)	(T)	(v)	35	2136	537.1	3745	469	
					36	2174	$564 \cdot 5$	3845	468	
$2 \cdot 5$	768	$20 \cdot 6$	567	2097	3738	22122250	$5692 \cdot 7$621.8	39474049	467466	
2.0	500	9.91.8	415187	1516	39	2288	$\begin{aligned} & 652^{\circ} \circ \\ & 683^{\circ} \end{aligned}$	$\begin{aligned} & 4153 \\ & 4258 \end{aligned}$	465	
1.0	2010			1158	40	2326			465	
-		-	$\begin{gathered} \circ \\ 166 \end{gathered}$	1000			$683^{\circ 1}$			
1	157289	1.34.7		904836786	4 I	2363	715.3748.6	4365		
2			166 317		42	2401		4473	464 464	
3	403	9.7 16.0	592720	786	$\begin{aligned} & 44 \\ & 4 j \end{aligned}$	$\begin{aligned} & 2439 \\ & 2476 \\ & 2514 \end{aligned}$	$\begin{aligned} & 783.1 \\ & 818.8 \\ & 855^{-8} \end{aligned}$	$\begin{aligned} & 4583 \\ & 4695 \\ & 4809 \end{aligned}$	464464465	
5	505598	16.023.2		$\begin{aligned} & 746 \\ & 713 \end{aligned}$						
5										

XVI. (continued).

$\gamma=7{ }^{\circ} \mathrm{O}$					$\gamma=7^{\circ} 2$									
¢	(x)	(y)	(T)	(v)	ϕ	(x)	(y)	(T)	(v)					
2.5	806	22\%	578	2299	31°	1928	422.1	3304	468					
2.0	509	$10 \cdot 2$	418	1555	32	1966	445.4	3399	466					
1.0	202	$1 \cdot 9$	188	1165	33	2003	469.4	3495	464					
-	-	-	-	1000	34	2041	494.1	3592	462					
					35	2078	519.7	3690	461					
$\gamma=7{ }^{\circ} 2$					$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	2115	$\begin{aligned} & 546 \cdot 0 \\ & 5733^{2} \\ & 601 \cdot 4 \\ & 6304 \\ & 660 \cdot 4 \end{aligned}$	37883888	460					
					215	459								
ϕ	(x)	(y)	(T)	(v)		225		4091	457					
	856					4142	22982334		4299	456456				
2.52.0		23×9	592	2611	4405									
	519	10.4	422	1598	43	23702406	$723 \cdot 6$ 756.8	4513	456					
10	203	1.9	188	1171	44		791.3826.9	$\begin{aligned} & 4623 \\ & 4735 \end{aligned}$	456456					
-	\bigcirc	-	-		45	2443								
	$\begin{aligned} & 156 \\ & 286 \end{aligned}$	$\begin{aligned} & 1 \cdot 3 \\ & 4.7 \end{aligned}$	165	899										
2			316	830										
3	399	9.6	456	778	$\gamma=7.4$									
4	$\begin{array}{r} 499 \\ 589 \end{array}$	$\begin{array}{r} 15 \cdot 7 \\ 22.8 \end{array}$	588	$\begin{aligned} & 737 \\ & 704 \end{aligned}$										
5			714		ϕ	(x)	(y)	(T)	(v)					
6	672	30.8	835	677										
7	750 822 8	$39 \cdot 6$ $49 \cdot 1$	$\begin{array}{r}935 \\ \\ 1065 \\ \hline\end{array}$	653	$\begin{aligned} & 0 \\ & 2.5 \\ & 2.0 \\ & 1.0 \\ & 0 \end{aligned}$	$\begin{gathered} 931 \\ 533 \\ 204 \\ 0 \end{gathered}$	$\begin{gathered} 26 \cdot 9 \\ 10 \cdot 7 \\ 1.9 \\ 0 \end{gathered}$	$\begin{gathered} 610 \\ 426 \\ 188 \\ 0 \end{gathered}$	$\begin{aligned} & 3217 \\ & 1647 \\ & 1178 \\ & 1000 \end{aligned}$					
8	822 890	49.1 59	1065 1176	633 616										
10	954	700	1283	600										
11	1016			586										
12	1074	93.3105	138											
13	1131		15931693	574 563	$\gamma=7 \cdot 6$									
14	$\begin{aligned} & 1185 \\ & 1237 \end{aligned}$	$\begin{aligned} & 118.8 \\ & 132.3 \end{aligned}$		563 552										
15			1792	543										
16	1288	146.4	1889	535	ϕ	(x)	(y)	(T)	(v)					
17	1337	161.0	1986	527										
18	13851431	1766°191.6	2082	520	\bigcirc				1701					
19			2172	514	2.0	542	11.1	430						
20	1477	2077	2272	508	10	205 0	$1 \cdot 9$	189	11851000					
21	1521	224.4			\bigcirc									
22	15651608		2366	502 497	1 2	$\begin{aligned} & 156 \\ & 284 \end{aligned}$	1.3 4.6	165	895 823					
23		241.6 259	2459	497	3	$\begin{aligned} & 394 \\ & 492 \end{aligned}$	$\begin{array}{r} 9.4 \\ 154 \end{array}$	314	523					
24	1650	$\begin{aligned} & 277.5 \\ & 296.4 \end{aligned}$	2646	493 489				453 584	770 729					
25	1691		2740	485		581	22.4	709	696					
26	1732	$315 \cdot 8$	2833	48 I	6	662	$\begin{aligned} & 30 \cdot 2 \\ & 38 \cdot 7 \end{aligned}$	828	668					
27	17321811	$335 \cdot 8$356.4	2926	478	7	737807807		9441056	645625					
28			3020	$\begin{aligned} & 475 \\ & 472 \\ & 470 \end{aligned}$			48.0							
29	$\begin{aligned} & 1851 \\ & 1889 \end{aligned}$	$\begin{array}{r} 377 \cdot{ }^{+7} \\ 399.5 \end{array}$	3114		10	$\begin{aligned} & 873 \\ & 936 \end{aligned}$	$\begin{aligned} & 57 \cdot 9 \\ & 68 \cdot 3 \end{aligned}$	$\begin{aligned} & 1164 \\ & 1270 \end{aligned}$	607591					
30			3209											

XVI. (continued).

$\gamma=7 \cdot 6$					$\gamma=8.0$				
ϕ	(x)	(Y)	(T)	(v)	ϕ	(x)	(Y)	(T)	(v)
11°	996	79.4	1374	578	$2{ }^{\circ} \mathrm{O}$	569	- 11.8	439	1837
12	1053	91°	1476	565	$\mathrm{I}^{\circ} \mathrm{O}$	207	1.9	190	1199
13	1107	103.1	1576	554	-	-	-	-	1000
14	1160	128.8	1771	544	1	155	$1 \cdot 3$	164	889
15	1211			535	2	281	$4 \cdot 6$	313	817
					3	390	$9 \cdot 3$	451	763
16	1260	142.4	1867	526	4	486	$15 \cdot 2$	580	722
17	1307	156.6	1963	519	5	572	22.0	704	688
18	1354	171.2 186.3	2057	512 506	6	652	29.6	822	660
20	1349	2019	2244	500	788	725794858	37.946.9	9361046	637617
21	1486		2336	494	9		$56 \cdot 6$	1153	599
22	1528	$234 \cdot 6$	2428	489	10	919	$66 \cdot 8$	1258	583
23	1570	251.7	2520	485	11	977		1360	570
24	1610	269.4	2612	481	12	1032	88.8	1460	557
25	1650	2876	2704	477	13	1085	$100 \cdot 5$	1559	546
26	1690	$306 \cdot 4$	2796	473	14	1136 1186	112.8	1696	536
27	1728	325.7	2888	470	15		125.5	1752	527
28	1767	345.7	2980	467	16	1233	138.7	1846	519
29	1805	366.2	3072	464	17	1280	152.4	1940	511
30	1842	387.4	3165	462	18	1325	166.6	2033	504
31	1879	409'2	3259		19 20	1368	$18 \mathrm{I} \cdot 3$	2125	498
32	1916	431.7	3353	458			196.4	2217	492
33	1952	$454 * 9$	3447	456	21	1453	212.0	2308	487
34	1988	478.9	3542	454	22	1494	$228 \cdot 1$	2399	482
35	2024	503.5529.0	3638	453	23	1534	244.8	2489	477
					24	1573	261.9	2580	473
36	2060	529.0	3735	452	25	1612	279.5	2670	469
37	2096	$555{ }^{\circ} 3$	3833	451	26	1650	2977	2761	466
38	2131	582.5	3932	450	27	1688	316.5	2851	463
39	2166	$610 \cdot 5$ 639	4134	449	28	1725	$335 \cdot 8$	2942	460
40	2201	639.5		449	29	1762	$355{ }^{\circ} 7$	3033	457
	2236	669.5		448	30	1798	$376 \cdot 2$	3124	455
42	2272	$700 \cdot 6$	4342	448	31	1834	$397 \cdot 3$	3216	452
43	2307	$732 \cdot 7$	4448	448	32	1869	419 I	3308	450
44	2342	765.9	4555	448	33	1905	$441^{\circ} 6$	3402	449
45	2377	$800 \cdot 4$	4665	448	34	1940	464.7	3495	447
					35	1974	488.6	3590	446
$\gamma=7 \cdot 8$					36	2009	513.3	3685	445
					$\begin{aligned} & 37 \\ & 37 \\ & 38 \end{aligned}$	2043	538.8	3782	444
ϕ	(x)	(x)	(T)	(v)		2112	592.2	3879 3978	443
					40	2146	$620 \cdot 3$	4078	441
					41	2180	649.3	4179	441
					42	2214	679×3	4282	441
$2{ }^{\circ}$	555	11.4	435	1764	43	2247	$710 \cdot 4$	4386	441
1.0	206	r'9	189	1192	44	2281	$742^{\prime} 5$	4492	441
-	-	\bigcirc	-	1000	45	2315	$775{ }^{\circ} 9$	4600	441

XVII.

Values of $\left.\{1000 \div 2\}^{\prime}\right\}^{3}$.

i	\bigcirc	1	2	3	4	5	6	7	8	9	\pm
f. s.											
40	15.63	15.51	15.39	$15: 28$	15.17	15.05	14.94	14.83	14.72	14.62	11
41	14.51	14.40	14.30	14:20	14.09	13.99	13.89	13.79	13.69	13.59	10
42	13.50	13.40	I3.31	13.218	$13 \cdot 12$	13.03	12.94	12.85	12.76	12.67	9
43	12.578	2491	2404	2.318	$2 \cdot 233$	2.149	2.065	1.983	$1 \cdot 901$	1-S20	8.4
44	$1 \cdot 739$	1.660	r.581	$1 \cdot 503$	1.425	1-348	1.272	I•197	1.122	1.048	77
45	0.974	0:901	0.829	-0.757	$0 \cdot 686$	0.616	0.547	0.478	0.409	$0 \cdot 341$	70
46	10.274	$0 \cdot 207$	0.141	0.075	0.010	*9*946	*9.882	*9.819	*9*756	*9.694	64
47	09.632	9.571	$9 \cdot 510$	9.450	$9 \cdot 390$	$9 \cdot 331$	$9 \cdot 272$	9.214	9'156	9.099	59
48	9.042	8.986	$8 \cdot 930$	8.875	8.820	$8 \cdot 766$	$8 \cdot 711$	$8 \cdot 658$	$8 \cdot 605$	8.552	54
49	8.500	$8 \cdot 448$	$8 \cdot 397$	$8 \cdot 346$	8.295	$8 \cdot 245$	$8 \cdot 195$	8.146	8.097	$8 \cdot 048$	50
50	$8 \cdot 000$	7.952	7.905	$7 \cdot 858$	7.811	$7 \cdot 765$	7719	$7 \cdot 673$	7.628	$7 \cdot 583$	46
51	7×539	7×494	7.451	7407	$7 \cdot 364$	$7 \cdot 321$	$7 \cdot 279$	$7 \cdot 237$	7•195	7153	43
52	71112	7.071	$7 \cdot 031$	6.990	6.950	$6 \cdot 911$	6.871	6.832	6.794	6.755	40
53	$6 \cdot 717$	$6 \cdot 679$	$6 \cdot 642$	$6 \cdot 604$	$6 \cdot 567$	$6 \cdot 530$	6.494	6.458	6.422	$6 \cdot 386$	37
54	$6 \cdot 351$	$6 \cdot 316$	$6 \cdot 281$	6.246	6.212	6.178	$6 \cdot 144$	6.110	$6 \cdot 077$	$6 \cdot 043$	34
55	6.011	$5 \cdot 978$	$5 \cdot 945$	5913	$5 \cdot 881$	$5 \cdot 850$	$5 \cdot 818$	$5 \cdot 787$	5756	$5 \cdot 725$	32
56	$5 \cdot 694$	$5 \cdot 664$	$5 \cdot 634$	5.604	$5 \cdot 574$	5•544	5.515	$5 \cdot 486$	5.457	5.428	30
57	$5 \cdot 400$	$5 \cdot 372$	5:343	$5 \cdot 315$	$5 \cdot 288$	$5 \cdot 260$	$5 \cdot 233$	$5 \cdot 206$	$5 \cdot 179$	$5 \cdot 152$	2 S
58	$5 \cdot 125$	$5 \cdot 099$	5.073	$5 \cdot 047$	5.021	4.995	4.969	4.944	4.919	4. S94	26
59	$4 \cdot 869$	$4 \cdot 844$	4.820	4796	4.771	4.747	$4^{*} 724$	4.700	4.676	$4 \cdot 653$	24
60	4.630	$4 \cdot 607$	4.584	4.561	4538	$4 \cdot 516$	$4 \cdot 494$	4.471	4449	4.427	23
61	4×406	4.384	4.363	4.341	4.320	4*299	4.278	4.257	4.237	4.216	21
62	4•196	4.176	4.156	4.136	4.116	4*096	4.076	$4 \cdot 057$	4.038	4.018	
63	3.999	3.980	3.961	3.943	3.924	3.906	3.887	3.869	3.851	3.833	19
64	$3 \cdot 815$	3•797	$3 \cdot 779$	$3 \cdot 762$	3.744	3•727	$3 \cdot 709$	$3 \cdot 692$	3.675	$3 \cdot 658$	17
65	$3 \cdot 641$	3625	3.608	3.591	$3 \cdot 575$	3.559	$3 \cdot 542$	$3 \cdot 526$	3.510	3.494	16
66	3.478	3.463	3.447	3.43 I	3.416	3.400	$3 \cdot 3 \mathrm{~S} 5$	3.370	3.355	3.340	15
67	$3 \cdot 325$	3.310	$3 \cdot 295$	$3 \cdot 281$	$3 \cdot 266$	$3 \cdot 252$	3.237	3.223	3.209	3.194	15
68	$3 \cdot 180$	3.166	$3 \cdot 152$	3.139	$3 \cdot 125$	3. 111	3.098	3.084	3071	3.057	14
69	3.044	3.031	3.018	3.005	2.993	2.979	2.966	2.953	2.9 .41	2.928	13
70	2.915	$2 \cdot 903$	$2 \cdot 891$	2.878	2.866	2.854	$2 \cdot 842$	2.830	2.818	2.806	12
71	$2 \cdot 794$	$2 \cdot 782$	$2 \cdot 770$	$2 \cdot 759$	$2 \cdot 747$	2.736	$2 \cdot 724$	$2 \cdot 713$	2'702	2.690	12
72	2.679	$2 \cdot 668$	2.657	2.646	2.635	2.624	2.613	2.603	2.592	2.581	II
73	2.57	2.560	2.550	2.539	$2 \cdot 529$	2.518	$2 \cdot 508$	2.458	2.458	2.478	0
74	$2 \cdot 468$	24.458	2.448	2.438	2.428	2.418	2.409	2.399	2.389	$2 \cdot 379$	0
75	$2 \cdot 370$	2.361	$2 \cdot 352$	$2 \cdot 342$	$2 \cdot 333$	$2 \cdot 324$	$2 \cdot 314$	$2 \cdot 305$	$2 \cdot 296$	2.287	9

XVII. (continued).

$$
\{1000 \div v\}^{3} .
$$

v	\bigcirc	I	2	3	4	5	6	7	8	9	Δ
$\begin{array}{r} \hline f . s . \\ 76 \end{array}$	2. 2780	2691	2601	2513	2424	2337	2249	2162	2076	1990	88
77	1904	1819	1734	1650	1566	1483	1400	1318	1235	1154	83
78	1073	0992	09II	0831	0752	0672	0594	0515	0437	0360	79
79	0282	0206	0129	0053	*9977	*9902	*9827	*9753	*9679	*9605	75
So	I'953I	9458	9386	9313	924 I	9170	9098	9027	8957	8887	72
81	I. 8817	8747	8678	8609	8541	8473	8405	8337	8270	8203	68
82	8137	8071	8005	7939	7874	7809	7744	7680	7616	7552	65
83	7489	7426	7363	7301	7239	7177	7115	7054	6993	6932	62
84	6872	6812	6752	6692	6633	6574	6515	6457	6399	6341	59
85	6283	6226	6169	6II2	6056	5999	5943	5888	5832	5777	56
86	1. 5722	5667	5613	5559	5505	5451	5397	5344	5291	5239	54
87	5186	5134	5082	5030	4978	4927	4876	4825	4775	4724	51
88	4674	4624	4575	4525	4476	4427	4378	4329	428I	4233	49
89	4185	4137	4090	4043	3996	3949	3902	3856	3809	3763	47
90	3717	3672	3626	3581	3536	3491	3447	3402	3358	3314	45
91	1. 3270	3227	3183	3140	3097	3054	3011	2969	2926	2884	43
92	2842	2800	2759	2717	2676	2635	2594	2553	2513	2473	41
93	2432	2392	2352	2313	2273	2234	2195	2156	2117	2078	39
94	2040	2001	1963	1925	1857	1850	1812	1775	1738	1700	38
95	1664	1627	I 590	I 554	1517	1481	1445	1410	1374	1338	36
96	I'1303	1268	1233	1198	1163	1128	1094	1059	1025	0991	35
97	0957	0923	0889	0856	0822	0789	0756	0723	0690	0657	33
98	0625	0592	0560	0528	0496	0464	0432	0400	0369	0337	32
99	0306	0275	0244	0213	O182	OI 52	0121	0091	0060	0030	31
100	0000	*9970	*9940	*991 1	*9881	*9852	*9822	*9793	*9764	*9735	30
101	-0.9706	9677	9649	9620	9592	9563	9535	9507	9479	9451	28
102	9423	9396	9368	9341	9313	9286	9259	9232	9205	9178	27
103	9151	9125	9098	9072	9046	9019	8993	8967	8941	8916	26
104	8890	8864	8839	8814	8788	8763	8738	8713	8688	8663	25
105	8638	8614	8589	8565	8540	8516	8492	8468	8444	8420	24
106	-0.8396	8373	8349	8325	8302	8279	8255	8232	8209	8186	23
107	8163	8140	8117	8095	8072	8050	8027	8005	7983	7960	23
108	7938	7916	7894	7873	7851	7829	7808	7786	7765	7743	22
109	7722	7701	7680	7658	7637	7617	7596	7575	7554	7534	21
110	7513	7493	7472	7452	7432	7412	7392	7372	7352	7332	20
111	$0 \cdot 7312$	7292	7273	7253	7233	7214	7195	7175	7156	7137	19
112	7118	7099	7080	7061	7042	7023	7005	6986	6967	6949	19
113	6931	6912	6894	6876	6857	6839	6821	6803	6785	6768	18
114	6750	6732	6714	6697	6679	6662	6644	6627	6610	6592	17
115	6575	6558	6541	6524	6507	6490	6473	6457	6440	6423	17

XVII. (continued).
$\{1000 \div v\}^{3}$.

v	-	1	2	3	4	5	6	7	8	9	Δ
f.s.	0. 64	630	6374	6357	6341	6324	6308	6292	6276	6260	16
117	6244	6228	6212	6196	6180	6164	6149	6133	6117	6102	16
118	6056	6071	6056	6040	6025	6010	5994	5979	5964	5949	15
119	5934	5919	5904	5890	5875	5860	5845	5831	5816	5802	15
120	5787	5773	5758	5744	5730	5715	5701	5687	5673	5659	14
121	- 0.5645	5631	5617	5603	5589	5575	5562	5548	5534	5521	14
122	5507	5494	5480	5467	5453	5440	5427	5413	5400	5387	13
123	5374	5361	5348	5335	5322	5309	5296	5283	5270	5258	13
124	5245	5232	5220	5207	5194	5182	5170	5157	5145	5132	13
125	5120	5108	5096	5083	5071	5059	5047	5035	5023	5011	12
126	- 4999	4987	4975	4964	4952	4940	4928	4917	4905	4893	12
127	4882	4870	4859	4848	4836	4825	4813	4802	4791	4780	11
128	4768	4757	4746	4735	4724	4713	4702	4691	46So	4669	11
129	4658	4648	4637	4626	4615	4605	4594	$45^{8} 3$	4573	4562	11
130	4552	4541	4531	4520	4510	4500	4489	4479	4469	4458	10
131	- 4448	4438	4428	4418	4408	4398	4388	4378	4368	4358	10
132	4348	4338	4328	4318	4309	4299	4289	4279	4270	4260	10
133	4251	4241	4231	4222	4212	4203	4194	4184	4175	4165	9
134	4156	4147	4138	4128	4119	4110	4101	4092	4083	4074	
135	4064	4055	4046	4037	4029	4020	4011	4002	3993	3984	9
136	- 3975	3967	3958	394	39	3932	39	3915	3906	3898	9
137	3889	3881	3872	3864	3855	3847	3838	3830	3822	$3^{81} 13$	8
138	3805	3797	3789	3780	3772	3764	3756	3748	3740	3732	S
139	3724	3716	3708	3700	3692	3684	3676	3668	3660	3652	8
140	3644	3637	3629	3621	3613	3606	3598	3590	3583	3575	8
141	- 3567	3560	3552	3545	3537	3530	3522	3515	3507	3500	8
142	3493	3485	3478	3470	3463	3456	3449	3441	3434	3427	7
143	3420	3413	3405	3398	3391	3384	3377	3370	3363	3356	7
144	3349	3342	3335	3328	3321	3314	3308	3301	3294	3287	7
145	3280	3273	3267	3260	3253	3247	3240	3233	3227	3220	7
146	0.32132	2066	2001	1935	1870	1804	1739	1674	1610	1545	65
147	1481	1417	1353	1289	1225	1162	1099	1036	0973	0910	63
148	0847	0785	0722	0660	- 0598	0537	0475	0414	-352	0291	62
149	0230	0169	0109	0048	*9988	*9928	*9868	*9808	${ }^{974} 8$	*9689	60
150	0.29630	9570	9511	9452	9394	9335	9277	9219	9161	9103	59
151	$0 \cdot 29045$	8987	8930	8872	8815	8758	8701	8645	8588	S532	57
152	8475	8419	8363	8307	8252	8196	8141	Sos6	So30	7975	56
153	7921	7866	7811	7757	7703	7649	7595	7541	7487	7434	54
154	7380	7327	7274	7221	7168	7115	7063	7010	6958	6906	53
155	6854	6802	6750	6698	6647	6596	6544	6493	6442	6391	51

XVIII.

$$
\begin{aligned}
W_{\phi}=\tan \phi\left(\sec ^{5} \phi+\frac{5}{4} \sec ^{3} \phi+\right. & \left.\frac{15}{8} \sec \phi\right) \\
& +\frac{15}{8} \log _{\theta} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right) .
\end{aligned}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ϕ \& W_{ϕ} \& $\log W_{\phi}$ \& Log ΔW_{ϕ} \& ϕ \& W_{ϕ} \& Log W_{ϕ} \& $\log \Delta W_{\phi}$

\hline 1° \& 0. 10476 \& 9'02020 \& 9.02020 \& 41° \& 97112 \& 0.98727 \&

\hline 2 \& $0 \cdot 20974$ \& 9.32168 \& 90202II \& 42 \& 10.504 \& 1.02135 \& $$
9.89910
$$
$$
9.94691
$$

\hline 3 \& 031517 \& 949855 \& ${ }^{9} 9.02296$ \& 43 \& $1 \mathrm{I} \cdot 389$ \& 1.05648 \& 9.99641

\hline 4 \& 0.42127 \& $9 \cdot 62456$ \& ${ }^{9} 0202947$ \& 44 \& 12.381 \& $1 \cdot 09274$ \& $$
0.04767
$$

\hline 5
6 \& 0.52829
0.63646 \& 9.72287
9.80377 \& $9^{\circ} \mathrm{O} 34 \mathrm{II}$ \& 45
46 \& 13.497
14.758 \& 1.13023
1-16902 \& -10075

\hline 6 \& 0.63646 \& 9.80377
9.87276 \& 9.03969 \& 46 \& 14.758
16.189 \& 1-16902
1.20922 \& - 115573

\hline 7 \& 0.74603
0.85725 \& 9.87276
9.93311 \& 9.04618 \& 47 \& 16.189
17.821 \& 1. 20922

1. 25093 \& - 21265

\hline 9 \& 0.85725
0.97040 \& 9.93311
9.98695 \& 9.05366 \& 48 \& 19.690 \& 1.25093 \& 0.27160

\hline 10 \& 1.0858 \& $0 \cdot 03573$ \& \& 50 \& $2 \mathrm{I} \cdot 84 \mathrm{I}$ \& 1.33927 \& 0.39595

\hline II \& I.2036 \& -08049 \& 9.08174 \& 51 \& $24^{\circ} 330$ \& 1-38612 \& $$
046151
$$

\hline 12 \& 1.3243 \& - 0.12200 \& 9.09300 \& 52 \& 27.224 \& 1.43495 \& 0.52946

\hline 13 \& 1.4482 \& $0 \cdot 16083$ \& 9.10527 \& 53 \& $30 \cdot 608$
34.588 \& 1.48583
I. 53893 \& - 559992

\hline 14 \& I 5757 \& $0 \cdot 19746$ \& 9^{-11850} \& 54 \& 34.588 \& 1.53893 \& 0.67300

\hline 15 \& 1.7070 \& 0.23224 \& 9.11850 \& 55 \& $39^{\circ} 298$ \& 1.59437
1.65230 \& 0.74882

\hline 16 \& I•8428 \& 0.26547 \& 9.14795 \& 56 \& 44.906
51.629 \& 1.65230
1.71289 \& 0.82755

\hline 17 \& 1.9834 \& 0.29740 \& 9.16415 \& 57 \& $51 \cdot 629$ \& 1.71289
r \& 0.90931

\hline 18 \& $2 \cdot 1293$ \& $0 \cdot 32823$ \& 9.18142 \& 58 \& 59.744 \& 1.77630
1.84270 \& 0.99430

\hline 19 \& $2 \cdot 28$ II \& 0.35815 \& $9^{9} 19967$ \& 59 \& 69.614 \& I. 84270 \& I.08268

\hline 20 \& 2.4395 \& $0 \cdot 38730$ \& 9'19967 \& 60 \& 81.711
96.661 \& 1.91228
I. 08525 \& I•17464

\hline 21 \& $2 \cdot 6051$ \& 0.41582 \& 9.23938 \& 61 \& 96.661 \& I. 98525
2.06184 \& 1-27049

\hline 22 \& 2.7786 \& $0 \cdot 44383$ \& $$
\begin{aligned}
& 9^{\circ} 23938 \\
& 9^{\circ} 26081
\end{aligned}
$$ \& 62

63 \& 115.30
138.76 \& 2.06184
2.14228 \& 1-37035

\hline 23 \& $2 \cdot 9609$ \& 0.47143 \& 9.28332 \& 63 \& 1138.76
168.59 \& 2.14228
2.22684 \& 1.47462

\hline 24 \& 3.1529 \& 0.49871 \& $9 \cdot 30698$ \& 64
65 \& 168.59
206.92 \& 2.22684
2.31580 \& - 58353

\hline 25 \& 3.3557 \& 0.52578 \& $$
933171
$$ \& 65

66 \& $206 \cdot 92$
256.75 \& 2.31580
2.40951 \& 1.69747

\hline 26 \& 3.5703 \& 0.55271 \& $$
9 \cdot 3576 \mathbf{I}
$$ \& 66 \& 256.75

322.33 \& 2.40951
2.50831 \& 1.81681

\hline 27 \& $3 \cdot 7982$ \& 0.57957 \& 9.38466 \& 67
68 \& $322 \cdot 33$
$409 \cdot 83$ \& 2.50831
2.61260 \& -94199

\hline 28 \& 4.0406 \& 0.60645 \& $$
9 \div 41286
$$ \& 68 \& $409 \cdot 83$

528.28 \& 2.61260
2.72286 \& $2 \cdot 07352$

\hline 29 \& 4.2994 \& 0.63341 \& 9.44229

9 \& 69
70 \& 528.28
691.22 \& 2.72286
2.83962 \& 2.21204

\hline 30 \& 4.5763 \& 0.66051 \& $$
9 \div 47293
$$ \& 70 \& 691.22

919.27 \& 2.83962
2.96344 \& $2 \cdot 35804$

\hline 31 \& 4.8734 \& 0.68783 \& $$
9.5048 \mathrm{I}
$$ \& 71

72 \& 919.27
$1244^{\circ} 7$ \& 2.96344
3.09508 \& 2.51250

\hline 32 \& $5 \cdot 1931$ \& 0.71543 \& 9.53800 \& 72 \& $1244^{\circ} 7$
$1719^{\circ} 2$ \& 3.09508
3.23532 \& $2 \cdot 67617$

\hline 33 \& $5 \cdot 5383$ \& 0.74337 \& 9.57245 \& 73 \& $1719{ }^{\circ} 2$
2427.4 \& 3.23532
3.38514 \& $2 \cdot 85019$

\hline 34 \& 5.9119 \& 0.77173 \& $$
9 \cdot 60826
$$ \& 74 \& $2427 \cdot 4$

$3513 \cdot 3$ \& 3.38514
3.54572 \& $3 \cdot 03579$

\hline 35 \& 6.3177 \& 0.80056 \& $$
9 \cdot 64542
$$ \& 75 \& 3513.3

5229 \& 3.54572
3.71843 \& 3.23448

\hline 36 \& $6 \cdot 7597$ \& 0.82992 \& 9.68399 \& 76 \& 5229.2 \& 3.71843
3.90501 \& 3.44813

\hline 37
38 \& $7 \cdot 2427$
$7 \cdot 7723$ \& 0.85990

0.89055 \& $$
9 \cdot 72399
$$ \& 77

78 \& $8035 \% 4$

12811 \& $$
\begin{aligned}
& 3.90501 \\
& 4.10757
\end{aligned}
$$ \& 3.67899

3.92994

\hline 38
39 \& 77723
8.3550 \& 0.89055
0.92195 \& 9.76545
9.80843 \& 78
79 \& 12811
21321

37339 \& 4.32880 \& $$
\begin{aligned}
& 3.92994 \\
& 4.20462
\end{aligned}
$$

\hline 40 \& $8 \cdot 9984$ \& 0.95416 \& $$
\begin{aligned}
& 9 \cdot 80843 \\
& 9: 85297
\end{aligned}
$$ \& 80 \& 37339 \& 4.57217 \& 420462

\hline
\end{tabular}

XIX.
$\{1000 \div r\}^{6}$.

\because	\bigcirc	1	2	3	4	5	6	7	8	9	Δ
f.s.	64.00	63.	62*49		61.01	60	59.58	58.88	58.19		72
51	56.83	56.17	55.51	54.87	54.23	53.60	52.98	52.37	51.76	51.17	63
52	50.57	50.00	$49 \cdot 42$	$48 \cdot 86$	$48 \cdot 31$	$47 \% 6$	$47 \cdot 22$	46.68	$46 \cdot 15$	45.63	55
53	$45^{1} 12$	44.61	$44^{\prime} 11$	43.62	43.13	$42 \cdot 65$	42*17	$41 \cdot 70$	41.24	$40 \cdot 78$	48
54	40.33	$39 \cdot 89$	39.45	$39^{\circ} \mathrm{I}$	38.58	$38 \cdot 16$	37.74	37.33	36.93	$36 \cdot 52$	42
55	$36 \cdot 13$	$35^{\circ} 74$	35.35	34.97	34.59	$34 \cdot 22$	33.85	33.49	$33^{\prime} 13$	$32^{\prime} 77$	37
56	$32 \cdot 42$	32.08	$31 \cdot 74$	3140	31.07	$30 \cdot 74$	$30 \cdot 42$	30.10	29.78	29.47	33
57	29.16	28.85	28.55	28.25	27.96	27.67	27.38	$27 \cdot 10$	$26 \cdot 82$	26.54	29
58	26.27	26.00	25.73	25.47	25.21	24.95	24.70	24.44	24.20	23.95	26
59	23.71	23.47	23.23	23.00	22.77	22.54	22.31	22.09	21.87	21.65	23
60	21.43	21.22	21.01	20.80	20.60	20.39	20.19	19.99	19.80	19.60	20
91	19.41	19.22	19.03	18.85	18.66	18.48	18.30	18.13	17×95	17.78	18
62	17.61	17.44	17.27	17•10	16.94	16.78	16.62	16.46	16.30	16.15	16
63	16.00	15.84	15.69	15.54	15.40	15.25	15.11	14.97	14.83	14.69	15
6.4	14.55	$14^{*}{ }^{2}$	14.28	14.15	$14^{\circ} \mathrm{O} 2$	13.89	13.76	13.63	13.51	13.38	+3
65	13.26	13.14	13.02	12.90	12.78	12.66	12.55	12.43	12.32	12.21	12
66	12.10	11.99	11.88	1177	11.67	11.56	11.46	11.36	11.25	$11 \cdot 15$	11
67	11.05	10.96	10.86	10.76	10.67	10.57	10.48	10.39	$10 \cdot 30$	10:20	9
68	10.114	10.025	9.938	9.851	9.765	9.679	9.595	9.512	9.429	9.347	85
69	9.266	9.186	9.106	9.027	8.950	8.874	$8 \cdot 797$	8.722	8.646	8.572	77
70	8.500	8.427	$8 \cdot 355$	8.284	8.214	$8 \cdot 144$	8.076	8.007	7.940	7-873	70
71	7.806	$7 \cdot 741$	7.676	$7 \cdot 611$	7.548	$7 \cdot 485$	7422	$7 \cdot 360$	7.299	$7 \cdot 238$	63
72	$7 \cdot 178$	71119	7.060	7.001	6.943	6.886	$6 \cdot 829$	$6 \cdot 773$	6.718	6.662	57
73	6.608	$6 \cdot 554$	$6 \cdot 500$	6.447	6.395	6.343	$6 \cdot 291$	6.240	6:190	$6 \cdot 140$	52
74	6.090	6.041	5.992	5.944	5.896	$5 \cdot 849$	5.802	$5 \cdot 755$	5709	$5 \cdot 664$	47
75	$5 \cdot 619$	$5 \cdot 574$	5.530	$5 \cdot 486$	5.442	$5 \cdot 399$	$5 \cdot 356$	$5 \cdot 314$	5.272	$5^{\circ} 230$	43
76	5.189	5.149	5.108	5.068	5.028	4.989	4.950	4.912	$4 \cdot 873$	$4 \cdot 836$	39
77	4.798	4.761	4.724	$4 \cdot 687$	$4 \cdot 651$	$4 \cdot 615$	4.580	$4 \cdot 544$	$4 \cdot 509$	4.475	36
78	4.440	4407	4.373	$4 \cdot 339$	4.306	4.273	4.241	$4 \cdot 209$	$4 \cdot 177$	4.145	33
79	4^{1114}	4.083	4.052	4.021	3.991	3.961	3.931	3.902	$3 \cdot 872$	3.843	30
So	$3 \cdot 815$	3.786	3.758	3.730	3.702	$3 \cdot 675$	3.647	3.620	$3 \cdot 594$	3.567	28
81	3.541	3.515	3.489	3.463	3.438	3.412	$3 \cdot 387$	$3 \cdot 362$	3.338	3.314	25
82	3.289	3.265	3.242	3.218	3. 195	3.172	3.149	3'126	3.103	3.081	23
83					2.972	$2 \cdot 950$	2.929	$2 \cdot 908$	2.888	2.867	21
84	$2 \cdot 847$	$2 \cdot 826$	2.806	$2 \cdot 786$	$2 \cdot 767$	$2 \cdot 747$	2.728	2.708	$2 \cdot 689$	2.670	20
85	2.651	$2 \cdot 633$	2.614	$2 \cdot 596$	2.578	$2 \cdot 560$	$2 \cdot 542$	$2 \cdot 52.4$	$2 \cdot 507$	2.489	18

XIX. (continued).
$\{1000 \div v\}^{6}$.

v	\bigcirc	1	2	3	4	5	6	7	8	9	Δ
¢. 56											
									$2 \cdot 338$	$2 \cdot 322$	15
87 88	2.306	2.290 2.139	2.275	2.259	2.244		2.213		2.183		15
88	$2 \cdot 153$	2.139	2.124	$2 \cdot 110$	$2 \cdot 095$	2 '081	2.067	2.053	2.039	2.026	14
89	$2{ }^{\circ} \mathrm{O} 2$	1-999	1.985	1.972	1.959	1.946		1.920	1.907	1-894	13
90	1.882	1.869	1.857	1.844	1.832	1.820	1	1'796	$1 \cdot 784$	1773	12
91	$1 \cdot 761$	1 749	1.738	1×727	1715	1 704	I'693	1.682	1.671	1866	II
92	1.649	1.638	1.628	1.617	1.607	I 596	1-586	1-576	1×56	1.556	10
93	1•546	1.536	$1 \cdot 526$	1.516	$1 \cdot 506$	1497	1487	1478	$1 \cdot 468$	1459	10
94	1450	1.440	1.431	1.422	1.413	1.404	1 395	1 386	1.378	1369	9
95	1-3604	3518	343	334	3265	3182	3099	3017	2936	55	83
96	2775	2696	2617	2539	2461	2384	2307	2231	2155	80	77
97	2005	1931	1858	1785	1713	1641	1569	1498	1428	1358	72
98	1-1289	1220	115	1084	1016	0949	0883	0817	0751	68	67
99	0622	0557	0494	0431	0368	-305	0243	0182	O121	0060	62
100	0000	*9940	*9881	*9822	*9764	*9705	*9647	*9590	"9533	*9477	58
10	0.9420	936	9309	9254	9200	9146	9092	9038	8985	8932	54
10	8880	8828	8776	8725	8674	8623	8573	8523	8473	8424	51
103	$\delta 375$	8326	8278	8230	8182	8135	8088	8041	7995	7949	47
10	0. 7903	7858	7813	7768	7723	7679	7635	7591	7548	7505	44
105	7462	7420	7378	7336	7294	7252	7211	7171	7130	7090	41
106	7050	7010	6970	6931	6892	6853	6815	6777	6739	6701	-
107	0. 6663	6626	6589	6552	6516	6480	644	6408	6372	6337	36
108	6302	6267	6232	6198	6163	6129	6096	6062	6029	5996	34
109	5963	5930	5897	5865	5833	5801	5769	5738	5707	5676	32
110	- 05645	5614	5584	555	5523	5493	5463	5434	5405	5375	30
111	5346	5318	5289	5261	5232	5204	5176	5149	5121	5094	28
112	5066	5039	5012	4986	4959	4933	4906	4880	4854	4829	26
113	0. 4803	4778	475	4727	4702	4678	4653	4628	4604	4580	25
114	4556	4532	4508	4485	4461	4438	4415	4392	4369	4346	23
115	4323	4301	4278	4256	4234	4212	4190	4169	4147	4126	22
116	0.4104		4062	404	4021	4000	3979	3959	3939	3918	21
117	3898	3878	3859	3839	3819	3800	3781	3761	3742	3723	19
118	3704	3686	3667	3648	3630	3612	3593	3575	3557	3539	8
119	3521	3504	3486	3469	3451	3434	3417	3400	3383	3366	17

XX.

$\log \tau$ corresponding to temperatures and pressures when the air is $\frac{2}{3}$ rds saturated with moisture.

$\left.\begin{array}{\|l\|} \hline \text { Tem- } \\ \text { pera- } \\ \text { ture } \end{array} \right\rvert\,$	15 in.	20 in .	22 in.	24 in .	26 in.	27 in.	28 in.	29 in.	30 in.	31 in
9°	9*7453	87	9117	9494	9842	*0006	*or64	*0317	*0464	*0606
10	7444	8693	9107	9485	9832	9996	*0154	*0306	*0454	*0596
11	7434	8684	9098	9476	9823	9987	*0145	*0297	*0445	* 05 S7
12	9.7425	8674	90\$8	9466	9813	9977	*0135	*0288	*0435	
13	7415	8665	9079	9457	9804	9968	*O126	*0278	**426	*0568
14	7406	8656	9070	9447	9796	9959	*0117	*0269	*0417	*0559
15	9*7397	8646	9061	9438	9786	9950	*oros	*0260	*0408	*0う50
16	7388	8637	9051	9429	9777	9941	*0099	*0251	*0398	*0541
17	7379	8628	9042	9420	9768	9931	*0089	*0242	*0389	*0532
18	9.7370	8619	9033	9411	9759	9922	*0080	*0233	-03So	*O522
19	7360	8609	9023	9401	9749	9913	*0071	*0223	*0371	*0513
20	7351	8600	9014	9392	9740	9903	*0062	*0215	* 0361	*0503
21	9. 7342	8591	9005	9383	9730	9895	*0052	*0205	-0352	0495
22	7332	8582	8996	9374	9721	9885	"0043	*0195	*0343	*0.485
23	7324	8573	S987	9365	9713	9S76	*0034	*0187	*0334	*0476
24	9.7314	8564	8975	9356	9703	9867	*0025	*0177	*0325	-0467
25	7305	8555	S968	9346	9694	9858	*016	*168	*o315	*0458
26	7296	8545	8959	9337	9684	9848	"0006	*0159	*0306	*0448
27	9.7286	8536	8950	9327	9675	9839	9997	*0149	*0297	*0439
28	7277	8527	8941	9319	9667	9830	9088	*0141	*0288	*0430
29	7268	8517	8932	9309	9657	9821	9979	*0131	*0278	-0421
30	9.7259	8508	8922	9300	9647	9811	9969	*0122	*0269	*0412
31	7250	8499	8913	9291	9639	9803	9961	* 0113	*0260	*0,403
32	7240	8490	8904	9281	9629	9793	9951	*0103	*0251	*0393
33	9. 7232	8481	8895	9273	9620	9785	9942	*0095	*0242	"0384
34	7222	8471	8886	9263	9611	9775	9933	*oos5	*0233	*0375
35	7214	8463	8877	9255	9602	9766	9924	*0077	*0224	*0366
36	9.7204	8454	8868	9246			9915	*0068	*0215	
37	7195	8444	8S58	9236	9584	9747	9906	*0058	*0205	*0347
38	7186	8435	8850	9227	9575	9739	9897	*0049	*0197	*0339
39	9.7176	8426	8840	9218	9565	9729	9887	*0039	*0187	-0329
40	7168	\$418	8832	9210	9557	9721	9879	*0032	*0179	*0321
41	7160	8409	8823	9201	9548	9712	9870	*0023	*0170	*0312
42	9.7150	8399	8813	9191	9539	9703	9861	*0013	"0160	-0302
43	7142	8391	8805	9183	9530	9694	9552	*0005	-152	*0294
44	7132	8382	8795	9173	9521	9685	9843	9995	"O142	*0284
45	9.7124	8373	8787	9165	9512	9676		9987	*0134	0276
46	7114	8363	8777	9155	9503	9667	${ }_{9825}$	9977	"0124	*0267
47	7105	8354	8768	9146	9494	9658	9815	9968	*0115	*0258
48	$9 \cdot 7097$	8346	8760	9138	9486	9650	9807	9960	*0107	*0249
49	70 S 7	8337	8750	9128	9476	9640	9798	9950	*0097	* 2240
50	7078	S327	8741	9119	9466	9631	9789	9941	*oos8	*0230
51	9.7070	8319	8733	9111	9459	9622	9780	9933	*ooso	"0222
52	7061	8311	S724	9103	9450	9614	9772	9925	*0072	*0214
53	7052	S301	8716	9093	9441	9605	9763	9915	*0063	*0205

XX. (continued).

$\begin{array}{\|l\|} \text { Yem- } \\ \text { pera- } \\ \text { perare } \end{array}$	$15 \mathrm{in}$.	20 in .	22 in.	24 in.	26 in.	27 in.	28 in .	$29 \mathrm{in}$.	30 in	in.
54°	9.7042	8292	8706	9083	9431	9595	9753			
54	7033	8283	8696	9074	9422	95	9744		43	-186
56	7024	8273	8687	9065	9413	9577	9735	9887	*0034	-177
57	9.7015	8264	8678	9056	9404	9567	9725	9878	*0025	*0167
58	7007	8256	8670	9048	9395	9559	9717	9870	*0017	*-159
59	6997	8246	8661	9038	9386	9550	9708	9860	*0007	*or 50
60	9.6988	8237	8651	9029	9377	9540	9699	9851	9998	*O141
61	6980	8229	8643	9021	9368	9532	9690	9843	9990	*or 32
62	6970	8220	8633	9011	9359	9523	9681	9833	9980	*or 23
63	9-6961	8211	8624	90	9350	9514	9672	9824	9971	${ }^{\circ} 114$
64	6952	8201	8615	8993	9340	9504	9662	9815	9962	*o104
65	6942	8191	86	8983	9331	9495	9653	9805	9952	*0095
66	9•69	8183	8597	8975	9323	9487	9644	9797	9944	*0086
67	6925	8174	8588	8965	9313	9477	9635	9787	9935	*0077
68	6916	8165	8579	8957	9304	9468	9627	9779	9926	"0069
69	9.6907	8156	8570	8948	9296	9460	9618	9770	9918	*0060
70	688	8147	8561	8939	9287	9450	9609	9761	9908	*0051
71	6888	8138	8552	8929	9277	9441	9599	9752	9899	*004I
72	9.6880	8129	8543	8	9269	9432	9590	9743	9890	*0032
73	6871	8120	8535	8912	9260	9424	9582	9734	9882	*0024
74	6862	8III		8904	9251	9415	9573	9726	9873	*0015
75	9.6	8102	8516	8894	9242	9406	9564	9716	9863	0006
76	683	8093	8506	8885	9232	9396	9554	9706	9853	9996
77	6835	8084	8498	8876	9224	9387	9545	9698	9845	9987
78	9.6825	8075	8488	8866	9214	9378	9536	9688	9835	978
79	6816	8066	8479	8858	9205	9369	9527	9679	9827	9969
80	680	8056	8470	884	9195	9359	9517	967	9817	9959
81	${ }^{9} 6797$	8046	8460	8838	9186	9350	9508	9660	9807	9950
82	6788	8037	8452	8829	9177	9341	9499	9651	9799	9941
83	6779	8029	8443	8821	9168	9332	9490	9643	9790	9932
84	9.6771	8020	8434	8812		9323	948i	9634	9781	9923
8	6761	8011	8424	8802	9150	9314	9471	9624	9771	9914
86	6752	800	8415	8793	914 ${ }^{1}$	9304	9463	9615	9762	9905
87	$9 \cdot 6743$	7993	8406	8784	9132	9296	9454	9606	9753	96
88	6733	7982	8397	8774	9122	9286	9444	9596	9744	9886
89	6724	7973	8388	8766	9113	9277	943	95	9735	9877
90	9.6715	7964	8378	8756	9104	9268	9426	9578	9726	9868
91	6706	7955	8369	8747	9094	9258	9416	9568	9716	
92	6695	7945	8359	8737	9084	9248	9406	9559	970	9848
93	9.6687	7936	8350	8728		9239	9397	9550	7	39
94	667	7926	8340	8718	9066	9229	9387	${ }^{9540}$		9829 9820
95	66	7917	8331	8709	9056	9220	9378	95	9678	
96	9. 6658	7907	8321	8699	9047	9210	9368	9521	9668	9810
	6647	7897	8311	8689	9036	9200	9358	9510	9658	9800
98	6637	7887	8301	8679	9027	9190	9349	950	964	9790
99	9.6628	7878	8291	8669	9016	9180	9338	9490	9638	9780
100	9.6619	7868	8281	8659	9007	9171	9329	948	9629	9771

XXI.

$\log \tau$ for various heights, gravity and temperature being supposed constant.

Ht.	000	103	200	300	400	500	600	700	800	900
Feet 39	$9^{\circ} 4646$	4630	46I5	4599	45^{83}	4568	4552	4537	4521	4505
38	4802	4786	4771	4755	4739	4724	4708	4693	4677	4661
37	4958	4942	4927	4911	4895	48 So	4864	4849	4833	4817
36	5114	5098	5083	5067	5051	5036	5020	5005	4989	4973
35	9. 5270	5254	5239	5223	5207	5192	5176	5161	5145	5129
34	5426	5410	5394	5379	5363	5348	5332	5316	5301	5285
33	5582	5566	5550	5535	5519	5504	5488	5472	5457	5441
32	9.5738	5722	5706	5691	5675	5660	5644	5628	5613	5597
3 I	- 5894	5878	5862	5847	$5 S_{31}$	5816	5800	5784	5769	5753
30	6050	6034	6018	6003	5987	5972	5956	5940	5925	5909
29	9.6206	6190	6174	6159	6143	6128	6II2	6096	6081	6065
28	6362	6346	6330	6315	6299	6284	6268	6252	6237	6221
27	6518	6502	6486	6471	6455	6440	6424	6408	6393	6377
26	9.6674	6658	6642	6627	6611	6596	6580	6564	6549	6533
25	6830	6814	6798	6783	6767	6752	6736	6720	6705	6689
24	6985	6970	6954	6939	6923	6907	6892	6876	6S61	6845
23	9.7141	7126	7110	7095	7079	7063	7048	7032	7016	7001
22	7297	7282	7266	7251	7235	7219	7204	7188	7173	7157
21	7453	7438	7422	7407	7391	7375	7360	7344	7329	7313
20	$9 \cdot 7609$	7594	7578	7563	7547	7531	7516	7500	7485	7469
19	7765	7750	7734	7719	7703	7687	7672	7656	7641	7625
18	7921	7906	7890	7875	7859	7843	7828	7812	7797	7781
17	$9 \cdot 8077$	8062	8046	8031	8015	7999	7984	7968	7953	7937
16	8233	8218	8202	8187	8171	8155	8140	8124	8109	8093
15	8389	8374	8358	8343	8327	8311	8296	8280	8265	8249
14	$9{ }^{-8545}$	8530	8514	8498	8483	8467	8452	8436	8420	8405
13	8701	8686	8670	8654	8639	8623	8608	8592	8576	8561
12	8857	8842	8826	S810	8795	8779	8764	8748	8732	8717
II	909013	8998	8982	8966	8951	8935	8920	8904	8888	8873
10	9169	9154	9138	9122	9107	9091	9076	9060	9044	9029
9	9325	9310	9294	9278	9263	9247	9232	9216	9200	9185
8	9'948I	9466	9450	9434	9419	9403	9388	9372	9357	9341
7	9637	9622	9606	9590	9575	9559	9544	9528	9512	9497
6	9793	9778	9762	9746	9731	9715	9700	9684	9668	9653
5	9.9949	9934	9918	9902	9887	9871	9856	9840	9824	9 SO 9
4	0.0105	0089	0074	0058	0043	0027	0011	"9996	*9980	9965
3	0261	0245	0230	0214	O199	0183	0167	OI 52	0136	O121
2	0.0417	0401	0386	0370	0355	0339	0323	0308	0292	0277
1	0573	0557	0542	0526	0511	0495	0479	0.464	0448	0433
\bigcirc	0729	0713	0698	0682	0667	0651	0635	0620	0604	05 S 9
Feet	\bigcirc	$+10$	$+20$	$+30$	$+40$	$+50$	$+60$	$+70$	+ So	$+90$
$\begin{gathered} \text { Diff. } \\ \text { in } \\ \text { Log } \end{gathered}$	0				6	08	0009	OOI I	0013	0014

XXII. (I) Spherical Projectiles.

v	2 in.	3 in.	4 in.	5 in.	6 in.	7 in.	8 in.	9 in.	roin.	1 I in.	12 in.
f. s.	lbs.										
900	13	29	51	80	115	156	204	258	319	386	459
1000	18	40	71	110	159	216	282	357	441	534	635
1100	25	57	102	159	229	312	408	516	637	771	917
1200	33	75	134	209	301	409	534	676	835	1010	1202
1300	41	91	162	254	365	497	649	822	1015	1228	1461
1400	48	109	194	303	436	593	775	981	1211	1466	1744
1500	57	128	227	355	511	695	908	1149	1419	1716	2043
1600	05	147	261	408	588	800	1045	1322	1633	1976	2351
1700	74	167	296	463	666	907	1185	1499	1851	2240	2666
1800	83	187	332	518	746	1016	1327	1679	2073	2508	2985
1900	93	209	371	530	835	1137	1485	1880	2320	2808	3341
2000	104	235	417	652	939	1278	1669	2112	2607	3155	3754
2100	115	259	460	718	1035	1408	1839	2328	2874	3477	4138
2200	125	281	500	781	1124	1530	1999	2530	3123	3779	4497

(2) Ogival-headed Projectiles ($1 \frac{1}{2}$ diameter).

$f . s$.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs	lbs.	lbs.	1 bs	lbs.	lbs.
100	I	2	0.3	0.5	$0 \cdot 7$	0.9	$1 \cdot 2$	$1 \cdot 5$	1.9	$2 \cdot 3$	27
200	$0 \cdot 3$	0.7	$1 \cdot 2$	$1 \cdot 9$	$2 \cdot 7$	$3 \cdot 7$	$4 \cdot 8$	$6 \cdot 1$	$7 \cdot 5$	9.1	10.8
300	$0 \cdot 7$	1•5	2.7	$4 \cdot 2$	$6 \cdot 1$	$8 \cdot 3$	10.8	13.7	$16 \cdot 9$	20.4	24.3
400	$1 \cdot 2$	$2 \cdot 7$	4.8	7×5	10.8	14.7	193	24.4	$30^{\circ} \mathrm{I}$	36.4	$43 \cdot 3$
500	$1 \cdot 9$	$4 \cdot 2$	7.5	11.8	$16 \cdot 9$	23°	30.1	$38 \cdot 1$	$47^{\circ} 0$	$56 \cdot 9$	$67 \cdot 7$
600	$2 \cdot 7$	$6 \cdot 1$	10.8	16.9	$24 \cdot 3$	33^{1}	$43 \cdot 3$	54^{*}	$67 \cdot 6$	$8 \mathrm{I} \cdot 8$	$97 \cdot 3$
700	$3 \cdot 7$	$8 \cdot 3$	14.7	$23^{\circ} \mathrm{O}$	$33^{\circ} 2$	$45^{1} 1$	$58 \cdot 9$	$74^{\circ} 6$	$92^{\circ} \mathrm{I}$	11144	132.6
800	4.8	$10 \cdot 8$	$19^{\circ} 2$	301	$43^{\circ} 3$	$58 \cdot 9$	$76 \cdot 9$	97.4	$120^{\circ} 2$	145.4	173.1
900	$6 \cdot 7$	15°	$26 \cdot 7$	41•7	60.0	8I•6	$106 \cdot 6$	134.9	$166 \cdot 5$	201.6	239.9
1000	9*1	$20 \cdot 6$	$36 \cdot 6$	$57 \cdot 2$	82.3	$112{ }^{\circ} \mathrm{O}$	146.3	$185{ }^{\circ}$	$228 \cdot 6$	$276 \cdot 6$	329.2
1100	17×7	$39 \cdot 8$	$70 \cdot 7$	I10. 5	$159{ }^{1}$	216.6	282.9	$358 \cdot 0$	442°	534.8	$636 \cdot 5$
1200	24	53	94	147	212	288	377	477	588	712	847
1300	30	67	119	187	269	366	478	605	747	903	1075
1400	36	81	143	224	323	439	574	726	897	1085	1291
1500	41	93	165	258	371	506	660	836	1032	1248	1486
1600	46	104	184	288	415	564	737	933	1151	1393	1658
1700	51	115	204	319	459	624	816	1032	1274	1542	1835
1800	56	126	224	351	505	687	897	1136	1402	1696	2019
1900	62	138	246	385	554	754	985	1246	1539	1862	2215
2000	68	153	272	426	613	834	1090	1379	1702	2060	2451
2100	77	173	308	482	694	944	1233	1561	1927	2332	2775
2200	87	196	348	544	784	1066	1393	1763	2177	2634	3134
2300	94	212	376	588	846	1152	1504	1904	2351	2844	3385
2400	98	220	392	612	881	1200	1567	1983	2448	2962	3525
2500	103	231	411	642	924	1258	1643	2079	2567	3106	3697
2600	112	253	450	703	1012	1378	1800	2278	2812	3403	4050
2700	126	282	502	784	1130	1537	2008	2541	3138	3796	4518 5029
2800	140	314	559	873	1257	1711	2235	2829	3493	4226	5029

XXIII. S_{v} for Spherical Projectiles. $\left(w=534^{\circ 22}\right.$ grams $)$.

v	0	I	2	3	4	5	6	7	8	9	Diff.
f. s.	Fee	Feet	Feet	Fee	Feet	Fee	Fe		Feet		+
40	150	171	192	213	234	255	276	296	317	338	2
41	359	379	400	420	441	461	481	501	522	542	20
42	562	582	602	622	642	662	682	702	722	742	20
43	761	781	Soo	820	839	859	878	S97	917	936	19
44	955	974	994	1013	1032	1051	1070	1089	1108	1127	19
45	1146	1164	1183	1202	1221	1239	1258	1276	1295	1313	19
46	1331	1350	1368	1387	1405	1423	1441	1459	1477	1495	18
47	1513	1531	1549	1567	1585	1602	1620	1638	1656	1673	18
48	1691	1709	1726	1744	1761	1779	1796	IS14	1831	I 848	17
49	1866	1883	1900	1917	1934	1951	1968	1985	2002	2019	17
50	2036	2053	2070	2086	2103	2120	2137	2154	2171	2188	17
51	2204	2221	2237	2254	2270	2287	2303	2319	2336	2352	16
52	2368	2384	2401	2417	2433	2449	2465	2481	2497	2513	16
53	2529	2545	2561	2577	2593	2608	2624	2640	2656	2671	16
54	2687	2703	2718	2734	2749	2765	2780	2796	2811	2827	16
55	2842	2858	2873	2888	2904	2919	2934	2949	2965	2980	15
56	2995	3010	3025	3040	3055	3070	3085	3099	3114	3129	15
57	3144	3159	3174	3189	3204	3218	3233	3248	3262	3277	15
58	3291	3306	3320	3335	3349	3364	3378	3393	3407	3421	14
59	3436	3450	3464	3478	3493	3507	3521	3535	3550	3564	14
60	3578	3592	3606	3620	3634	3648	3662	3676	3690	3704	14
61	3718	3731	3745	3759	3773	3786	3 Soo	3814	3828	3841	14
62	3855	3869	3883	3896	3910	3924	3937	3951	3964	3977	14
63	3991	4004	4017	4031	4044	4058	4071	4084	4098	4 III	13
64	4124	4137	4150	4163	4176	4189	4203	4216	4229	4242	13
65	4255	4268	42 SI	4294	4307	4319	4332	4345	4358	4371	13
66	4384	4397	4410	4422	4435	4448	4461	4473	4486	4499	13
67	45 II	4524	4536	4549	4561	4574	4586	4599	4611	4624	13
68	4636	4649	4661	4674	4686	4698	4711	4723	4735	4747	12
69	4760	4772	4784	4796	4809	4821	4833	4845	4857	4869	12
70	4881	4893	4905	4917	4929	4941	4953	4965	4977	4989	12
71	5001	5013	5025	50.37	5049	5060	5072	5084	5096	5107	12
72	5119	5131	5143	5154	5166	5178	5190	5201	5213	5225	12
73	5236	5248	5259	5271	5282	5294	5305	5317	532 S	5340	12
74	5351	5363	5374	5385	5397	5408	5420	5431	5442	5453	II
75	5465	5476	5487	5498	5510	5521	5532	5543	5555	5566	11
76	5577	5588	5599	5610	5621	5632	5643	5654	5665	5676	II
77	5687	5698	5709	5720	5731	5742	5753	5764	5775	5785	II
78	5796	5807	5818	5828	5839	5850	5861	5871	5882	5893	II
79	5904	5914	5925	5936	5947	5957	5968	5979	5,89	6000	II
80	6010	6021	6031	6042	6052	6063	6073	6084	6094	6105	II
81	6115	6126	6136	6147	6157	6165	6178	6185	6199	6209	0
82	6219	6229	6240	6250	6260	6270	6281	6291	6301	6311	10
83	6322	6332	6342	6352	6362	6372	63 S 2	6392	6403	6413	10
84	6.423	6433	6443	6453	6463	6473	6483	6.493	6503	6512	10
85	6522	6532	6542	6552	6561	6571	6581	6591	6600	6610	10
86	6619	6629	6639	6648	6658	6667	6677	6686	6696	6705	10
87	6714	6724	6733	6742	6752	6761	6770	6779	6789	6798	
88	6807	6816	6825	6835	6844	6853	6862	6871	6S50	6889.	
89	6898	6907	6916	6925	6933	6942	6951	6960	6969	6978	
90	6986	6995	7004	7013	7021	7030	7039	7046	7056	7064	9

XXIII. S_{v} for Spherical Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f. s.	Fe	Feet	Feet	Feet	Feet	t	Feet	Feet	Feet	et	+
91	7073	7082	7090	7099	7107	7116	7124	7133	7141	7149	
92	7158	7166	7175	7183	7191	7200	7208	7216	7225	7233	8
93	7241	7249	7257	7266	7274	7282	7290	7298	7306	7314	8
94	7322	7330	7338	7346	7354	7362	7370	7378	7386	7394	8
95	7402	7409	7417	7425	7433	7441	7448	7456	7464	7472	8
96	7479	7487	7495	7502	7510	7518	7525	7533	7541	7548	8
97	7556	7563	7571	7578	7586	7593	7601	7608	7615	7623	7
98	7630	7638	7645	7652	7660	7667	7674	7681	7689	7696	7
99	7703	7710	7717	7725	7732	7739	7746	7753	7760	7767	7
100	7774	7781	7788	7795	7802	7809	7816	7823	7830	7837	7
101	7844	7851	7858	7864	7871	7878	7885	7892	7898	7905	7
102	7912	7918	7925	7932	7938	7945	7951	7958	7964	7971	7
103	7977	7984	7990	7997	8003	8010	8016	8022	8029	8035	6
104	8041	8047	8053	8060	8066	8072	8078	8084	8091	8097	6
105	8103	8109	8115	8121	8127	8133	8139	S145	8151	8157	6
106	8163	8169	8175	8180	8186	8192	8198	8204	8209	8215	6
107	8221	8227	8233	8238	8244	8250	8256	8261	8267	8272	6
108	8278	8284	8289	8295	8300	8306	8312	8317	8323	8328	6
109	8334	8339	8345	8350	8356	8361	8366	8372	8377	8383	5
110	$8387 \cdot 8$	$393{ }^{\text {I }}$	398.4	$403 \cdot 8$	$409^{\prime \prime}$	$414 * 4$	419×7	425°	$430^{\circ} 2$	$435{ }^{\circ}$	3
III	$8440 \cdot 8$	$44^{\circ} \mathrm{O}$	451*2	$456 \cdot 5$	$461 \cdot 7$	$466 \cdot 9$	472 ${ }^{\text {¹ }}$	$477{ }^{\circ} 2$	482.4	487.5	$5 \cdot 2$
112	$492 \cdot 7$	$497 \cdot 8$	502.9	508.1	513.2	$518 \cdot 3$	523.4	528.4	533.5	538.5	$5^{\circ} \mathrm{I}$
113	$543 \cdot 6$	548.6	553.6	55^{87}	563.7	$568 \cdot 7$	573.7	$578 \cdot 6$	583.6		5°
114	593.5	598.4	603.3	$608 \cdot 3$	613.2	$618 \cdot 1$	$623{ }^{\circ}$	$627{ }^{\circ} 9$	6327	$637^{\circ} 6$	4.9
115	642.5	$647 * 3$	652.1	657°	$661 \cdot 8$	$666 \cdot 6$	$671{ }^{\circ} 4$	$676 \cdot 2$	$680 \cdot 9$	685%	$4 \cdot 8$
116	8690°	$695 \cdot 3$	$700{ }^{\circ}$	704.8	709×5	$714^{\circ} 3$	719°	723.7	728.4	$733 \cdot 1$	4.7
117	$737 \cdot 8$	$742 \cdot 5$	$747^{\circ} \mathrm{I}$	751.8	$756 \cdot 4$	761'I	765.7	$770 \cdot 3$	$775{ }^{\circ}$	779.6	4.6
118	784.2	$788 \cdot 8$	793.4	$797{ }^{\circ} 9$	802.5	807'1	8117	816.2	$820 \cdot 8$	825.3	4.6
119	829.9	834.4	$838 \cdot 9$	843.5	$84^{\circ} \mathrm{O}$	852.5	$857{ }^{\circ}$	861.5	865.9	870.4	4.5
120	874.9	879.3	883.8	888.2	892.7	897 ${ }^{\prime \prime}$	901.5	905.9	$910 \cdot 4$	914.8	$4 \cdot 4$
121	8919.2	$923 \cdot 6$	928.0	932.4	$936 \cdot 8$	941*2	945.6	$949{ }^{\circ} 9$	$954 * 3$	$958 \cdot 6$	4.4
122	963.0	967.3	$971 \cdot 6$	976*	$980 \cdot 3$	984.6	988.9	993.2	$997{ }^{\circ} 5$	-001.8	4.3
123	9006•1	010.4	0147	019 ${ }^{\circ}$	023.3	027.6	031'9	036.1	040.4	044.6	43
124	-048.9	053'1	057.3	-661.5	065*7	069'9	074*'I	$078 \cdot 3$	082.5	${ }^{086}{ }^{\circ} 7$	$4^{\circ} 2$
125	090'9	095'1	$099 \cdot 3$	103.5	1077	11199	116	12	124.4		41
126	9132.7	136.8	$140 \cdot 9$	$145^{\circ} 1$	$149^{\circ} 2$	153.3	157.4	161.5	$165^{\circ} 6$	$169^{\circ} 7$	$4 \cdot 1$
127	173.8	177*9	$182{ }^{\circ}$	$186 \cdot 1$	$190{ }^{2}$	194.3	198.4	202.4	$206 \cdot 5$	$110 \cdot 5$ 250%	$4^{4} 1$
128	214.6	218.6	$222{ }^{\circ} 7$	226.7	$230 \cdot 8$	$2344^{\circ} 8$	$238 \cdot 8$	$242^{\circ} 8$ 283.0	$246{ }^{\circ} 9$ 286	250% 2909	$4^{\circ} \mathrm{O}$
129	254.9	258.9	262.9	2677°	2711°	$275{ }^{\circ}$	2799° 318.8	2833° $322{ }^{\circ}$	$286{ }^{\circ} 9$ 326.7	290% $330 \cdot 6$	\%
130	294.9	$298 \cdot 9$	302.9	$306 \cdot 8$	$310 \cdot 8$	314.8	318.8	$322{ }^{\circ} 7$	$326 \cdot 7$	$330^{\circ} 6$	-
131	9334.6	$338 \cdot 5$	342.4	$346 \cdot 4$	$350 \cdot 3$	354.2	$35^{8.1}$	$362{ }^{\circ}$	365.9	$369 \cdot 8$	3.9 3.9
132	3737	$377 \cdot 6$	381.5	$385{ }^{\circ} 4$	389.3	393:2	397 ' 1	$400 \cdot 9$ 439	404.8	$40{ }^{\circ} 6$	8
133	412.5	416.4	420.2	$424^{\prime} 1$	427.9	$431^{\circ} 8$	$435{ }^{\circ} 6$	439 477	$443 \cdot 3$	$44^{8} 5^{\circ}$	8
134	450.9	454.7	458.5	$462 \cdot 3$ $500 \cdot 1$	466.1 503	469% 507	473.7 5114	477 ${ }^{1} 5$	518.9	522.7	8
135	488	$492 \cdot 6$	496.4	500'1	$503 \cdot 9$	507 54	5114 $548 \cdot 7$	515.2 552.4	5189 $556{ }^{\circ} \mathrm{I}$	559.8	
136	9526.4	530'1	533.8	537.6	5413	545° 58	$548 \cdot 7$ $585 \cdot 7$	552.4 589	556 ${ }^{\circ} 1$	$\begin{aligned} & 559 \cdot 8 \\ & 596.6 \end{aligned}$	37 37
137	563.5	$567 \cdot 2$	$570 \cdot 9$	574*6	578.3 614.9	582.0	585 622.2	5893 625%	693.5	$633^{2} 2$	37
138	$600 \cdot 3$	$604{ }^{\circ}$	607.6	611.3	614.9	618.6 654.9	622.2 658	625 662.1	665%	$669 \cdot 3$	$3 \cdot 6$
139	$636 \cdot 8$	640.4	644°	647.7 $683 \cdot 6$	651 687	654.9 $690 \cdot 8$	650.5 694.4	$697{ }^{\circ}$	$701 \cdot 5$	705°	$3 \cdot 6$
140	672.9	$676 \cdot 5$	680'I	$683^{\circ} 6$	687^{2}	$690 \cdot 8$	6944	6979	7015	705	3

XXIII. S_{v} for Spherical Projectiles (continued).

${ }^{\prime}$	\bigcirc	1	2	3	4	5	6	7	8	9	Dif
f.s.	Feet	Feet	Fe	Feet		Feet	Feet	Feet	et	Feet	
141	$9708 \cdot 6$	712.2	715.7	719.3	722	726	729.9	733	$737{ }^{\circ}$	$740 \cdot 6$	$3 \cdot 6$
142	$744 \cdot 1$	$747 \cdot 6$	$751 \cdot 1$	$754 \cdot 6$	758.1	7616	$765^{1} 1$	768.6	$772 \cdot 1$	775^{6}	3.5
143	779.1	782.6	$786 \cdot 1$	789.5	$793{ }^{\circ}$	$796 \cdot 5$	800°	So3.4	806.9	810	3.5
144	813.8	817.3	820.7	824.2	$827 \cdot 6$	$831 \cdot 1$	834.5	838.0	841.4	844.9	35
145	848.3	851.7	$855^{\circ} \mathrm{I}$	858.5	861.9	865.3	868.7	872.1	875.5	878.9	3.4
146	$9882 \cdot 3$	8857	889.1	892.5	$895^{\circ} 9$	899.3	$902 \cdot 7$	$906 \cdot 1$	909.4	912.8	4
147	916.2	919.6	922.9	926.3	929.6	$933{ }^{\circ}$	$936 \cdot 3$	939 7	$943{ }^{\circ}$	946.4	4
148	949.7	$953{ }^{\circ}$	956.4	959.7	963.1	$966 \cdot 4$	-9697	973.0	976.4	979.7	3.3
149	$983{ }^{\circ}$	986.3	989.6	992*9	996.2	999.5	*002'8	*006•1	*009'4	*O12'7	3
150	10016.	019.3	022.6	025.8	029.1	0324	035.7	038.9	042.2	0454	3*3
151	$10048 \cdot 7$	$051 \cdot 9$	055.2	058.4	$061 \cdot 7$	064.9	${ }^{068} \cdot 1$	0714	074.6	077.9	2
152	081.1	084.3	0876	-9, 8	094 1	097.3	$100 \cdot 5$	103'7	106.9	110'1	3.2
153	113.3	116.5	1197	122.9	126.1	129.3	132.5	1357	138.9	142.1	$3 \cdot 2$
154	1459	148.5	151×7	$154^{\circ} 8$	158.0	161.2	$164^{\circ} 4$	1675	170\% 7	173.8	3.2
155	177°	$180 \cdot 1$	183.3	186.4	188*6	192.7	$195 \cdot 8$	199°	$202 \cdot 1$	205.3	$3^{.1}$
156	10208.4	21	214.7	2178	221	224.1	227.2	$230 \cdot 3$	233.5	$236 \cdot 6$	I
157	239.7	$242 \cdot 8$	$245 \cdot 9$	2490	$252 \cdot 1$	$255^{\circ} 2$	258.3	2614	264.5	2676	3.
158	$270 \cdot 7$	2738	276.9	$279{ }^{\circ} 9$	283.0	$286 \cdot 1$	289.2	292.3	295.3	298.4	3.
159	301.5	$304 \cdot 6$	$307 \cdot 6$	$310 \cdot 7$	313.7	$316 \cdot 8$	319.8	322.9	325.9	329°	3.1
160	$33^{\circ} \mathrm{O}$	335°	$338 \cdot 1$	$341 \cdot 1$	344°	$347 \cdot 2$	350°	353^{2}	356.3	359.3	$3^{\circ} 0$
161	$10362 \cdot 3$	365.3	$368 \cdot 3$	37	37	$377 \cdot 4$	$30^{\circ} \cdot 4$	383.4	386.4	389.4	-
162	392.4	$395^{\circ} 4$	398.4	401.4	404.4	4074	$410 \cdot 4$	413.4	416.4	419.4	$3{ }^{\circ}$
163	422.4	$425 \cdot 4$	428.4	$431 \cdot 3$	$434 \cdot 3$	$437 \cdot 3$	$440 \cdot 3$	443^{2}	$446 \cdot 2$	449.1	$3 \cdot 0$
164	452.1	455.1	458.0	$461^{\circ} \mathrm{O}$	463*9	466.9	469.8	$472 \cdot 8$	475.7	$478 \cdot 7$	$2 \cdot 9$
165	$\cdot 6$	484.5	$487 \cdot 5$	$490 \cdot 4$	493.4	$496 \cdot 3$	499°	502.2	505•1	508.I	2.
166	10511°	513.9	516.8	519.8	$522 \cdot 7$	525.6	528.5	531.4	534.3	537.2	$\cdot 9$
167	$540 \cdot 1$	543°	545.9	$548 \cdot 8$	551×7	$554 \cdot 6$	557.5	$560 \cdot 4$	563.3	566.2	2.9
168	569.1	572.0	$574 \cdot 9$	577×7	580.6	583.5	586.4	589.3	592.1	$595{ }^{\circ}$	2.9
169	597.9	6008	$603 \cdot 6$	$606 \cdot 5$	$609 \cdot 3$	612.2	615.1	617.9	620\%	623.6	9
170	626.5	629.3	$632 \cdot 2$	635°	637.9	$640 \cdot 7$	643.5	$646 \cdot 4$	$649^{\circ} 2$	$652^{.1}$	2.8
171	10654.9	657.7	$660 \cdot 6$	663.4	$666 \cdot 3$	$669 \cdot 1$	$671 \cdot 9$	674.7	$677 \cdot 6$	$680 \cdot 4$	8
172	683.2	686.0	$688 \cdot 8$	691×7	694.5	6973	$700 \cdot 1$	702.9	705.7	708.5	8
173	7112	714.1	716.9	7197	$722 \cdot 5$	725.3	728.1	$730^{\circ} 9$	733.7	$736 \cdot 5$	2.8
174	$739^{\circ} 3$	$742^{\circ} \mathrm{I}$	744.9	7476	$750 \cdot 4$	$753{ }^{\circ}$	756*	758.8	761.5	764.3	2.8
175	$767 \cdot 1$	769.9	$772 \cdot 6$	$775 * 4$	778-1	780.9	7837	786.4	789.2	791.9	.
176	10794		$800 \cdot 2$	8030	8057	808.5	811.2	814°	816.7	819.5	-
177	822.2	824.9	827.7	$830 \cdot 4$	833.2	835.9	$838 \cdot 6$	841.4	$844^{\prime} \mathrm{I}$	846.9	$2 \cdot 7$
178	849.6	$852 \cdot 3$	855°	8578	860.5	863.2	865.9	868.6	871.4	874.1	2.7
179	$876 \cdot 8$	879.5	882.2	884.9	857.6	890.3	893°	895%	898.4	901.1	27
18	903.8	906.5	909.2	911.9	914.6	9173	9200	$922 \cdot 7$	925.3	928.0	7
181	$10930 \cdot 7$		$936 \cdot 1$	$938 \cdot 7$			$946 \cdot 8$			954.8	7
182	957.5	960.2	$962 \cdot 8$	$965 \cdot 5$	968.1	$970 \cdot 8$	973.5	976.1	978.8	951.4	27
183	984.1	$986 \cdot 8$	989.4	$992 \cdot 1$	994.7	997.4	*000'0	*002.7	*005 3	+003 0	$2 \cdot 7$
184	110106	013.2	-159	018.5	021.2	023.8	026.4	0290	0317	034.3	6
185	036.9	039.5	$042 \cdot 1$	044	047'4	050\%	052.6	055.2	057.9	$060 \cdot 5$	$2 \cdot 6$
186	11063.1	$065 \cdot 7$	$068 \cdot 3$	070.9	073.5	076.1	078.7	-81.3	-83.9	$086 \cdot 5$	6
187	089.1	091.7	094*3	096.8	099.4	1020	104.6	107.2	109.7	112.3	$2 \cdot 6$
188	114.9	117.5	120.1	$122 \cdot 6$	125°	1278	$130 \cdot 4$	132.9	135.5	138.0	2.6
189	$140 \cdot 6$	143.2	145.7	148.3	$150 \cdot 8$	153.4	$155^{\circ} 9$	158.5	161.0	163.6	2.6
190	166.1	168.6	171.2	173.7	176.3	178.8	181.3	183.9	186.4	189°	2.5

XXIII. S_{v} for Spherical Projectiles (continued).

v	0	1	2	3	4	5	6	7	8	9	Diff.
f.s.	Fe	F	Feet	Feet	Feet	Feet	Feet	Feet	et	Feet	+
191	II $191{ }^{\circ} 5$	194						209.1	$211^{\circ} 7$	$14^{\circ} 2$	25
192	$216 \cdot 7$	219.2	221.7	224.2	226.7	229.2	231.7	$234 \cdot 2$	$236 \cdot 7$	$239^{\circ} 2$	$2 \cdot 5$
193	$241{ }^{\circ} 7$	$244^{\circ} 2$	$246 \cdot 7$	249	$251 \cdot 6$	$254^{\circ} 1$	$256 \cdot 6$	$259{ }^{\circ}$	261.5	$263^{\circ} 9$	2.5
194	266.4	268.9	271.4	273.	$276 \cdot 3$	$278 \cdot 8$	281.3	283.7	$286 \cdot 2$	288.6	25
195	291.1	$293 \cdot 6$	296*	298.5	300'9	$303 \cdot 4$	305.9	308.3	310.8	$313^{\circ} 2$	2.5
196	11315.7	$318 \cdot 1$	32	323	32	327.9	33	$332 \cdot 8$	$335^{\circ} 2$	337×7	2.4
197	$340 \cdot 1$	$342 \cdot 5$	344.9	$347 \cdot 4$	349.8	$352 \cdot 2$	$354 \cdot 6$	357°	359.5	361×9	2.4
198	$364 \cdot 3$	$366 \cdot 7$	$369{ }^{1}$	$371 \cdot 5$	373.9	$376 \cdot 3$	$378 \cdot 7$	381.1	383.5	$385 \cdot 9$	2.4
199	$388 \cdot 3$	390%	$393 \cdot 1$	3955	397.9	$400 \cdot 3$	$402 \cdot 7$	$405^{\circ} 1$	4074	$409 \cdot 8$	2.4
200	$412 \cdot 2$	$414 \cdot 6$	$417{ }^{\circ}$	4193	4217	$4^{24}{ }^{1}$	$426 \cdot 5$	$428 \cdot 8$	$431 \cdot 2$	43305	2.4
201	11435	$438 \cdot 3$	44	$443^{\circ} 0$	$445 * 4$	$447 \cdot 8$	450\%2	452.5	$454{ }^{\circ} 9$	$457^{\circ} 2$	2.4
202	459	$461 \cdot 9$	46	$466 \cdot 6$	$469^{\circ} 0$	$471 \cdot 3$	473.7	476.0	$478 \cdot 4$	480. 7	$2 \cdot 3$
203	483.1	$485^{\circ} 4$	$487 \cdot 8$	$490 \cdot 1$	$492 \cdot 5$	$494{ }^{\circ}$	$497{ }^{\text {I }}$	499.4	501.8	504*1	$2 \cdot 3$
204	$506 \cdot 4$	$508 \cdot 7$	511.0		515.7	$518 \cdot 0$	$520 \cdot 3$	522.6	525°	$527 \cdot 3$	$2 \cdot 3$
205	529.6	531.9	$534{ }^{\circ}$	53	$538 \cdot 9$	$541 \cdot 2$	543.5	$545 \cdot 8$	$548 \cdot 2$	$550 \cdot 5$	$2 \cdot 3$
206	11552	$555^{\circ} 1$			562.0	564.3	$566 \cdot 6$	$568 \cdot 9$	$571 \cdot 2$	573.5	2.3
207	575	$578 \cdot 1$	$580 \cdot 4$	$582 \cdot 6$	584.9	$587 \cdot 2$	589.5	591.8	594.1	596.4	$2 \cdot 3$
208	$598 \cdot 7$	601.0	603.3	605	60	610.1	612.4	614%	616.9	$619^{\circ} 2$	$2 \cdot 3$
209	621.5	$623 \cdot 8$	$626 \cdot 1$	$628 \cdot 3$	$630 \cdot 6$	$632 \cdot 9$	$635^{\circ} 2$	$637 \cdot 5$	$639^{\circ} 7$	642°	$2 \cdot 3$
210	$644 \cdot 3$	$646 \cdot 6$	$648 \cdot 8$	$651 \cdot 1$	$653 * 3$	$655 \cdot 6$	657.9	$660 \cdot 1$	662.4	664.6	$2 \cdot 3$
211	11666					$678 \cdot 2$	$680 \cdot 5$	$682 \cdot 7$	-	$687 \cdot 2$	$2 \cdot 3$
212	$689{ }^{\circ} 5$	691.7	694°	$696 \cdot 2$	$698 \cdot 5$	700'7	703°	$705^{\circ} 2$	$707 \cdot 5$	$709^{\circ} 7$	$2 \cdot$
213	7120	714°	716	$718 \cdot 7$	$721^{\circ} \mathrm{O}$	723.2	725.4	$727{ }^{\circ} 7$	729.9	$732 \cdot 2$	$2 \cdot 2$
214	7344	$736 \cdot 6$	$738 \cdot 8$	$741^{\circ} 1$	743.3	745.5	$747{ }^{\circ} 7$	7500	$752^{\circ} 2$	754.5	$2 \cdot 2$
215	756.7	$758 \cdot 9$	$761 \cdot 1$	763.4	$765^{\circ} 6$	$767 \cdot 8$	$770 \times$	$772^{\circ} 3$	774.5	$776 \cdot 8$	2.2
216	11779°	781.2	783.4						79.8	799°	2.2
217	$801 \cdot 2$	8034	805.6	807.8	8100	812.2	814.4	816.6	$818 \cdot 8$	$821^{\circ} \mathrm{O}$	$2 \cdot 2$
218	823	825°	827.6	829.8	$832{ }^{\circ}$	$834{ }^{\circ}$	836.4	$838 \cdot 6$	$840 \cdot 8$	843°	$2 \cdot 2$
219	$845 \cdot 2$	$847 \% 4$	849.6	851.8	854°	$856 \cdot 2$	858.4	$860 \cdot 6$	862.8	$865{ }^{\circ}$	$2 \cdot 2$
220	$867 \cdot 2$	$869 * 4$	871.6	873.7	875.9	$878 \cdot 1$	880*3	882.5	884.6		2.2
221	11889°	891.2	893.4	895.5	897%	895	9021	9042	90	908.5	$2 \cdot 2$
222	$910 \cdot 7$	912.9	915.1	917.2	919.4	921.6	$923 \cdot 8$	926.0	$928 \cdot 1$	$930 \cdot 3$	2
223	932.5	$934 \cdot 7$	936.8	$939{ }^{\circ}$	941'1	943.3	$945^{\circ} 5$	947.6	$949 \cdot 8$	951.9	2.
224	954*1	$956 \cdot 3$	$958 \cdot 4$	$960 \cdot 6$	$962 \cdot 7$		$967{ }^{\circ} \mathrm{O}$	969.2	$971 \cdot 3$	973.5	2.1 2.1
225	$975 * 6$	$977 \cdot 7$	979*9	982.0	984.2	986.3	988.5	990.6	992.8	9949	2.1
226	$11997{ }^{\circ} 1$	999.2	*0014	*003*5	*005*7	*007* 8	*009*9	*012.1	*014*2	*016.4	$2 \cdot 1$
227	12018.5	$020 \cdot 6$	$022 \cdot 7$	024.9	027.0	029 ${ }^{\circ} 1$	031.2	033.4			2.1
228	$039 \cdot 8$	041×9	$044^{\circ} \mathrm{O}$	$046 \cdot 2$	$048 \cdot 3$	$050 \cdot 4$	052.5	054.6	056.8	- 0	$2 \cdot 1$
229	0610	0631	065.2	067.4 088.5	069.5 000.6	. 071.6	073.7 094.8	075.8 096.9	077 099 09	-301.	$2 \cdot 1$ $2 \cdot 1$
230	OS2.I	084.2	086.3	$088 \cdot 5$	$090 \cdot 6$	092.7	094.8	096.9	$099{ }^{1}$	101'2	2

XXIV. T_{v} for Spherical Projectiles. $(w=534.22$ grams $)$.

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f.s.	Seconds										
40	4.227	$4{ }^{280}$	4333	4.385	4437	$4{ }^{48}$	4.540	4591	$4 \cdot 642$	$4 \cdot 693$	52
41	4743	4.793	$4 \cdot 843$	$4 \cdot 893$	4.942	4.991	$5 \cdot 040$	5.089	5.138	5. 186	49
42	$5 \cdot 234$	$5 \cdot 282$	$5 \cdot 330$	$5 \cdot 377$	5.424	5.471	5.517	5. 564	$5 \cdot 610$	$5 \cdot 656$	47
43	5:702	$5 \cdot 747$	$5 \cdot 793$	5.838	$5 \cdot 883$	$5 \cdot 928$	5.972	6.017	6.061	6.105	45
44	$6 \cdot 149$	6.192	6.236	6.279	$6 \cdot 322$	$6 \cdot 365$	6.407	6.450	6.492	6.534	43
45	6.576	6.618	$6 \cdot 659$	$6 \cdot 701$	$6 \cdot 742$	6.783	$6 \cdot 824$	6.864	6.905	6.945	41
46	$6 \cdot 985$	7.025	7.064	$7{ }^{\prime} 104$	$7 \cdot 143$	71182	7.221	$7 \cdot 260$	7.298	7•337	39
47	$7 \cdot 375$	7.413	$7 \cdot 451$	7.489	7.527	$7 \cdot 565$	$7 \cdot 602$	$7 \cdot 640$	$7 \cdot 677$	7714	38
48	$7 \cdot 751$	7.787	7.824	$7 \cdot 860$	7896	7.932	$7 \cdot 968$	$8 \cdot 004$	8.039	8.075	36
49	$8 \cdot 110$	8.145	8.180	8.215	8.250	$8 \cdot 284$	$8 \cdot 319$	$8 \cdot 353$	$8 \cdot 357$	8.421	35
50	8.455	8.489	$8 \cdot 522$	8. 556	8.589	$8 \cdot 622$	8.655	$8 \cdot 688$	$8 \cdot 721$	8.754	34
51	8.786	8.819	8.851	8.883	$8 \cdot 915$	$8 \cdot 947$	8.978	9`010 & 9`042	9.073	32	
52	9.105	$9 \cdot 136$	9.167	9. 198	9.229	9.260	9×291	$9 \cdot 321$	$9 \cdot 352$	9.382	31
53	$9 \cdot 412$	9.442	9.472	$9 \cdot 502$	9.532	9.561	9.591	9.620	$9 \cdot 649$	9.678	30
54	97707	$9 \cdot 736$	9765	9794	9.823	9851	9.880	9.908	9.936	9×964	29
55	$9 * 992$	*0.020	*0.048	*0076	*0'104	* 0131	*0'159	*0. 186	*0.213	*0.240	28
56	10.267	0.294	$0 \cdot 321$	0.348	0×375	$0 \cdot 401$	0.428	0.454	0.480	0.506	27
57	0.532	0.558	0.584	0.610	0.636	$0 \cdot 661$	0.687	0.712	0.738	0.763	26
58	0.788	0.813	$0: 838$	0.862	$0 \cdot 887$	0.912	$0 \cdot 937$	0.961	0.986	$1 \cdot 010$	25
59	$1 \cdot 035$	1•059	1.083	1-107	1.131	1'155	1-179	1-202	I•226	1-249	24
60	$1 \cdot 273$	I•296	1.320	1-343	1.367	1-390	1.413	1.436	$1 \cdot 459$	1.482	23
61	1 1.505	1.527	1.550	1.572	1.595	$1 \cdot 617$	1.639	1.661	1.684	1.706	22
62	$1 \cdot 728$	1.750	$1 \cdot 772$	1.793	1.815	1.837	1.858	1-880	$1 \cdot 901$	$1 \cdot 923$	22
63	1.944	1.965	$1 \cdot 986$	2.008	2.029	2.050	2.071	2.092	$2 \cdot 112$	2133	21
64	$2 \cdot 154$	2.174	2.195	2.215	2.236	2.256	2.276	$2 \cdot 296$	2.317	2.337	20
65	$2 \cdot 357$	$2 \cdot 377$	2.397	2.417	2.436	$2 \cdot 456$	2.476	2.495	2515	2.534	20
66	12.554	2.573	2.593	2.612	2.632	2.651	2.670	2.689	2.708	2'727	19
67	2.746	$2 \cdot 765$	$2 \cdot 783$	2.802	2.820	2.839	$2 \cdot 857$	$2 \cdot 876$	2.894	2.913	19
68	2.931	$2 \cdot 949$	2.967	2.986	3.004	3.022	$3 \cdot 040$	3.058	$3 \cdot 075$	3.093	18
69	$3 \cdot 111$	3.129	3.146	$3 \cdot 164$	$3 \cdot 181$	3•199	$3 \cdot 216$	3.234	3.251	$3 \cdot 269$	18
70	$3 \cdot 286$	$3 \cdot 303$	$3 \cdot 320$	3.338	$3 \cdot 355$	3.372	$3 \cdot 389$	3.406	3.422	3.439	17
71	1 3.456	3.473	3.490	3.506	3.523	3.540	$3 \cdot 556$	3.573	3.589	$3 \cdot 606$	17
72	3.622	3.638	3.654	3.670	3.686	3.702	3.718	3.734	3.750	3.766	16
73	3.782	3.798	$3 \cdot 814$	3.829	$3 \cdot 845$	3.861	$3 \cdot 877$	$3 \cdot 892$	3.908	$3 \cdot 923$	16
74	3.939	3.954	3.970	3.985	4.001	4.016	4.03 I	4.046	4.062	4.077	15
75	4.092	4^{107}	$4^{1} 122$	4 - 137	$4^{1} 15^{2}$	$4^{*} 167$	4182	4.196	4^{-211}	4.225	15
76	14.240	4.254	4.269	4.283	4*298	4'312	$4 \cdot 326$	4.341	4 355	4370	14
77	4.384	4.398	4.412	4.427	4.441	4455	4469	4.483	4.497	4.511	14
78	4.525	4.539	4.553	4.567	$4 \cdot 581$	4.595	$4 \cdot 609$	$4 \cdot 622$	$4 \cdot 636$	4.649	14
79	4.663	4.676	4690	4.703	4.717	4.730	$4 \cdot 743$	4.756	4.770	4.783	13
So	4.796	$4 \cdot 809$	$4 \cdot 822$	$4 \cdot 835$	$4 \cdot 848$	4.86I	$4 \cdot 874$	$4 \cdot 887$	4.900	4.913	13
81	14.926	4.939	4.952	4.964	4.977	4.990	5.003	5.016	$5 \cdot 028$	5.041	13
82	$5 \cdot 054$	$5 \cdot 066$	5.079	$5^{\circ} \mathrm{O} 91$	5.104	5.116	5.128	5.141	5.153	5.166	12
83	$5 \cdot 178$	$5 \cdot 190$	$5 \cdot 202$	$5 \cdot 215$	$5 \cdot 227$	$5 \cdot 239$	5.251	$5 \cdot 263$	$5 \cdot 276$	$5 \cdot 288$	12
84	5.300	$5 \cdot 312$	$5 \cdot 324$	$5 \cdot 335$	$5 \cdot 347$	$5 \cdot 359$	$5 \cdot 371$	$5 \cdot 382$	5.394	$5 \cdot 405$	12
85	$5 \cdot 417$	$5 \cdot 428$	5.440	$5 \cdot 451$	$5 \cdot 463$	5.474	$5 \cdot 485$	$5 \cdot 496$	5.508	$5 \cdot 519$	11

XXIV. T_{v} for Spherical Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
	Seconds	$+$									
86	15.530	$5 \cdot 541$	$5^{\circ} 55^{2}$	$5 \cdot 564$	$5^{\circ} 575$	$5 \cdot 586$	$5 \cdot 597$	$5 \cdot 608$	$5 \cdot 618$	5'629	11
87	5.640	$5 \cdot 651$	$5 \cdot 662$	$5 \cdot 672$	$5 \cdot 683$	5.694	$5 \cdot 704$	$5 \cdot 715$	$5 \cdot 725$	$5 \cdot 736$	11
88	$5 \cdot 746$	$5 \cdot 756$	$5 \cdot 767$	5777	$5 \cdot 788$	5•798	$5 \cdot 803$	$5 \cdot 818$	$5 \cdot 829$	$5 \cdot 839$	0
89	$5 \cdot 849$	$5 \cdot 859$	$5 \cdot 869$	$5 \cdot 879$	$5 \cdot 889$	5.899	5.909	5.919	$5 \cdot 928$	5.938	10
90	5.948	5.958	$5 \cdot 967$	$5 \cdot 977$	$5 \cdot 986$	5*996	6.006	$6 \cdot 15$	$6 \cdot 025$	6.034	0
91	16.044	6.053	6.063	6.072	$6 \cdot 082$	6.091	$6 \cdot 100$	$6 \cdot 109$	6.119	6.128	9
92	$6 \cdot 137$	$6 \cdot 146$	$6 \cdot 155$	$6 \cdot 164$	$6 \cdot 173$	$6 \cdot 182$	6.191	$6 \cdot 200$	6.208	$6 \cdot 217$	9
93	$6 \cdot 226$	$6 \cdot 235$	$6 \cdot 244$	6.252	$6 \cdot 261$	6.270	6.279	$6 \cdot 287$	6.296	$6 \cdot 304$	9
94	6.313	$6 \cdot 321$	$6 \cdot 330$	$6 \cdot 338$	$6 \cdot 347$	$6 \cdot 355$	$6 \cdot 363$	$6 \cdot 372$	$6 \cdot 380$	$6 \cdot 389$	8
95	$6 \cdot 397$	$6 \cdot 405$	6.413	$6 \cdot 422$	6.430	6.438	6.446	6.454	$6 \cdot 463$	6.471	8
96	16.479	$6 \cdot 487$	$6 \cdot 495$	$6 \cdot 503$	6.511	$6 \cdot 519$	$6 \cdot 527$	$6 \cdot 535$	$6 \cdot 542$	6.550	8
97	6.558	$6 \cdot 566$	6.573	6.581	$6 \cdot 588$	6.596	$6 \cdot 604$	6.611	$6 \cdot 619$	6.626	8
98	6.634	$6 \cdot 642$	$6 \cdot 649$	$6 \cdot 657$	$6 \cdot 664$	$6 \cdot 672$	6.679	6.686	6.694	$6 \cdot 701$	7
99	6.708	6.715	$6 \cdot 722$	6.730	$6 \cdot 737$	6.744	$6 \cdot 751$	$6 \cdot 758$	$6 \cdot 766$	$6 \cdot 773$	7
100	$6 \cdot 780$	$6 \cdot 787$	6'794	$6 \cdot 801$	6.808	6.815	$6 \cdot 822$	6.829	6.835	6.842	
101	16.8491	8559	8627	8694	8761	8828	8895	8961	9027	9093	67
102	9158	9223	9288	9353	9417	9482	9546	9610	9673	9737	64
103	9800	9862	9925	9987	*0049	OIII	*OI72	*0233	*0294	*0355	62
104	17.0416	0476	0536	0595	0655	0714	0773	0832	0890	0948	59
105	1006	1064	I12I	1179	1236	1293	1350	1406	1463	1519	57
106	17* 1575	1630	1686	1741	1796	1851	1905	1960	2014	2068	55
107	2122	2176	2229	2283	2336	2389	2442	2495	2547	2600	53
108	2652	2704	2756	2807	2859	2910	2961	3012	3062	3113	51
109	3163	3213	3263	3313	3363	3413	3462	3512	3561	3610	50
110	3659	3708	3756	3805	3853	3901	3949	3997	4044	4092	48
111	$17 \cdot 4139$	4186	4233	4280	4326	4373	4419	4466	4512	4558	47
112	4604	4650	4696	4741	4787	4832	4877	4922	4967	5012	45
113	5057	5 IOI	5145	5190	5234	5278	5322	5366	549	5453	44
114	5497	5540	5583	5626	5669	5712	5755	5797	5840	5882	43
115	5925	5967	6009	6050	6092	6134	6175	6216	6258	6299	42
116	17.6340	6381	6422	6462	6503	6544	6584	6625	6665	6706	41
117	6746	6786	6826	6865	6905	6945	6984	7023	7063	7102	40
118	7141	7180	7219	7257	7296	7335	7373	7412	7450	7489	39
119	7527	7565	7603	7640	7678	7716	7753	7791	7828	7866	38
120	7903	7940	7977	8014	8051	8088	8125	8ı6I	8198	8234	37
121	17.8271	8307	8343	8380	8416	8452	8488	8524	8559	8595	36
122	8631	8666	8702	8737	8773	8808	8843	8878	8913	8948	35
123	8983	9018	9053	9087	9122	9157	9191	9226	9260	9295	35
124	9329	9363	9397	9431	9465	9499	9533	9566	9600	9633 9966	34 33
125	9667	9700	9734	9767	9801	9834	9867	9900	9933	9966	33
126	17.9999	*0032	*0065	*0097	*O130	*0163	*OI95	*0228	*0260	*0293	33
127	18.0325	0357	0389	0422	0454	0486	0518	0550	0581	0613	32
128	0645	0677	0708	0740	0771	0803	0834	0865	0897	0928	31 31
129	0959	0990	1021	1052	1083	1114	1145	1176	I 206	1237	31 30
130	1268	1298	1329	1359	1390	1420	1450	1480	1511	1541	30
131	18.1571	1601	1631	1661	1691	1721	1751	1780	1810	1839	30
132	1869	1898	1928	1957	1987	2016	2045	2074	2104	2133	29
133	2162	2191	2220	2248	2277	2306	2335	2363	2392	2420	29
134	2449	2477	2506	2534	2563	2591	2619	2647	2676	2704	28 28
135	2732	2760	2788	2815	2843	2871	2899	2926	2954	2951	28

XXIV. I_{v} for Spherical Projectiles (continued).

v	-	1	2	3	4	5	6	7	8	9	Diff.
f. 5	Seconds	Secon	Seconds	onds	Seconds	onds	s	s	Seconds	Seconds	
136	18.3009	3036	3063	3091	3118	3145	3172	3199	3227	3254	27
${ }^{1} 37$	3281	3308	3335	3361	3388	3415	3442	3469	3495	3522	27
138	3549	3575	3602	3628	3655	3681	3707	3733	3760	3786	26
139	3812	3838	3864	3890	3916	3942	3968	3994	4019	4045	26
140	4071	4096	4122	4147	4173	4198	4223	4249	4274	4300	25
141	18.4325	4350	4375	4400	4425	4450	4475	4500	4525	4550	25
142	4575	4600	4624	4649	4673	4698	4722	4747	4771	4796	25
143	4820	4844	4869	4893	4918	4942	4966	4990	5015	5039	24
144	5063	5087	5111	5135	5159	5183	5207	5230	5254	5277	24
145	5301	5325	5348	5372	5395	5419	5442	5466	5489	5513	24
146	18.5536	5559	5582	5606	5629	5652	5675	5698	5721	5744	23
147	5767	5790	$5{ }^{813}$	5835	5858	5881	5904	5926	5949	5971	23
148	5994	6016	6039	6061	6084	6106	6128	6151	6173	6196	22
149	6218	6240	6262	6285	6307	6329	6351	6373	6395	6417	22
150	6439	6461	6483	6504	6526	6548	6570	6591	6613	6634	22
151	18.6656	6677	6699	6720	6742	6763	6784	6806	6827	6849	21
152	6870	6891	6912	6934	6955	6976	6997	7018	7039	7060	21
153	7081	7102	7123	7144	7165	7186	7207	7227	7248	7268	21
154	7289	7310	7330	7351	7371	7392	7412	7432	7453	7474	21
155	7494	7514	7535	7555	7576	7596	7616	7636	7657	7677	20
156	18.7697	7717	7737	7757	7777	7797	7817	7837	7856	7876	20
157	7896	7916	7936	7955	7975	7995	8015	8034	8054	8073	20
158	8093	8113	8132	8152	8171	8191	8210	8230	8249	8269	20
159	8288	8307	8326	8346	8365	$8{ }^{8} 84$	8.403	8422	8441	8460	19
160	8479	8498	8517	8536	8555	8574	8593	8612	8630	8649	19
161	18.8668	8687	8705	8724	8742	8761	8780	8798	8817	8835	19
162	8854	8873	8891	8910	8928	8947	8965	8984	9002	9021	19
163	9039	9057	9075	9094	9112	9130	9148	9166	9184	9202	18
164	9220	9238	9256	9274	9292	9310	9328	9346	9364	9382	18
165	9400	9418	9436	9453	9471	9489	9507	9524	9542	9559	18
166	18.9577	9595	9612	9630	9647	9665	9682	9700	9717	9735	18
167	9752	9769	9787	9804	9822	${ }^{9839}$. 9856	9873	*991	9908	17
168	9925	9942	9959	9977	9994	*0011	*0028	*0045	*0062	*0079	17
169	19.0096	0113	0130	0147	O164	0181	-198	0215	0231	0248	17
170	0265	0282	0298	0315	0331	0348	0365	0381	0398	0414	17
171	19.0431	0448	0464	0481	0497	0514	0530	0547	0563	0580	7
172	0596	0612	0629	0645	0662	0678	0694	0710	$07=7$	0743	16
173	0759	0775	0791	-803	0824	0840	0856	-S72	0888	0904	16
174	0920	0936	0952	0968	o984	1000	1016	1032	1048	1064	16
175	1080	1096	1112	1127	143	1159	1175	1190	1206	12	16
176	19. 1237	1253	1268	1284	1299	1315	1331	1346	1362	1377	16
177	1393	1408	1424	1439	1455	1470	14 S 5	1501	1516	${ }^{1} 532$	15
178	1547	1562	1577	1593	1608	1623	1638	1653	1669	1684	15
179	1699	1714	1729	1745	1760	1775	1790	1805	1820	1835	15
ISo	1850	1865	1880	I 895	1910	1925	1940	1955	1969	1984	15
181	19. 1999	2014	2029	2043	2058	2073	2088	2103	2117	2132	15
182	2147	2162	2176	2191	2205	2220	2235	2249	2264	2278	15
183	2293	2307	2322	2336	2351	2365	2379	2394	2408	2423	14
184	2437	2451	2466	2480	2495	2509	2523	2537	2552	2566	14
185	2580	2594	2608	2622	2636	2650	2664	2678	2693	2707	14

XXIV. T_{v} for Spherical Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f.s.	Seconds	Sec	Sec.onds	Seconds	Sec	Seconds	Seconds	Seconds	Seconds	Seconds	+
186	19.2721	2735	2749	2763	2777	2791	2805	2819	2832	2846	14
187	2860	2874	2888	2901	2915	2929	2943	2957	2970	2984	14
188	2998	3012	3025	3039	3052	3066	3080	3093	3107	3120	14
189	3134	3148	3161	3175	3188	3202	3215	3229	3242	3256	14
190	3269	3282	3296	3309	3323	3336	3349	3362	3376	3389	13
191	19.3402	3415	3428	3442	3455	3468	3481	3494	3508	3521	13
192	3534	3547	3560	3573	3586	3599	3612	3625	3638	3651	13
193	3664	3677	3690	3702	3715	3728	3741	3754	3766	3779	13
194	3792	3805	3817	3830	3842	3855	3868	3880	3893	3905	13
195	3918	3931	3943	3956	3968	3981	3994	4006	4019	4031	13
196	19.4044	4056	4068	4081	4094	4106	4118	4131	4143	4156	12
197	4168	4180	4192	4205	4217	4229	4:41	4253	4266	4278	12
198	4290	4302	4314	4327	4339	4351	4363	4375	4388	4400	12
199	4412	4424	4436	4448	4460	4472	4484	4496	4508	4520	12
200	4532	4544	4556	4567	4579	4591	4603	4615	4626	4638	12
201	19.4650	4662	4674	4685	4697	4709	4721	4732	4744	4755	12
202	4767	4779	4790	4802	4813	4825	4837	4848	4860	4871	12
203	4883	4895	4906	4918	4929	4941	4952	4964	4975 5089	4987 5101	12
204	4998	5009	5021	5032	5044	5055	5066	5	5089 5202	5101	11
205	5112	5123	5134	5146	5157	5168	5179	5190	5202	5213	11
206	19. 5224	5235	5246	5258	5269	5280	5291	5302	5314	5325	11
207	5336	5347	5358	5369	5380	5391	5402	5413	5424	5435	11
208	5446	5457	5468	5479	5490	5501	5512	5523	5534	5545	11
209	5556	5567	5578	5588	5599	5610	5621	5632	5642	5653	11
210	5664	5675	5686	5696	5707	5718	5729	5740	5750	5761	11
211	19.5772	5783	5793	5804	5814	5825	5836	5846	5857	5867	11
212	5878	5889	5899	5910	5920	5931	5942	${ }_{605}^{59}$	5963 6068	5973 6079	11
213	5984	5995	6005	6016	6026	6037	6047	6058 6162		6079 6183	110
214	6089 6193	6099 6203	6110 6214	6120 6224	6131 6235	6141 6245	6151 6255	6162 6266	6172 6276	6183 6287	10
215	6193	6203	6214	6224	6235	6245	655				
216	19.6297	6307	6317	6328	6338	6348	6358	6368	6379	6389	10
217	6399	6409	6419	6430	6440	6450	6460	6470	6481	6491	10
218	6501	6511	6521	6531	6541	6551	6561	6571	6581	6591	10
219	6601	6611	6621	6631	6641	6651	6661	6671	6681	6691	10
220	6701	6711	6721	6731	6741	6751	6761	6771	6781	6791	10
221	19.6801	6811	6821	6830	6840	6850	6860	6869	6879	6888	10
222	6898	6908	6918	6927	6937	6947	6957	6967	6976	${ }_{7} 6886$	10
223	6996	7006	7016	7025	7035	7045	7055	7064	7074	7083	10
224	7093	7103	7112	7122	7131 7227	7141	7151 7246	7165	7265	7274	10
225	7189	7198	7208	7217	7227	7236	724	7255			
226	$19^{\circ} 7284$	7293	7303	7312	7322	7331	7340	7350	7359	7369	9
227	7378	7387	7397	7406	7416	7425	7434	7444	7453	7463	9
228	7472	7481	7491	7500		7519	7528 7620	7537	7639	7648	
229	7565	7574	7583	7593	7602						

XXV. S_{v} for Ogival-headed Projectiles. ($w=534.22$ grains.)

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f.	Feet	Feet		Feet		Feet		Feet	Feet	Feet	
10								53	2207	2359	158
11	2510	266	2808	2955	310	3245	3388	3530	3671	38	145
12	3949	4086	4222	4357	44	4624	4756	4886	5016	514	133
13	5272	5399	5525	5649	5773	5896	6018	6139	6259	6378	123
14	6497	6614	6731	6847	6902	7077	7190	7303	7415	7526	114
15	7637	7747	7856	7964	8072	8179	8285	8391	8496	8600	107
16	8704	S807	8910	9012	9113	9213	9313	9412	9511	9609	101
17	9706	9803	9900	9996	*0091	"or85	*0279	*0373	*0466	*0559	95
18	10651	0742	0833	0924	1014	1104	1193	1281	1369	1457	90
19	11544	163	1717	1803	1858	1973	2058	2142	2226	2309	85
20	2392	2474	2556	2638	2719	2800	2881	2961	3041	3120	1
21	3199	3278	3356	343	3511	3588	3665	3741	3817	3892	77
22	13967	404	411	419	426	4338	44	4484	4557	4630	74
23	4702	477	4845	4916	4987	5058	5128	5198	5268	5337	68
24	5406	5475	5544	5612	5680	5747	5814	5881	5948	6014	68
25	16080	6146	6212	6277	6342	6407	6472	6537	6601	6665	65
26	6729	6793	6856	6919	6982	7044	7106	7168	7230	7291	62
27	7352	7413	7474	7535	7595	7655	7715	7775	7835	7895	60
28	17954	8013	8072	8131	8189	8247	8305	8363	8420	8477	58
29	8534	8591	8648	8704	8760	8816	8572	8928	8984	9039	56
30	9094	9149	9204	9259	9313	936	9421	9475	9529	9583	54
31	19636	9689	97	9795	98	9901	9953	*0005	*0057	*oros	53
32	20161	0213	0264	0315	0366	0417	0468	0519	0569	0619	1
33	0669	0719	0769	osi9	0869	09	0967	1016	1065	1114	50
34	21163	1212	12	1308	1356		145	1500	1548	1595	48
,	1642	1689	1736	1783	1830	1876	1923	1969	2015	2061	47
36	2107	2153	2199	2245	2290	2335	2380	2425	2470	2515	45
37	22560	2605	26	2694	2738	2782	2826	2870	2914	2958	44
38	3001	3045	3088	3131	3174	3217	3260	3303	3346	3388	43
39	3430	3473	3515	3557	3599	3641	3683	3725	376	3808	4^{2}
40	23849	3890	3931.	3972	4013	405	4095	4136	4177	4217	41
41	4257	4297	4337	4377	4417	4457	4497	4537	4577	4616	40
42	46	46	4734	47	4812	5	489	4929	49	50	39
43	25044	50	5121	5159	5197	5235		5311	5349		38
44	5424	5462	5499	5537	5574	5611	5640	5685	572	5759	37
45	5796	5833	5	59	59	5979	6015	6051	6087	6123	36
46	26159	6195	6230	6266	6301	63	6372	6408	6443	6479	36
47	6514	6549	6584	6618	6653	6688	6723	6758	6792	6827	35
48	6862	6896	6930	6965	6999	7033	7067	710	7135	7169	34
49	27203	7237	7270	7304	733	7371	7404	7437	7471	7504	33
50	7537	7570	7603	7635	7668	7701	7734	7766	7799	7831	33
51	7864	7896	7928	7961	7993	8025	8057	So89	S121	8153	32
52	28185	8217	8248	8280	8311			8406	8437		32
53	8500	8531	8562	8593	8624	85	8656	8717	8747	8778	31
54	8809	8839	8570	8900	8931	896	8991	902	9052	9082	30
	29112					9262					
56	9410	9439	9469	9498	9528	9557	9586	9615	9645	9674	29
57	9703	9732	9761	97 S9	9818	9547	9876	9904	9933	996:	29

XXV, S_{v} for Ogival-headed Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f.	Feet	$+$									
58	29990	*0018	*0047	*0075	*0104	*OI 32	*0160	*OI88	*0217	*0245	28
59	30273	0301	0329	0357	0385	0413	0441	0468	0496	0523	28
60	055I	0578	0606	0633	0661	0688	0715	0742	0770	0797	27
61	30824	0851	0878	0905	0932	0959	0986	1013	1039	1066	27
62	1093	1120	1146	1173	1199	1226	1252	1278	1305	1331	26
63	1357	1383	1409	1436	1462	1488	1514	1540	1566	I 592	26
64	31618	1644	1670	1695	1721	I747	1772	1798	1823	1849	26
65	1874	1899	1925	1950	1976	2001	2026	2051	2076	2101	25
66	2126	2151	2176	2201	2226	2251	2276	2301	2325	2350	25
67	32375	2400	2424	2449	2473	2498	2522	2547	2571	2596	25
68	2620	2644	2668	2693	2717	2741	2765	2789	2813	2837	24
69	286I	2885	2909	2932	2956	2980	3004	3028	3051	3075	24
70	33099	3123	3146	3170	3193	3217	3240	3263	3287	3310	23
71	3333	3356	3379	3403	3426	3449	3472	3495	3518	3541	23
72	3564	3587	3610	3632	3655	3678	3701	3724	3746	3769	23
73	33792	3815	3837	3860	3882	390	3927	3950	3972	3995	23
74	4017	4039	4061	4084	4106	4128	4150	4172	4195	4217	22
75	4239	4261	4283	4305	4327	4349	4371	4393	4414	4436	22
76	34458	4480	4501	4523	4544	4566	4588	4609	4631	4652	22
77	4674	4695	4717	4738	4760	4781	4802	4823	4845	4866	21
78	4887	4908	4929	4951	4972	4993	5014	5035	5056	5077	1
79	35098	5119	5140	5161	5182	5202	5223	5244	5265	5285	21
80	5306	5327	5347	5368	5389	5409	5430	5450	5471	5491	20
81	5512	5532	5552	5573	5593	5613	5634	5654	5674	5694	20
82	35714	5734	5754	5775	5795	5815	5834	5854	5874	5894	20
83	5914	5933	5953	5973	5992	6012	6031	6051	6070	6089	19
84	6109	6128	6147	6166	6185	6204	6223	6242	6261	6280	19
85	36299	6318	6336	6355	6374	6393	6411	6430	6448	6467	19
86	6485	6503	6522	6540	6558	6576	6594	6612	6630	6648	18
87	6666	6684	6702	6720	6738	6756	6773	6791	6809	6826	18
88	36844	6861	6879	6896	6914	6931	6948	6966	6983	7000	17
89	7017	7034	7052	7069	7086	7103	7120	7136	7153	7170	17
90	7187	7204	7220	7237	7254	7271	7287	7303	7320	7336	17
91	37353	7369	7386	7402	7418	7435	7451	7467	7483	769	16
92	7515	7531	7547	7563	7579	7595	7611	7627	7643	7658	16
93	7674	7690	7705	7721	7737	7752	7768	7783	7798	7814	16
94	37829	7845	7860	7875	7891	7906	7921	7936	7951	7966	15
95	7982	7997	8012	8027	8042	8057	8071	8086	8101	$8 \mathrm{8in} 6$	15
96	8131	8145	8160	8175	8189	8204	8218	8233	8247	S262	15
97	38277	8291	8305	8320	8334	8348	8363	8377	8391	8405	14
98	8419	8433	8448	8462	8476	8490	8504	8518	8532	8546	14
99	8560	8573	8587	8601	8615	8628	8642	8656	8669	8683	14
100	38697	8710	8724	8737	8751	8764	8778	8791	8804	8818	13
101	8831	8844	8857	8871	8884	8897	8910	8923	S936	8949	13
102	8962	. 8975	8988	9000	9013	9026	9038	9051	9063	9076	13
103	39088	9100	9113	9125	9137	9149	9161	9172	9184	9196	12
104	9207	9219	9230	9241	9252	9263	9274	9285	9295	9306	11
105	9317	9327	9337	9347	9357	9367	9377	9387	9396	9.406	10

XXV. S_{v} for Ogival-headed Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f. s.	Fee	Feet	Feet	Feet	Feet			et			
106	394157	425°	434.2	443.5	$452 \cdot 7$	462\%	471°	$479{ }^{\circ} 9$	45.50	$497 \cdot 8$	- 1
107	$506 \cdot 8$	515.5	524.3	$533{ }^{\circ}$	$541 \cdot 8$	$550 \cdot 5$	$559{ }^{\circ}$	$567 \cdot 5$	576.0	584.5	$8 \cdot 6$
108	$593{ }^{\circ}$	601.2	609.5	617%	626.0	6343	642.4	$650 \cdot 5$	658.6	$666 \cdot 7$	8.2
109	$39674 \cdot 8$	682.8	690\%7	$698 \cdot 6$	$706 \cdot 5$	714.4	72	$730 \cdot$	737.8	745^{6}	9
110	7534	$761 \cdot 1$	$768 \cdot 8$	$776 \cdot 5$	784.2	791.9	799.5	8071	S14.6	S22.2	$7 \cdot 6$
111	829.7	8371	844.5	851.9	859.3	$866 \cdot 8$	874.1	SS14	888.8	896.1	4
112	39903.5	910'7	918.0	925.2	$932^{\circ} 5$	$939 \cdot 8$	946.9	954.I	$961 \cdot 3$	$965 \cdot 5$	7
113	$975 \cdot 7$	9S2.8	989*9	9970	*004.1	*O112	*018.2	*025.2	*032-3	*039'3	7
114	40046.4	053.4	$060 \cdot 4$	${ }^{06} 74$	074.4	08r. 4	088.3	095.2	102.2	${ }^{107} 1$	$7{ }^{\circ}$
115	40116.1	122.9	129.8	$136 \cdot 6$	143.5	150.4	157.2	164°	$170 \cdot 8$	$177 \cdot 6$	$6 \cdot 8$
116	184.4	191.1	197.9	204.6	211.4	$21 \mathrm{~S}^{2} 2$	224.9	231.6	23 S 3	245°	$6 \cdot 7$
117	251.7	258.3	265°	271.6	278.2	284.9	291.5	298.0	304.6	$31^{\prime} 2$	$6 \cdot 6$
118	$40317 \cdot 8$	324.3	$330 \cdot 8$	337.3	$343^{\circ} 9$	3504	356.8	363.3	$369 \cdot 8$	$376 \cdot 2$	$6 \cdot 5$
119	$382 \cdot 7$	389.1	395.5	401.9	408.4	$414^{\circ} 8$	421.1	427.5	433.9	$44^{\circ} \cdot 2$	6.4
120	$446 \cdot 6$	452.9	459°	$465 \cdot 5$	471.9	478.2	484.4	$490 \cdot 7$	497°	503.2	$6 \cdot 3$
12	$40509 \cdot 5$	5157	521.9	$528 \cdot 1$	534*3	$540 \cdot 5$	$546 \cdot 6$	552.8	$559{ }^{\circ}$	$565 \cdot 1$	6.2
122	57 r 3	$577{ }^{\circ}$	$58 \cdot 5$	589.6	5957	601.8	$607 \cdot 8$	613.9	6200	626.0	$6 \cdot 1$
123	$632 \cdot 1$	$638 \cdot 1$	644^{1}	6501	656.1	$662 \cdot 1$	668 \%	$674{ }^{\circ}$	6So`o	685.9	6.0
124	$40691 \cdot 9$	697.8	703.7	7096	715.6	721.5	727.3	733.2	739.1	74.9	\% 9
125	$750 \cdot 8$	$756 \cdot 6$	762.4	768.2	$774{ }^{\circ}$	779.8	$7{ }^{7} 5.5$	791.3	7971	802.8	S
126	808	814.3	820:1	S25-8	831.5	837.3	843.0	$848 \cdot 7$	854.4	860. 1	5.7
127	$40865^{\circ} 8$	871.4	877*0	$882 \cdot 6$	885.3	893.9	899.5	905 1	$910 \cdot 7$	916.3	5.6
128	921.9	9274	$933{ }^{\circ}$	$938 \cdot 5$	$944^{\circ} \mathrm{O}$	949.6	955.1	960\%	966 I	$971 \cdot 6$	$5 \cdot 5$
129	977 ${ }^{\text {I }}$	982.5	983.0	993.5	998.9	* ${ }^{0} 4{ }^{4} 4$	*009 8	* $015{ }^{2}$	*020.6	*026.1	5.4
130	41031.5	-36.9	042.	0477	053.1	058.5	063.8	069.2	074.6	-79.9	5.4
131	085.3	$090 \cdot 6$	095.9	101.2	$106 \cdot 6$	1119	$117^{\circ} 2$	122.5	127.8	133.1	5
132	1384	$143^{\prime} 6$	$148 \cdot 9$	$154{ }^{2}$	159.	164%	169.9	175. ${ }^{\text {I }}$	ISO^{3}	185.6	5°
133	41190.8	196.0	$201 \cdot 2$	206.4	211.6	216.8	221.9	2271	232.3	2374	$5 \cdot 2$
134	$242 \cdot 6$	2477	$252 \cdot 9$	258°	$263 \cdot 1$	$268 \cdot 3$	273.4	278.5	$253 \cdot 6$	258.8	5.1
135	293.9	298.9	304*0	309.1	$34^{\prime .1}$	319.2	324*2	329.3	334.4	3394	$5 \cdot 1$
136	$41344 \cdot 5$	$349 \cdot 5$	$354 \cdot 6$	$359 \cdot 6$	364.6	369.7	3747	379.7	384.7	389.7	50
137	394.7	$399 \cdot 7$	404.6	409.6	414.6	$419^{\circ} 6$	424.5	429.5	$434 \cdot 5$	439.4	$5{ }^{\circ}$
13	444	4493	454	459	46	46	473.9	478	57	488.6	4.9
139	41493.5	49¢.4	503.2	50S. 1	$513^{\circ} \mathrm{O}$	517.9	522.7	527.6	532.5	537.3	4.9
140	542.2	547*	551.9	556.7	561.5	506.4	$571^{1} 2$	$576{ }^{\circ}$	$580 \cdot 8$	5857	$4 \cdot 8$
141	590.5	595.3	6001	604.9	609.7	614.5	619.3	624°	628.8	633.6	$4 \cdot 8$
142	41638.4	$643 \cdot 1$	647.9	652.6	6573	$662 \cdot 1$	$666 \cdot 8$	$671 \cdot 6$	$676 \cdot 3$	681.0	4.7
143	$685 \cdot 8$	$690 \cdot 5$	$695^{\circ} 2$	$699 \cdot 9$	704.7	709.4	714.1	$715 \cdot 8$	723.5	$728 \cdot 2$	$4 \cdot 7$
144	732.9	$737 \cdot 6$	$742 \cdot 2$	746.9	751.6	756.3	760.9	$765 \cdot 6$	770	774.9	47
145	$41779 \cdot 6$	784.2	788.9	793.6	798.2	802.9	So7. 5	812.2	816.8	S214	$4 \cdot 6$
146	826.1	$830 \cdot 7$	$835 \cdot 3$	839.9	844.6	$84^{\prime}{ }^{\circ}$	853.8	858.4	863.0	$867 \cdot 6$	$4 \cdot 6$
147	$872 \cdot 2$	$876 \cdot 8$	881.4	886.0	890.6	895.2	899.8	904.4	905*9	${ }^{11} 3.5$	$4^{\cdot 6}$
148	41918.1	922.7	927.2	931.8	936.3	$9.40 \cdot 9$	$945 \cdot 4$	$950{ }^{\circ}$	954*5	959.1	46
149	963.6	$968 \cdot 1$	$972 \cdot 7$	977'2	$95 \mathrm{~s} \cdot 8$	986.3	$990 \cdot 8$	995.3	$999^{\circ} 9$	*00.4 4	4.5
150	42008.9	0134	0179	${ }^{022} 5$	027*	0315	036.	040'5	044.9	0.494	45
151	$42053{ }^{\circ} 9$	058.4	062.9	067.3	071.8	076.3	$080 \cdot 5$		-897 7	$094^{\circ} 2$	4.5
152	098.7	103.2	107.6	${ }_{112}{ }^{1}$	116.5	1210	125.4	129.8	134.3	1387	4.4
153	143.1	147.5	$151^{\circ} 9$	156.4	$160 \cdot 8$	165°	169.6	$174^{\circ} 1$	178.5	183°	4.4

XXV. S_{v} for Ogival-headed Projectiles (continued).

v	0	I	2	3	4	5	6	7	8	9	Diff.
f.s.	Feet	Feet	Feet	Feet	F	Feet	Feet	Feet	Feet	Feet	$+$
154	421874	191.8	196.3	200:7	$205 \cdot 2$	209.6	$214^{\circ} \mathrm{O}$	$218 \cdot 4$	222.9	$227^{\circ} 3$	44
155	2317	$236 \cdot 1$	$240 \cdot 5$	$245{ }^{\circ} \mathrm{O}$	$249 \cdot 4$	253.8	$258 \cdot 2$	$262 \cdot 6$	$266 \cdot 9$	271.3	4.4
156	275%	$280 \cdot 1$	284.5	288.8	293.2	297.6	302.0	$306 \cdot 4$	3107	315.1	44
157	42319.5	323.9	$328 \cdot 2$	332.6	$3.36 \cdot 9$	341×3	$345 \cdot 7$	350°	354.4	$358 \cdot 7$	4.4
158	363.1	367.4	371.8	$376 \cdot 1$	$380 \cdot 5$	$3{ }^{3} 4 \cdot 8$	$389 \cdot 1$	393.5	$397 \cdot 8$	402.2	$4 * 3$
159	$406 \cdot 5$	410.8	415.1	419.5	$423 \cdot 8$	$428 \cdot 1$	$432 \cdot 4$	$436 \cdot 7$	$44{ }^{1} 1$	$445^{\circ} 4$	4.3
160	424497	$454{ }^{\circ}$	$458 \cdot 3$	$462 \cdot 6$	$466 \cdot 9$	471.2	$475 \cdot 5$	479.8	$4^{8} 4^{\circ} \mathrm{I}$	488.4	43
161	$492 \cdot 7$	$497{ }^{\circ}$	$501 \cdot 3$	$505 \cdot 6$	$509 \cdot 9$	514.2	518.5	522.8	$527{ }^{\circ} \mathrm{O}$	$531 \cdot 3$	43
162	$535 \cdot 6$	$539{ }^{\circ} 9$	544.2	$548 \cdot 4$	$552 \cdot 7$	557.0	$561 \cdot 3$	$565 \cdot 5$	569.8	574%	43
163	$42578 \cdot 3$	582.5	586.8	591*0	595.3	599.5	$603 \cdot 7$	608.0	612.2	616.5	$4{ }^{2}$
164	6207	624.9	629.2	633.4	$637 \cdot 7$	641.9	$646 \cdot 1$	$650 \cdot 3$	654.6	$658 \cdot 8$	4.2
165	$663^{\circ} 0$	$667 \cdot 2$	671.4	$675 \cdot 7$	679.9	684.1	$688 \cdot 3$	692.5	$696 \cdot 8$	7010	$4^{\prime 2}$
166	$42705^{\circ} 2$	709.4	713.6	717.8	$722{ }^{\circ}$	$726 \cdot 2$	$730{ }^{\circ} 4$	$734^{\circ} 6$	$738 \cdot 8$	$743{ }^{\circ}$	$4{ }^{\circ}$
167	7472	7514	$755 \cdot 6$	759.7	763.9	768.1	$772 \cdot 3$	$776 \cdot 5$	$750 \cdot 6$	784.8	4.2
168	789°	$793 \cdot 2$	$797 * 3$	$801 \cdot 5$	$805 \cdot 6$	809.8	814.0	$818 \cdot 1$	$822 \cdot 3$	826.4	4.2
169	$42830 \cdot 6$	834.8	$838 \cdot 9$	843.1	847.2	851.4	855.5	859.7	863.8	868.0	$4^{\circ} 2$
170	872.1	S76.2	880.4	884.5	$805 \cdot 7$	892.8	896.9	SOI'I	905.2	$909{ }^{\circ} 4$	4^{-1}
171	913.5	$917 \cdot 6$	9217	925.9	9300	934* 1	$938 \cdot 2$	$942 \cdot 3$	$946 \cdot 5$	950.6	$4^{*} 1$
172	4295477	$958 \cdot 8$	962.9	967.1	971.2	$975 \cdot 3$	979.4	983.5	987.6	991.7	$4^{\circ} \mathrm{I}$
173	$995 \cdot 8$	999'9	* $004{ }^{\circ} \mathrm{O}$	*008•1	*O12.2	*016.3	*020'4	+024.5	*028.5	*032.6	$4^{\cdot 1}$
174	430367	040.8	044.9	048.9	053.0	057*1	061.2	$065 \cdot 3$	$069{ }^{\circ} 3$	073.4	$4^{\wedge} 1$
175	43077.5	0816	085.6	-89.7	093.7	$097 \cdot 8$	IOI•9	105.9	$110{ }^{\circ}$	114.1	4.1
176	118.1	122.1	$126 \cdot 2$	$130 \cdot 2$	$134 * 3$	$138 \cdot 3$	$142 \cdot 3$	146.4	$150{ }^{\circ}$	154.5	4°
177	$158 \cdot 5$	162.5	166.5	$170 \cdot 6$	174.6	178.6	182.6	186.6	$190 \cdot 7$	194.7	4°
178	$43198 \cdot 7$	202.7	206.7	$210 \cdot 7$	214.7	218.7	222.7	$226 \cdot 7$	$230 \cdot 8$	234.8	4°
179	$238 \cdot 8$	$242 \cdot 8$	$246 \cdot 8$	$250 \cdot 8$	254.8	$258 \cdot 8$	262.8	$266 \cdot 8$	$270 \cdot 7$	274.7	4°
180	$278 \cdot 7$	282.7	$286 \cdot 7$	$290 \cdot 6$	294.6	298.6	$302 \cdot 6$	$306 \cdot 6$	3105	314.5	$4^{\circ} 0$
181	43318.5	322.5	$326 \cdot 5$	$330 \cdot 4$	$334{ }^{\circ} 4$	338.4	342.4	$346 \cdot 3$	350.3	354.2	$4^{\circ} \mathrm{O}$
182	358.2	362.2	$366 \cdot 1$	370. 1	$374^{\circ} \mathrm{O}$	$37{ }^{\circ} \mathrm{O}$	$381 \cdot 9$	$385 \cdot 9$	389.8	$393 \cdot 8$	$4^{\circ}{ }^{\circ}$
183	397'7	$401 \cdot 6$	$405 \cdot 6$	$409 \cdot 5$	413.5	$417 \% 4$	$421 \cdot 3$	$4^{25}{ }^{\circ} 3$	$429 \cdot 2$	$433{ }^{\circ}$	3.9
184	$43437{ }^{\circ} \mathrm{I}$	$441^{\circ} 0$	$444 * 9$	$448 \cdot 9$	$452 \cdot 8$	$456 \cdot 7$	$460 \cdot 6$	$464 \cdot 5$	468.5	472.4	3.9
185	476	$480 \cdot 2$	484^{-1}	$488 \cdot 0$	$491 \cdot 9$	$495 \cdot 8$	499.7	503.6	$507 \cdot 5$	511.4	3.9
186	515.3	519.2	$523 \cdot 1$	$526 \cdot 9$	$530 \cdot 8$	534.7	$538 \cdot 6$	542.5	$546 \cdot 3$	550%	3.9
187	43554.1	558.0	561•9	565.7	$569 \cdot 6$	573.5	$577 * 4$	581.2	$585 \cdot 1$	588.9	3.9
188	592.8	596.7	$600 \cdot 5$	604.4	608.2	$612 \cdot 1$	615.9	619.8	623.6	627.5	3.9 3.8
189	631.3	6351	$639{ }^{\circ}$	$642 \cdot 8$	$646 \cdot 7$	$650 \cdot 5$	654.3	$658 \cdot 2$	$662^{\circ} \mathrm{O}$	665.9	$3 \cdot \mathrm{~S}$
190	436697	$673 \cdot 5$	$677 \cdot 4$	$681 \cdot 2$	685^{1} I	$688 \cdot 9$	692.7	696.5	$700 \cdot 4$	704.2	3.8
191	$708 \cdot$	711.8	715.6	719.5	723.3	$727 \cdot 1$	$730 \cdot 9$	734.7	738.6	742.4	3.8
192	$746 \cdot 2$	7500	$753 \cdot 8$	$757 \cdot 6$	$761 \cdot 4$	$765^{\circ} 2$	769°	772.8	776.6	$780 \cdot 4$	3.8
193	43784.2	788.0	791.8	795.6	$799{ }^{\circ} 4$	803.2	807.0	$810 \cdot 8$	814.5	818.3	$3 \cdot 8$
194	822.1	825.9	829.6	833.4	$837 \cdot 1$	$840 \cdot 9$	844.7	848.4	852.2	855.9 893.5	$3 \cdot 8$ $3 \cdot 8$
195	859.7	863.5	$867 \cdot 2$	871.0	874.7	$878 \cdot 5$	882.2	$886 \cdot 0$	$889^{\circ} 7$	893.5	$3 \cdot 8$
196	$43897 \cdot 2$	900.9	9047	908.4	912.2	$915 * 9$	919.6	$923 \cdot 3$	927.1	$930 \cdot 8$	3.7
197	934.5	$938 \cdot 2$	$94 \mathrm{I} \cdot 9$	$945 \cdot 7$	949.4 986.3	953*1	$956 \cdot 8$ 993.7	$960 \cdot 5$ 997	+001.0	$\begin{array}{r}9679 \\ \hline 0047\end{array}$	377 3 3
198	971.6	$975 \cdot 3$	$979{ }^{\circ}$	982.6	$986 \cdot 3$	990°	993.7	$997{ }^{\circ} 4$	${ }^{\circ} \mathrm{COI}{ }^{\circ}$	-004'7	37

XXV．S_{e} for Ogival－headed Projectiles（continued）．

v	0	1	2	3	4	5	6	7	S	9	Diff．
f． 5	Feet	F	F	Feet	Fe	Feet	Feet	Feet	Feet	Feet	
199	440084	$012 \cdot 1$	0157	0194	023°	026．7	0304	034＊0	0377	O4I＇3	37
200	045°	${ }_{34} 5^{5} 6$	0523	055.9	0596	$063:$	$066 \cdot 8$	$070 \cdot 5$	074．1	0778	3.6
201	OSI＇4	$255^{\circ} \mathrm{O}$	ass． 6	$392 \begin{aligned} & \\ & \\ & \\ & \\ & \end{aligned}$	0959	099%	$103^{\circ 1}$	106%	$110 \% 4$	114°	$3 \cdot 6$
202	441176	121．2	124．S	128.4	$13^{\circ} \mathrm{O}$	$135-6$	$139^{\circ} 2$	$142 . S$	$146 \cdot 3$	149.9	$3 \cdot 6$
203	$153 * 5$	$157 \% 1$	$160 \cdot 7$	164^{2}	$167 \cdot 8$	1714	155°	$175 \cdot 5$	1 S2．1	1S5．6	$3 \cdot 6$
204	189－2	192.7	196\％	199．8	2034	2069	$210 \cdot 4$	213.9	217．5	221．0	3.5
205	$44^{224} 5$	22 So	231×5	$235 \cdot 1$	$23 \mathrm{~S}-6$	242.1	245.6	$249^{\circ 1}$	252.6	256.1	35
206	259.6	263.1	266.6	270．1	$273 \cdot 6$	27711	2SO． 6	$2 S_{4} \cdot 1$	$2 \mathrm{~S} 7 \cdot 5$	291°	3.5
207	2940	$29^{\circ}{ }^{\circ}$	301.4	304＊9	305．3	3118	315%	318%	322 1	325.6	3.5
$20 S$	$44329^{\circ} 0$	332．4	335＊9	339＊3	$342 \cdot$ S	$346 \cdot 2$	349.6	$353{ }^{\circ}$	356．5	$359^{\circ} 9$	3.4
209	363.3	$366 \cdot 7$	$370{ }^{\circ} 1$	373.5	376.9	$3 \mathrm{SO}_{3}$	$353 \cdot 7$	357.1	$390{ }^{\circ}$	$393 \cdot 5$	3.4
210	$39 \% \cdot$	$400 \cdot 6$	$404^{\circ} 0$	$407 \% 3$	$410 \cdot 7$	414＊1	417%	$420 \cdot 8$	$424 \cdot 2$	427\％	34
211	$44430{ }^{\circ} 9$	$434 \cdot 3$	437.6	$44^{\circ} \mathrm{O}$	444.3	447×7	$45^{\circ} \mathrm{O}$	$454{ }^{\circ} 4$	457×7	461－1	34
212	$464^{\circ} 4$	46\％\％	4710	474.4	4777	$4 \mathrm{SI}^{\circ}$	4S4．3	4S7．6	490＊9	494：	3．3
213	$497 \% 5$	500＇S	$504 * 1$	507．4	5107	514＊0	$517 \cdot 3$	520．6	$523 \cdot 8$	$527 \cdot 1$	3｀3
214	$44530 \cdot 4$	53307	537%	$540{ }^{\prime 2}$	54305	$546 . S$	550＊1	553.3	556.6	$559 . S$	$3 \cdot 3$
215	563.1	566.4	569.6	572\％9	576－1	579.4	${ }_{5}{ }^{\text {S } 2.6}$	$55^{5} 5 \cdot \mathrm{~S}$	589.1	$592 \cdot 3$	$3 \cdot 2$
216	595.5	59S．7	601．9	$605 \cdot 2$	$605 \cdot 4$	611.6	614.8	6180	621．3	624%	$3 \cdot$
217	44627.7	630．9	$634 \cdot 1$	$63 テ ゙ 3$	640\％	643.7	$646 \cdot 9$	650.1	653.2	$656 \cdot 4$	$3 \cdot 2$
218	659.6	662.8	666．0	$669^{\circ} \mathrm{I}$	6－2\％3	$675 \cdot 5$	$6-8 \cdot 7$	$68 \mathrm{I} \cdot \mathrm{S}$	$65^{\circ} \mathrm{O}$	68S．1	3.2
219	691×3	694%	697.6	700－S	703＊9	707－1	710.2	7134	716.5	7197	$3 \cdot 2$
220	$44722 \cdot 8$	725＊9	729＊1	732.2	$735 \% 4$	73 S 5	741.6	744．7	7479	$751^{\circ} 0$	$3 \cdot 1$
221	$754^{\circ} 1$	$757 * 2$	$760{ }^{-3}$	7635	766.6	769.7	772.8	$775 * 9$	779＊1	$7{ }^{7} 2 \cdot 2$	$3 \cdot 1$
222	$785 * 3$	7 －SS． 4	$791 \cdot 5$	794^{-6}	7977	800．8	803.9	80\％．0	810．1	S13：2	$3 \cdot 1$
223	448163	819.4	822.5	825.5	82S．6	831.7	834.5	837.9	$840 \cdot 9$	844＊0	$3 \cdot 1$
224	S47＊	850.2	S53．2	$856 \cdot 3$	859.3	862.4	865.5	868．5	8，1．6	$8-4.6$	$3 \cdot 1$
225	8777	850．8	$\mathrm{SS}_{3} \cdot \mathrm{~S}$	886．9	8S9＊9	893．0	896．1	S99＊ 1	902：2	905．2	$3^{\cdot 1}$
226	44908.3	911•3	914°	9174	920＇5	923.5	926.5	929.6	932．6	9357	$3^{\circ} 0$
227	$935 \cdot 7$	$941 \cdot 7$	$944 \cdot 8$	947．8	950．9	953.9	$957{ }^{\circ}$	960°	963.1	966.1	$3{ }^{\circ} 0$
228	$969{ }^{\circ}$	972：2	975.3	$978 \cdot 3$	$9 \mathrm{SI}^{\prime} 4$	95.44	9S7\％	$990^{\circ} 5$	993.5	996.6	30
229	$44999{ }^{\circ} 6$	＊0026	＊ 0057	＊008．7	＊oil．S	－014．S	－ 017.8	＊0こ0．9	－0こ3．9	＊027＊	3＊0
230	$45030{ }^{\circ}$	033．0	036．1	$039^{\circ} 1$	0.42	045^{-2}	0.88	O51＇3	$054{ }^{\circ}$	0574	$3 \bigcirc$
231	$060 \cdot 4$	$063 \cdot 4$	066.4	0695	072．5	075%	078.5	OSI 6	0S4．6	OS7 7	$3^{\circ} 0$
232	450907	0937	096.8	099．S	102．9	105.9	108．9	11200	115°	IIS 1	$3^{\circ} 0$
233	121．1	124＊1	127＇2	130%	$133 * 3$	136.3	$139{ }^{\circ}$	$142 \cdot 3$	1454	148.4	$3{ }^{\circ}$
234	151.4	154.4	157.5	$160 \cdot 5$	$163 \cdot 6$	166	169.6	172.6	175\％7	$178 \cdot 7$	30
235	45 1S177	184.7	18－9 3	190.8	$193 * 9$	196.9	199.9	203°	$206{ }^{\circ}$	$209{ }^{1} 1$	3°
236	212.1	215＊1	$215 \cdot 2$	221.2	224＊3	227.3	$230^{\circ} 3$	$233^{\circ} 4$	236.4	$239^{\circ} 5$	30
237	2425	245%	248.6	251.6	254%	2577	$260 \cdot 7$	$263^{\circ} \mathrm{\delta}$	2668	269.9	3°
238	$45272 \cdot 9$	2759	$279^{\circ} 0$	$282^{\circ} 0$	$2 \mathrm{~S} \cdot 1$	2SS．1	291.2	$294{ }^{\circ}$	29703	300＇3	3°
239	303.4	$306 \cdot 4$	$309{ }^{\circ} 5$	$312 \cdot 5$	315.6	318．6	$321 \cdot 6$	324\％	$327 \cdot 7$	$330-5$	$3 \cdot 0$
240	$333 \cdot 8$	336.8	339.9	342.9	346.0	$349{ }^{\circ}$	352.1	355^{-1}	$358 \cdot 2$	$361 \cdot 2$	30
241	$45364{ }^{\circ}$	$367 \cdot 3$	370．4	373.4	$376 \cdot 5$	379×5	${ }_{3} 82.6$	$385 \cdot 6$	${ }_{3} 55 \cdot 7$	3917	3.0
242	394－8	397.8	4009	403．9	4070	4100	4130	416.1	4191	422.2	$3{ }^{\circ}$
243	$425^{\prime 2}$	$428 \cdot 2$	$43^{1} 3$	$434 \div 3$	$43 \% 4$	$440^{\circ} 4$	$443 \cdot 5$	$446 \cdot 5$	449.6	$452 \cdot 6$	$3{ }^{\circ}$

XXV. S_{v} for Ogival-headed Projectiles (continued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Dif
f.	Feet	Feet			Feet	Feet	Feet	Feet	,	Feet	
244	454557	4587	46	$464 \cdot 8$		4709	474°	4770	480.1	1	30
245	$486 \cdot 2$	489.2	$492 \cdot 3$	$495 \cdot 3$	498.4	501.4	$504 \cdot 4$	507\%	5105	513.6	0
246	516.6	519.6	5227	5257	528.8	531.8	$534 * 8$	$537 \% 9$	3409	544°	30
247	45547°	550\%	553.1	55	$559{ }^{\circ}$	562.2	$565 \cdot 2$	56S.3	571*3	574*4	
248	$577^{\circ} 4$		$5{ }^{5} 35$	586.5	$5 \mathrm{S9}$ -	592.6	$595 \cdot 6$	59S.7	$601 \cdot 7$	604'S	
249	$607 \cdot 8$	610.8	$613^{\circ} 8$	6169	619.9	622.9	6259	629°	632°	$635^{\circ} \mathrm{I}$	0
250	45638.1	641.1	$674^{\circ} \mathrm{I}$	$647 \% 2$		653.2	656:2	$659{ }^{-2}$	6623	6693	30
251	$668 \cdot 3$	$671 \cdot 3$	$674{ }^{\circ}$	677゙3	$6 \mathrm{SO}^{3}$	683.3	686-3	689-3	692-3	$695 \cdot 3$	30
252	$698 \cdot 3$	$701 \cdot 3$	7043	7073	7103	7133	716*3	719	722-3	725*3	30
253	$45728 \cdot 3$	731×2	$734^{\circ} 2$	$737 \cdot 2$	74	$743^{\circ} 2$	$746 \cdot 2$	749.1	752-1	7550	0
254	7580	7610	$763{ }^{\prime} 9$	766.9	769.8	772.8	$775{ }^{\circ}$	775	${ }^{-81.7}$	7846	30
255	7576	790.6	7930	796;	7994	802.4	8053	805.3	811.2	814.2	30
256	4581	$820{ }^{\circ}$	823.0	825.9	82	$83 \mathrm{I}-8$	834.7	837.6	8406	8435	9
257	846.4	849.3	852	855.2	858.1	8610	863.9	866.S	869^{-7}	872.6	9
258	$875 \cdot 5$	878.4	881.3	884:2	887.1	S90\%	892-9	895.8	89S.7	901.6	9
259	459045	907	$910{ }^{\circ} 3$	913.2	916.1	$919{ }^{\circ}$	92	924.S	927.6	9305	9
260	$933 * 4$	$936 \cdot 3$	939*1	942°	944.8	$947{ }^{\circ} 7$	950.6	9534	956.3	959*1	9
261	9620	964*9	$967 \% 7$	9706	973.4	$996 \cdot 3$	979*1	982°	984	9577	29
262	45990°	993.3	996. 1	999°	*001-8	*004* 6	*007* 4	+010'2	*O13"I	* ${ }^{5} 59$	S
263	46018.7	021.5	0243	027.1	029.9	0327	0355	$038 \cdot 3$	연1I	-	2.8
26.4	0.46.7	0.49%	0523	055.1	0579	0607	063.5	066-3	0690	071.8	2 S
265	$46074 \cdot 6$	077゚4	080'1	082.9	0S5:6	OSS-4	09	0939	096. 7	4	8
266	102:2	$104 \% 9$	1077	1104	$113{ }^{-2}$	1159	118.6	$121{ }^{\circ}$	$124{ }^{11}$	126.9	7
267	129.6	$132 \cdot 3$	135\%	137.8	140%	$143^{\circ} 2$	$145 * 9$	148.	15173	$154{ }^{\circ}$	7
268	461567	15	162.1	164.8	167×5	170\%2	172.9	175	$178 \cdot 3$	1810	27
269	1837	186.4	189\% 1	191.8	194%	$197^{\circ} 2$	199*9	202^{-6}	205•2	2079	27
270	210	213	2159	218.6	221.2	223.9	226.6	229.2	231.9	234%	$2 \cdot 7$
271	$46237^{\circ} 2$	23909	24	$245^{\circ} 2$	247-8	2505	$253{ }^{\circ 1}$	255.8	258.4	$26 \mathrm{I}^{-1}$	27
272	263.7	266.3	$260^{\circ} 9$	271.6	274*2	276.8	279.4	$25^{2}{ }^{\circ}$	$2 S_{4} \cdot 7$	2 S 73	
273	$289{ }^{\circ} 9$	292*5	$295^{\circ} 1$	297.8	3004	303°	$505 \cdot 6$	30S:2	310'S	31304	
274	463160	318.6	321.2	323.8	$326 \cdot 4$	$329{ }^{\circ}$	331.6	$334 * 2$	3305	339-4	26
275	342°	$344^{\circ} 6$	$347^{\circ} 2$	3497	$352 \cdot 3$	354.9	3375	$360{ }^{\circ}$	$3^{6} 52 \cdot 6$	$365^{\circ} \mathrm{I}$	
276	367×7	$370 \cdot 3$	3728	$375 * 4$	3777	${ }_{3} \mathrm{SO}_{5}$	${ }_{3} 5_{3}{ }^{-1}$	$355-6$	${ }_{3} 55 \cdot 2$	3907	26
277	46393	$395 \cdot 8$	398.4	$400 \cdot 9$	403*5	4060	$40 \mathrm{~S} \cdot 5$	4110	413.6	416.1	2.5
278	4186	421.1	423.6	426.2	$425 \cdot 7$	431.2	433.7	436%	$435 \cdot 8$	$441{ }^{1 / 3}$	2.5
279	443°	$446 \cdot 3$	$448 \cdot 8$	$451 \cdot 3$	$453 \cdot 8$	$456 \cdot 3$	$45 \$ \cdot 8$	461-3	463.8	4663	2
2 So	$46468 \cdot 8$	471.3	$473 \cdot 8$	476*2	478.7	481.2	$483 \cdot 7$	$4^{86} 2$	4SS.6	$491^{\circ} \mathrm{I}$	3
2 SI	46493	496.I	495.6	5010	503.5	5060	5055	$510-9$	513	515	2.5 2.9
$2 S_{2}$	$515 \cdot 3$	520.7	523.2	$525 \cdot 6$	$52{ }^{\circ} \cdot 1$	530%	532-9	53504	537-8	5403	2
2 S 3	465429	$545{ }^{\circ} 1$	5476	5300	$552^{\circ} 5$	534*9	537\%	5597	562.2		4
$2 S_{4}$	567\%	569.4	571.8	5743	556-7	$579{ }^{\circ} \mathrm{I}$	${ }_{5} \mathrm{SiO}_{5}$		556.4	5SS S	
2 S 5	$591^{\prime 2}$	$593 \cdot 6$	5960	598.4	600.8	603.2				612	
2S6	$46615{ }^{\circ} 2$	617.6	6200	622.3	62477	627-1	6295	63119	$634^{\circ} 2$	6	$2 \cdot 4$
$2 S_{7}$	639°	641.4	64337	$646 \cdot 1$	$6{ }_{4} \mathrm{~S}^{4} 4$	$650-8$	653.2	6535	6579 651		2.4 2.3
2S8	$662 \cdot 6$	$664 \% 9$	$667{ }^{\prime} 3$	$669 \cdot 6$	6720	$674 \% 3$	67	6790	651.3	65507	23
2S9	$46686{ }^{\circ}$	6SS.3	6907	6930	695.4	6977	7000	702:3	7047	7070	203 2.3
290	709'3	711.6	71309	716.3	718.6	720'9	723°	72505	7279	730.2	2

XXVI. T_{v} for Ogival-headed Projectiles. ($w=534.22$ grains.)

v	\bigcirc	1	2	3	4	5	6	7	8	9	Dir
\%.	Se	Seconds	Seconds	Seconds	S	Seconds	Seconds	Seconds	Seconds	Sec	
10	9.9	11.6	13.2	14^{\prime}	16.	17°	19.	$20^{\circ} 9$	$22 \cdot 3$	23.7	5
11	$25^{1} 1$	$26 \cdot 5$	27.8	29.1	$30 \cdot 3$	31.5	$32 \cdot 8$	34°	$35^{\circ} 2$	36.4	$1 \cdot 2$
12	37×5	$3^{8 \cdot 6}$	$39^{\prime} 7$	$40 \cdot 8$	41.9	$43^{\circ} \mathrm{O}$	44°	45°	$46 \cdot 1$	$47^{\circ} \mathrm{I}$	11
13	$48 \cdot 1$	49°	50°	50×9	$51 \cdot 9$	$52 \cdot 8$	53.7	54.6	554	$56 \cdot 3$	
14	57^{2}	58°	-	59.6	$60 \cdot 4$	$61 \cdot 2$	62°	$62 \cdot 7$		$64 \% 2$	0.8
15	65°	$65^{\prime} 7$	66.4	$67^{\circ} 2$	67.9	68.6	69.3	69.9	70.6	71.2	$0 \cdot 7$
16	71.91	$72 \cdot 5$	73'18	$73 \cdot 81$	$7+43$	75	$75 \cdot 64$	$76 \cdot 24$	$76 \cdot 83$		-61
17	77.99	78.56	$79 \cdot 12$	7967	80.22	80.76	81.29	81.82	$82 \cdot 35$	$82 \cdot 87$	54
18	83.39	83.90	84.40	84.90	85.39	\$5.88	$86 \cdot 36$	86.84	87.31	8778	49
19	88.24	88.69	89.14	89.58	90.02	90:46	$90 \cdot 89$	91-32	91.74	$92 \cdot 16$	44
20	92.57	92.98	$93 \cdot 39$	93.79	$9+19$	$9+59$	94.98	$95 \cdot 37$	9575	$96 \cdot 13$	40
21	96.51	$96 \cdot 88$	97.26	$97 \cdot 63$	97.99	98.35	$98 \cdot 70$	99.05	99.40	99.75	36
22	100.09	00.43	$00 \cdot 77$	or. 10	01.43	01.76	oz.08	02.40	02.72	03.04	33
23	03.35	03.66	-3.97	04.27	0+5 ${ }^{8}$	0.4.88	05.18	0547	05'77		jo
24	06.35	06.64	06.92	07.20	0748	07.75	-8.03	os 30	08.57	oS. 84	\cdots
25	109.10	-\%.37	09.63	0989	10.15	1040	10.66	10.9	11.16	11.41	-26
26	11.65	1190	12.14	12.38	12.62	12.85	13.09	13.32	13×55	13.78	24
27	1400	14.23	14.45	14.68	$1+90$	15.12	15.34	15.55	15.77	15.98	22
28	116.19	16.40	16.61	16.81	17.02	17.22	-4	17.63	17.83	18.03	'20
29	18.22	18.42	18.61	18.81	$19^{\circ} 00$	19.19	19.38	10.57	19.75	19.94	19
30	$20 \cdot 12$	$20 \cdot 31$	20.49	20.67	20.85	21.02	21.2	$21.3{ }^{8}$	21.56	2173	-
31	121.50	22.07	22.24	22.41	22.58	22	22.92	23.08	23.25	23.41	17
32	2357	23.73	23.89	24.05	24.21	24.36	24.52	$24 \cdot 67$	$24 \cdot 83$	24.98	$\cdot 16$
33	25.13	25	$25 \cdot 3$	25.58	25.73	$25 \cdot \mathrm{SS}$	26.03	26.17	$26 \cdot 32$	26.46	$\cdot 15$
34	126.60	$26 \cdot 74$	26.88	27.02	$27 \cdot 16$	27.30	$27^{\circ} 44$	27.58	27.71	27.85	14
35	27.99	28.12	28.26	28.39	28.53	28.66	28.79	28.92	29.05	29.18	13
36	29.31	29.44	29.57	29.69	29	29.94	30.07	30.19	$30 \cdot 31$	$30 \cdot 43$	12
37	$130 \cdot 55$	$30 \cdot 67$	30.79	30.91	31.02	$31 \cdot 14$	${ }_{3} 1.26$	31.37	3149	31.60	12
38	$31^{\prime} 72$	31.83	31.95	3206	$32 \cdot 18$	32.29	32.40	$32^{\prime} 51$	3262	$32 \cdot 73$	11
39	$32 \cdot 84$	$3^{2}{ }^{2} 95$	33.06	$33^{\prime} 17$	$33^{\circ} 27$	33.38	33.48	33.59	$33 \cdot 69$	33.8	
40	133.90	34.00	34.11	34.21	34.31	34.41	$34 \cdot 51$	34.61	34.71	$34 \cdot 81$	10
41	34.91	$35^{\circ} \mathrm{O}$	35.10	35.20	35.29	35.39	35648	$35 \cdot 58$	35.67	$35 \cdot 77$	
42	$35 \cdot 86$	35.96	36.05	$36 \cdot 14$	36.24	36.33	36.42	36.51	$36 \cdot 60$	36.69	09
43	136.78	$36 \cdot 87$	36.96	37.05	37-14	$37 \cdot 22$	$37 \cdot 31$		$37 \cdot 48$	37.56	09
44	37.65	37.73	$37 \cdot 82$	37.90	37.99	38.07	$38 \cdot 16$	$38 \cdot 2.4$	$3{ }^{3} \cdot 32$	38.41	os
45	38.49	35.57	38.65	38.73	38.81	38.89	38.97	39.05	$39^{\prime \prime} 3$	39.21	os
46	1 39.29	39'36	$39 \cdot 44$	39.52	39.59	$39 \cdot 67$	$39^{\prime} 75$	$39 \cdot 82$	39.90	39.97	os
47	40.05	$40 \cdot 12$	40:20	4027	$40 \cdot 35$	$40 \cdot 42$	$40 \cdot 49$	$40 \cdot 57$	4064	$40^{\circ} 71$	07
48	40.78	$40 \cdot 86$	$40 \cdot 93$	-	41.07	41.14	$4^{1 \cdot 21}$	$41 \cdot 28$	41.35	41.42	07
49	14149	41.56	41.63	41.70	41.76	$41 \cdot 83$	41.90	41.96	42.03	42.09	-7
50	$42 \cdot 16$	$42 \cdot 23$	$42 \cdot 29$	$42 \cdot 36$	42.42	42.49	$42 \cdot 56$	$42 \cdot 62$	$42 \cdot 69$	42'75	- 07
51	$42 \cdot 81$	$42 \cdot 87$	$42 \cdot 94$	$43^{\circ} 00$	43.06	$43 \cdot 12$	$43 \cdot 19$	43.25	$43 \cdot 31$	$43 \cdot 37$	-66
52	143.430	3*491	3.552	$3 \cdot 613$	3.673	3733	$3 \cdot 793$	3.853	3.912	3.971	060
53	4.030	4.089	$4 \cdot 147$	4.205	4.263	$4 \cdot 321$	4.379	4.436	4.493	4.550	-058
54	$4 \cdot 607$	$4 \cdot 664$	4:720	4:776	$4 \cdot 83^{2}$	4.888	4.944	4.999	$5 \cdot 054$	5^{109}	-056
55	$145 \cdot 164$	$5 \cdot 219$			${ }_{5}{ }^{3} 8 \mathrm{I}$		$5 \cdot 489$				054
56	$5 \cdot 701$	5.754	5.806	$5 \cdot 858$	5910		6.014	6.065	6.117	6.168	-052
57	6.219	6.270	6.321	$6 \cdot 371$	6.422	6.472	$6 \cdot 522$	6.572	6.621	6.671	-050

XXVI. T_{v} for Ogival-headed Projectiles (contimued).

v	\bigcirc	I	2	3	4	5	6	7	8	9	Diff.
f.	ds	Seconds	Seconds	Seconds	Seconds	ds	Seconds	Seconds	Seconds	Secund.	$+$
58	146.720	$6 \cdot 769$	$6 \cdot 3$	$6 \cdot 8$	6915	6.963	7-011	7×059	$7 \cdot 107$	7-154	43
59	7-202	7-249	7-296	7343	7•390	$7 \cdot 437$	7.483	7.530	$7 \cdot 576$	$7 \cdot 622$	47
60	7-668	7714	$7 \cdot 759$	$7 \cdot 805$	$7 \cdot 850$	$7 \cdot 896$	7.941	7×986	8.031	$8 \cdot 076$	45
61	148.121	$8 \cdot 165$	$8 \cdot 209$	8.253	$8 \cdot 297$	8341	$8 \cdot 384$	8.428	8.471	8.515	44
62	8.558	8.601	$8 \cdot 643$	$8 \cdot 686$	$8 \cdot 728$	8.771	8.813	$8 \cdot 855$	8-S97	8.939	42
63	8.981	$9 \cdot 022$	9.064	$9 \cdot 105$	$9^{1} 147$	$9^{\circ} 188$	$9 \cdot 229$	9:269	$9 \cdot 310$	9×350	41
64	149.391	9.431	9.471	9.510	9'550	9*590	9.629	$9 \cdot 669$	9'708	9.748	40
65	$9 \cdot 787$	$9 \cdot 826$	9.865	9.903	$9 \cdot 942$	9.981	*0.019	*0*057	*0.096	-0.134	39
66	150.172	0.210	0.248	$0 \cdot 285$	$0 \cdot 323$	$0 \cdot 361$	$0 \cdot 398$	0.436	0.473	0.511	35
67	150.548	0.585	0.621	0.658	0.694	0.731	$0 \cdot 767$	0.803	0.838	0.874	36
68	0.910	0.945	0.981	I'016	1-052	$1 \cdot 087$	1*122	1.157	1-192	1.227	35
69	I 262	I. 296	I•331	1.365	$1 \cdot 400$	1.434	$1 \cdot 468$	$1 \cdot 502$	1.536	1.570	34
70	$15 \mathrm{I} \cdot 60+$	1.637	1.671	1`704	$1 \cdot 738$	1.771	1.804	1.837	1.870	3	33
71	1.936	1•969	$2 \cdot 001$	$2 \cdot 034$	$2 \cdot 066$	2.099	$2 \cdot 131$	$2 \cdot 163$	2.196	2.228	32
72	2260	$2 \cdot 292$	$2 \cdot 323$	$2 \cdot 355$	2.386	2.418	$2 \cdot 449$	2.480	2.512	2.543	31
73	152	$2 \cdot 605$	2.636	$2 \cdot 666$	2.697	2.728	2.758	2.789	2.819	2.850	31
74	2.880	2910	2.940	2.969	2.999	3.029	3.059	3.088	$3 \cdot 118$	3.147	30
75	3•177	3.206	3.236	$3 \cdot 265$	$3 \cdot 295$	3.324	3*353	$3 \cdot 3$	3.410	3.439	29
76	153.468	$3 \cdot 497$	3.	3.554	3.582	3.611	3.639	$3 \cdot 667$	3.695	3723	28
77	$3 \cdot 751$	$3 \cdot 779$	3.806	$3 \cdot 834$	$3 \cdot 861$	$3 \cdot 889$	3.916	3.943	$3 \cdot 971$	3.998	27
78	4.025	4.052	4.079	$4 \cdot 107$	$4^{*} 134$	$4^{\cdot 161}$	4-188	4.215	$4 \cdot 241$	4.268	27
79	154.295	4.321	4.347	4.374	4.400	4.426	4.452	4.478	4.504	4.530	26
80	4.556	4.582	$4 \cdot 607$	4.633	$4 \cdot 658$	$4 \cdot 684$	4.709	4.735	4.760	$4 \cdot 7$ S6	26
81	4.810	$4 \cdot 836$	4.861	4.886	4.911	4.935	4.961	4.986	$5^{\circ} \mathrm{O} 10$	5.035	25
82	155.060	5.084	5.	5•133	$5 \cdot 158$	5•182	5.206	5.230	$5 \cdot 253$	5.277	24
83	$5 \cdot 301$	$5 \cdot 325$	$5 \cdot 348$	$5 \cdot 372$	$5 \cdot 395$	5.419	$5 \cdot 442$	5.465	$5 \cdot 489$	5.512	23
84	5.535	$5 \cdot 558$	5.581	$5 \cdot 603$	$5 \cdot 626$	$5 \cdot 649$	5.671	$5 \cdot 69.4$	5×716	$5 \cdot 739$	23
85	155.761	5	5	$5 \cdot 826$	$5 \cdot 848$	$5 \cdot 870$	$5 \cdot 891$	$5 \cdot 913$	5.934	5.956	22
86	$5 \cdot 977$	5.998	$6 \cdot 19$	6.041	6.062	6.083	6.104	$6 \cdot 125$	6.146	6.167	21
87	$6 \cdot 188$	$6 \cdot 208$	6.229	$6 \cdot 249$	6.270	6.290	6.310	$6 \cdot 330$	$6 \cdot 350$	6.370	20
88	156	6.410	6.430	6.449	$6 \cdot 469$	$6 \cdot 489$	$6 \cdot 508$	$6 \cdot 528$	$6 \cdot 547$	6.567	20
89	$6 \cdot 586$	$6 \cdot 605$	$6 \cdot 624$	6.644	6.663	6.682	$6 \cdot 701$	6.720	6.738	$6 \cdot 757$	19
90	$6 \cdot 776$	6.794	6.813	$6 \cdot 831$	6.850	$6 \cdot 868$	6.886	6.904	$6 \cdot 923$	6.941	18
91	I 56.959	$6 \cdot 977$	6.995	$7 \cdot 012$	7.030	$7 \cdot 048$	7.066	$7 \cdot 083$	7•IOI	$7 \cdot 118$	18
92	7-136	7•153	7-171	$7 \cdot 188$	7-206	$7 \cdot 223$	$7 \cdot 240$	$7 \cdot 257$	$7 \cdot 274$	7.291	17
93	7308	$7 \cdot 325$	$7 \cdot 342$	$7 \cdot 358$	7×375	7•392	$7 \cdot 409$	7×425	7×442	$7{ }^{\circ} 45^{S}$	17
94	157.475	7×491	$7 \cdot 507$	$7 \cdot 524$	7.540	7.556	$7 \cdot 572$	7×588	7.604	7.620	16
95	7.636	$7 \cdot 652$	$7 \cdot 667$	7.683	$7 \cdot 698$	$7 \cdot 714$	$7 \cdot 730$	7745	7761	77776	16
96	7792	$7 \cdot 807$	$7 \cdot 822$	$7 \cdot 838$	$7 \cdot 853$	$7 \cdot 868$	$7 \cdot 883$	$7 \cdot 898$	7913	7*928	15
	157.943	$7 \cdot 958$		7.987	$8 \cdot 002$	8.017	$8 \cdot 032$	$8 \cdot 046$	8.061	8.075	15
98	8.090	8.104	8.118	$8 \cdot 133$	$8 \cdot 147$	$8 \cdot 161$	8.175	$8 \cdot 189$ $8 \cdot 3$	8.204	8.218 8.356	14
99	8.232	$8 \cdot 246$	8-260	$8 \cdot 273$	$8 \cdot 287$	8.301	$8 \cdot 315$	$8 \cdot 329$	8.342		
100	158.370	$8 \cdot 383$	$8 \cdot 397$	8.410	$8 \cdot 424$	8.437	8.450	$8 \cdot 463$	8.477 8.606	8.490	13
101	8.503	$8 \cdot 516$	$8 \cdot 529$	8.542	8.555	8.568	$8 \cdot 581$	$8 \cdot 594$	$8 \cdot 606$	8619	13
102	8.632	$8 \cdot 645$	8.657	8.670	$8 \cdot 682$	8.695	$8 \cdot 707$	$8 \cdot 719$	732	44	12
103	158.756	$8 \cdot 768$	$8 \cdot 779$	$8 \cdot 791$	8.802	8.814	$8 \cdot 825$	$8 \cdot 836$	$8 \cdot 848$		11
104	- 8.870	$8 \cdot 881$	8.892	8.902	8913	8.924	8.934	$8 \cdot 944$	8.954	8.964 0.060	10
105	$8 \cdot 974$	8.984	8.994	9.003	$9^{\circ} \mathrm{O1} 3$	$9^{\circ} 023$	$9 \cdot 032$	$9^{\circ} 041$	9.051	9060	10

XXVI. T_{v} for Ogival-headed Projectiles (continued).

${ }^{\prime}$	0	1	2	3	4	5	6	7	8	9	Diff
f	Secon	Seconds	Seconds	Seconds	Sec		Seconds	Seconds	Seconds	Seconds	
106	159.069	9*078	9.087	9'095	9.104	9.113	9-121	9.130	9.13S	'147	
107	9.155	9.163	9171	9-179	9.187	9'195	$9 \cdot 203$	9.211	9.218	9.226	
108	9.234	9.242	9.250	9.257	$9 \cdot 265$	$9 \cdot 273$	$9 \cdot 28 \mathrm{I}$	9.288	$9 \cdot 296$	$9 \cdot 303$	
109	159.311	9.318	$9 \cdot 325$	9*3.33	9.340	$9 \cdot 347$	9•354	9'361	$9 \cdot 368$	75	
110	9.382	9.389	9.396	9.403	9410	9417	9424	9.431	9.437	9444	
111	9.451	9458	$9 \cdot 464$	947 I	9477	$9 \cdot 48$	9491	$9 * 497$	9.504	9.510	
11	517	9.523	9.530	9.536	9.543	9.549	9.555	9.562	9.568	9.575	
113		9.587	9.594	9.600		9.613			${ }^{9} .632$		
114	9.6.44	9.650	9.656	$9 \cdot 662$	9.668	9.674	9.680	$9 \cdot 686$	9.692	9.698	
115	159.704	9710	9.716	$9 \cdot 722$	9.728	9.734	9.740	9.746	9×752	9758	
116	9.764	9770	9776	9781	$9 \cdot 787$	9793	9799	9.805			
117	9.822	$9 \cdot 828$	9.833	9.839	$9 \cdot 844$	9.850	9.856	9.861	$9 \cdot 867$	$9 \cdot 872$	
118	159.878	9.883	9.889	9.894	9.900	9.905	9.910	9.916	9.921	9.927	
119	9.932	9.937	9*943	9'948	9.954	9.959	9.964	9.970	9.976	9.981	
120	9.986	9.991	9.996	*-002	-0.007	-0.012	$0 \cdot 017$	*0.022	0.028	-0.033	
121	160.0381	0432	0483	0535	0586	0637	0688	0738	0789	0839	51
122	0890	0940	0990	1040	1090	1140	1189	1239	1288	1338	5
123	1387	1436	1484	1533	15^{81}	1630	1678	1726	1775	1823	48
124	160.1871	1919	1966	2014	2061	2109	2156	2203	2250	2297	47
125	2344	2390	2437	2483	2529	2576	2622	2668	2713	2759	46
126	2805	2850	2896	2941	2987	3032	3077	3122	3166	3211	45
127	160. 3256	3300	3344	3389	3433	3477	3521	3565	3608	3652	44
128	3696	3739	3782	3826	${ }_{3} 869$	3912	3955	3998	4040	4083	43
129	4126	4168	4210	4253	4295	4337	4379	4421	4462	4504	4^{2}
130	160.4546	4587	4629	4670	4712	4753	4794	4835	4876	4917	41
131	4958	4999	5039	5080	5120	5161	5201	5241	52 S 2	5322	40
132	5362	5402	5442	5481	5521	5561	5600	5639	5679	5718	
	160. 5757	5796		5874	5913	5952				6106	
134	6145	6183	6222	6260	6299	6337	6375	6413	6450	6488	35
135	6526	656.	66	6639	6676	6714	6751	6788	6826	6863	37
136	160.6900	6937	6974	O11	7048	7085	7122	7158	7195	7231	
137	7268	7304	7340	7377	7413	7449	7485	7521	7557	7593	36
138	7629	7665	7700	7736	7771	7 SO 7	7842	7878	7913	7949	36
139	$160 \cdot 7984$	8019	So54	8089	8124	8159	8194	8229	8263	8298	35
140	8333	8368	8402	8437	8471	8506	8540	8574	8609	8643	37
141	8677	8711	8745	8778	8812	8846	8850	8914	8947	898ı	34
142	$160 \cdot 9015$	90.4	9082	9115	9149	9182	9215	9248	9282	9315	33
143	9348	9381	9414	9447	9480	9513	9546	9578	9611	9643	33
144	9676	9709	9741	9774	9806	9839	9871	9904	9936	9968	3^{2}
145	161.0050	0032	0064	0096	0128	0160	0192	0224	0255	0287	32
146	0319	0351	0382	0414	0.445	0.477	0508	0540	0571	0603	32
147	0634	0665	0696	0728	0759	0790	OS21	OS52	0SS2	0913	31
148	161.0944	0975	1006	1036	1067	1098	1129	1159	1190	1220	31
149	1251	1281	1312	1342	1373	1403	1433	1463	1494	1524	30
150	1554	1584	16	1644	1674	1704	1734	1764	1793	I $\mathrm{S}_{2} 3$	30
151	$161 \cdot 1853$	1883	1913	1942	1972	2002	2031	2061	2090	2120	30
152	2149	2178	2208	2237	2267	2296	2325	2354	2384	2413	29
153	2442	2.471	2500	2529	255	2587	2616	2645	2673	2;02	29

XXVI. T_{v} for Ogival-headed Projectiles (contimued).

v	-	1	2	3	4	5	6	7	8	9	Diff.
f.s.	Second	Seconds	Seconds S	Seconds S	Seconds	Seconds	Secunds	Seconds	Seconds'	Seconds	+
154	161. 2731	2760	2788	2817	2845	2874	2902	2931	2959	2988	29
155	3016	3044	3073	3101	3130	3158	3186	3214	3243	3271	28
156	3299	3327	3355	3383	3411	3439	3467	3495	3523	3551	28
157	161.3579	3607	3635	3662	3690	3718	3746	3773	3801	3828	28
158	3856	3883	3911	3938	3966	3993	4020	4047	4075	4102	27
159	4129	4156	4183	4211	4238	4265	4292	4319	4346	4373	27
160	161.4400	4427	4454	4481	4508	4535	4562	4588	4615	4641	27
161	4668	4695	4721	4748	4774	4801	4827	4854	4880	4907	27
162	4933	4959	4986	5012	5039	5065	5091	5117	5144	5170	26
163	161. 5196	5222	5248	5275	5301	5327	5353	5379	5404	5430	26
164	5456	5482	5508	5533	5559	5585	5611	5636	5662	5687	26
165	5713	5739	5764	5790	5815	5841	5866	5892	5917	5943	26
166	161.5968	5993	6018	6044	6069	6094	6119	6144	6170	6195	
167	6220	6245	6270	6295	6320	6345	6370	6395	6420	6445	25
168	6470	6495	6520	6544	6569	6594	6619	6643	6668	6692	25
169	161.6717	6742	6766	6791	6815	6840	6864	6889	6913	6938	25
170	6962	6986	7010	7035	7059	7083	7107	7131	7156	7180	24
171	7204	7228	7252	7277	7301	7325	7349	7373	7397	7421	24
172	161.7445	7469	7493	7516	7540	7564	7588	7612	7635	7659	24
173	7683	7707	7730	7754	7777	7801	7825	7848	7872	7895	24
174	7919	7942	7966	7989	8013	8036	8059	8082	8106	8129	23
175	161.8152	8175	8198	8222	8245	8268	8291	8314	8338	8361	23
176	8384	8407	8430	8453	8476	8499	8522	8545	8567	8590 8816	23
177	8613	8636	8658	8681	8703	8726	8749	8771	8794	8816	23
178	161.8839	8862	8884	8907	8929	8952	8974	8997	9019	9042	23
179	9064	9086	9108	9131	9153	9175	9197	9219	9242	9264	22
180	9286	9308	9330	9353	9375	9397	9419	9441	9463	9485	22
181	161.9507	9529	9551	9572	9594	9616	9638	9660	9681	9703	22
182	9725	9747	9769	* 9790	9812	9834	9856	9877	*899	9920	22
183	9942	9964	9985	*0007	*0028	*0050	*0071	*0093	- 114	* 0136	22
184	162. 0157	or78	O199	0221	0242	0263	0284	0305	0327	0348	21
185	-369	-390	0411	0432	0453	0474	0495	0516	0537	0558	21
186	0579	0600	0621	0642	0663	0684	0705	0726	0746	0767	21
187	162.0788	0809	0829	0850	0870	0891	0912	0932	0953	${ }^{0} 1173$	21 20
188	0994	1014	1035	1055	1076	1096	1116	1137	1157	1178	20
189	1198	1218	1239	1259	1280	1300	1320	1340	1361	1381	20
190	162. 1401	1421	1441	1461	1481	1501	1521	1541	1562	1582	20
191	1602	1622	1642	1662	1682	1702	1722	1742	1761	1781	20
192	1801	1821	1841	1860	188	1900	1920	1940	1959	1979	0
193	162'1999	2019	2038	2058	2077	2097	2116	2136	2155	2175	20
194	2194	2213	2233	2252	2272	2291	2310	2330	2349	2369	19 19
195	2388	2407	2426	2446	2465	2484	2503	2522	2542	2561	19
196	162.2580		2618	2637	2656	2675	2694	2713	2731	2750	19
197	2769	2788	2807	2825	2844	2863	2882	2901	2919	2938	19 19
198	2957	2976	2994	3013	3031	3050	3069	3087	3106	3124	19
199	162. 3143	3161	3180	3198	3217	3235	3253	3271	3290	3308	IS
200	3326	3344	3362	3381	3399	3417 3508	3435 3616	3453 3634	3472 3651	3490 3669	18
201	3508	3526	3544	3562	3580	3598	3616	3634	3651	3609	18

XXVI. T' for Ogival-headed Projectiles (continued).

v	-	1	2	3	4	5	6	7	S	9	Dif
f.s	Seconds	Secund.	Seconds	Seconds	Se	Se	Secunds	ds	Seconds		
202	$162 \cdot 3687$	3705	3723	3740	3758	3776	3794	38	382	$33_{4} 6$	18
203	3864	3882	3899	3917	3934	3952	3969	3987	4004	4022	18
204	4039	4056	4074	4091	4109	4126	4143	4160	4178	4195	17
20	162.4212	4229	4246	4264	4281	4298	4315	4332	4349	4366	17
206	4383	4400	4417	4434	4451	$4+68$	445	4502	4518	4535	17
207	4552	4569	4586	4602	4619	4636	4653	4669	4686	4702	17
208	162.4719	47	4752	4768	4785	4801	$4{ }^{\text {S } 17}$	4834	4 SjO	4867	16
209	4883	4899	4915	4932	4948	4964	4980	4996	5013	5029	16
210	5045	5061	5077	5093	5109	5125	5141	5157	5173	5189	16
211	162.5205	5221	5237	5252	5268	5284	5300	5316	5.331	5347	16
21	5363	5379	5394	5410	5425	5441	5457	5472	5488	5503	16
213	5519	5535	5550	5566	5581	5597	5612	5628	5643	5659	16
214	162. 5674	5689	5704	5720	57	5750	5765	5780	5796	5811	15
215	5826	5841	5856	5871		5901	5916	5931	59.46	5961	15
216	5976	5991	6006	6021	6036	6051	6066	6031	6095	6110	15
21	162.6125	6140	6154	6169	6183	6198	6213	6227	6242	6256	15
218	6271	6286	6300	6315	6329	6344	6359	6373	6388	6402	15
219	6417	6431	6446	6460	6475	6489	6503	6517	6532	6546	14
220	$162 \cdot 6560$	6574	6588	6603	6617	6631	6645	6659	6674	6658	14
22	6702	6716	6730	6745	6759	6773	6757	$66^{\circ} 1$	6815	6829	14
222	6843	6857	6871	6885	6899	6913	6927	6941	6954	6968	14
223	$162 \cdot 6982$	6996	7010	7023	7037	7051	7065	7079	7092	7106	14
224	7120	7134	7147	7161	7174	7188	7202	7215	7229	7242	14
225	7256	7270	7283	7297	7310	7324	7338	7351	7365	7378	14
226	162. 7392	7405	7419	7432	7446	7459	7472	7486	7499	7513	13
22	7526	7539	7553	7566	7580	7593	7606	7620	7 \% 3	76+	13
228	7660	7673	7687	7700	7714	7727	7740	7753	7767	7780	13
229	162.7793	7806	7819	7833	7846	7859	7872	7886	7899	7913	13
230	7926	7939	7952	7966	7979	7992	8005	8018	So32	So45	13
231	8058	So71	8084	So97	8110	8123	8136	8149	8162	8175	13
232	162.8188	8201	8214	8228	8241	S254	8267	S2So	8293	8306	13
233	8319	8332	8345	8358	8371	8384	8397	8410	8423	8436	13
234	8449	8462	8475	S488	8501	S514	8527	S540	8553	8566	13
235	162.8579	8592	8605	8617	8630	8643	8656	8669	8682	8695	13
236	8708	5721	8734	8746	8759	S772	8755	8798	8510	SS_{23}	13
237	8836	8849	8862	S874	5887	S900	8913	S926	8938	8951	13
238	162.8964	S977	S990	9002	9015	9028	9041	9054	9066	9079	13
239	9092	9105	9117	91.30	9142	9155	9168	9181	9193	9206	13
240	9219	9232	9244	9257	9269		9295	9308	9320	9333	13
241	162.9346	9359	9371	9384	9396	9409	9422	9434	9447	9459	13
242	9472	9485	9497	9510	9522	9535	9548	9560	9573	95 S 5	13
243	9598	$\underline{0610}$	9623	9635	9648	9660	9673	9685	9698	9710	12
244	162.9723		9748	9760		9785	9797	9810	9S22	${ }_{9} 835$	12
245	9847		9872	,9884	9897	. 9909	9921	9934	9946	9959	12
246	9971	9983	9996	*0008	*0021	*0033	*0045	*0058	*0070	${ }^{\circ} \mathrm{ooS} 3$	12
247	163. 0095	0107	0119	0132	014	or 56	-168	orso	0193	0205	12
248	0217	0229	0241	0254	0266	0278	0290	0302	0315	0327	12
249	0339	0351	0363	0376	O388	O400	0412	0424	0437	0449	12

XXVI. T_{v} for Ogival-headed Projectiles (continued).

v	0	I	2	3	4	5	6	7	8	9	Diff.
f. s.	Seconds	Seconds	Seconds	Scoonds	Seconds	conds	Seconds	Seconds	Seconds	Seconds	$+$
250	$163{ }^{\circ} 0461$	0473	0485	0497	0509	- OJ21	0533	0545	0557	0569	12
251	0581	0593	0605	0617	0629	0641	0653	0665	0677	0689	12
252	0701	0713	0725	0736	0748	0760	0772	0784	0795	0 0\%7	12
253	$163^{\circ} 0819$	0831	o843	o854	0866	0878	0890	0902	O913	0925	12
254	0937	0949	0960	0972	0983	0995	1007	1018	1030	1041	12
255	1053	1065	1076	1088	1099	IIII	1123	I 134	1146	1157	12
256	163.1169	1180	1192	1203	1215	1226	1237	1249	1260	1272	II
257	12 S 3	1294	1305	1317	1328	1339	1350	1362	1373	1385	II
258	1396	1407	1418	1430	1441	1452	1463	1474	1486	1497	11
259	163.1508	1519	1530	1542	1553	1564	1575	1586	1597	1608	11
260	1619	1630	1641	1652	1663	1674	1685	1696	1707	1718	II
261	1729	1740	1751	1762	1773	1784	1795	1806	1816	1827	II
262	163.1838	1849	1860	1870	1881	1892	1903	1914	1924	1935	11
263	1946	1957	1967	1978	1988	1999	2010	2020	2031	2041	II
264	2052	2062	2073	2083	2094	2104	2115	2125	2136	2146	10
265	163.2157	2167	2178	2188	2199	2209	2219	2230	2240	2251	10
266	2261	2271	2281	2292	2302	2312	2322	2332	2343	2353	10
267	2363	2373	2383	2394	2404	2414	2424	2434	2445	2455	10
268	$163^{\circ} 2465$	2475	2485	2496	2506	2516	2526	2536	2546	2556	10
269	2566	2576	2586	2596	2606	2616	2626	2636	2646	2656	10
270	2666	2676	2686	2695	2705	2715	2725	2735	2744	2754	0
271	163.2764	2774	2784^{-}	2793	2803	2813	2823	2833	2842	2852	10
272	2862	2872	2881	2891	2900	2910	2920	2929	2939	2948	10
273	2953	2968	2977	2987	2996	3006	3016	3025	3035	3044	10
274	163.3054	3063	3073	3082	3092	3101	3110	3120	3129	3139	9
275	3148	3157	3167	3176	3186	3195	3204	3214	3223	3233	9
276	3242	3251	3260	3270	3279	3288	3297	3306	3316	3325	9
277	163. 3334	3343	3352	3362	3371	3380 3470	3389	33988	3407	3416 3506	9
278	3425	3434	3443	3452	3461	3470 3560	3479 3569	3488 3578	3497 3587	3506 3596	9
279	3515	3524	3533	3542	3551	3560	3569	3578	3587	3596	9
280	$163 \cdot 3605$	3614	3623	3631	3640	3649	3658	3667	3675	3684	9
281	3693	3702	3711	3719	3728	3737	3746	3755	3763	3772 3559	9
282	3781	3790	3798	3807	3815	3824	3833	3842	3850	3559	9
283	163.3868	3877	3885	3894	3902	3911	3920	3928	3937	3945 4030	8
284	3954	3962	3971	3979	3988	3996	4004	4013	4021	4030 4114	8
285	4038	4046	4055	4063	4072	4080	4088	4097	4105	4114	8
286	163.4122	4130	4139	4147	4156	4164	4172	4180	4189	4197	8
287	- 4205	4213	4221	4230	4238	4246	4254	4262	4271	4279 4361	8
288	4287	4295	4303	4312	4320	4328	4336	4344	4353	4361	S
289	163.4369	4377	4385	4393		4409 4489	4417 4497	4425 4505	4433 4513	4441 4521	S
290	4449	4457	4465	4473	$44^{\text {SI }}$	44^{89}	4497	4505	4513	45^{21}	8

XXVII．Values of $\frac{k}{g}$ for the Newtonian Law，and of $\frac{\text { 纤 }}{\mathrm{g}}$ for the Cubic Law of the Resistance of the Air to Spherical and Ogival－headed Projectiles（ $\Pi=1.206$ kil．；or $\omega=527$ grains ；$g=9.809 \mathrm{~m}$ ．s．）．

	Spherical Projectiles．		Ogival－headed Projectiles．			Spherical Projectiles．		Ogival－headel Projectiles．	
	$\begin{gathered} \text { Newtonian } \\ \text { Law } \end{gathered}$	$\begin{gathered} \text { Cubic } \\ \text { Law } \end{gathered}$	Newtonian Law	$\underset{\text { Law }}{\substack{\text { Cubic }}}$		$\begin{gathered} \text { Newtonian } \\ \text { Law } \end{gathered}$	$\begin{aligned} & \text { Cubic } \\ & \text { Law } \end{aligned}$	Newtonian Law	$\underset{\text { Cubic }}{\text { Cuw }}$
b	免	動	k	统		\＃	煄	\％	挂
b	$\overline{\mathrm{g}}$	$\overline{\mathrm{g}}$	$\overline{\mathrm{g}}$	g	0	$\overline{\mathrm{g}}$	g	$\overline{6}$	$\overline{\mathrm{g}}$
ms．					m．s．				
50			$1 \cdot 40$	28.10	450	$4 \cdot 69$	10．42	3.43	7.62
60			$1 \cdot 40$	23.41	460	4．71	10.25	3.42	7.44
70			$1 \cdot 40$	20.07	470	4．73	10.07	3.40	7.24
So			1.40	17.55	480	4.75	9.90	3.38	7.04
90			1.40	15.60	490	$4 \cdot 76$	$9 \cdot 72$	$3 \cdot 36$	$6 \cdot 85$
100			$1 \cdot 40$	14.03	500	4.77	9.55	3.34	6.67
110			1.40	12.76	510	4.78	$9 \cdot 37$	3.31	$6 \cdot 50$
120			1.40	11.69	520	4：78	9.19	3.29	6.32
130			140	$10 \cdot 79$	5.30	4．78	9.02	$3 \cdot 27$	$6 \cdot 16$
140			140	10.02	540	4＇78	8.85	3.25	6.02
150			1.40	$9 \cdot 36$	550	4．78	$8 \cdot 68$	3.23	$5 \cdot 87$
160			140	$8 \cdot 77$	560	4．78	$8 \cdot 53$	3.21	573
170			140	$8 \cdot 25$	570	$4 \cdot 78$	8.339	3．20	$5 \cdot 60$
180			1.40	$7 \cdot 79$	580	4：80	$8 \cdot 28$	$3 \cdot 19$	5.48
190			1.40	7×39	590	$4 \cdot 83$	8.18	3.18	$5 \cdot 38$
200			$1 \cdot 40$	7.02	600	$4 \cdot 85$	8.08	$3 \cdot 17$	$5 \cdot 28$
210			140	$6 \cdot 68$	610	4.87	7.98	3.18	5.21
220			140	6.38	620	$4 \cdot 88$	7.87	3.20	$5 \cdot 16$
230			1.40	6.10	630	$4 \cdot 88$	774	3.23	$5 \cdot 13$
240			$1 \cdot 40$	$5 \cdot 85$	640	$4 \cdot 87$	$7 \cdot 60$	$3^{\prime 26}$	$5^{1} 10$
250	$2 \cdot 68$	$10 \cdot 72$	1.41	$5 \cdot 62$	650	$4 \cdot 85$	$7 \cdot 46$	3.30	5.07
260	2．79	$10 \cdot 72$	1.46	5.60	660	$4 \cdot 83$	732	3.33	505
270	$2 \cdot 89$	10.72	1.51	$5 \cdot 60$	670	4.82	$7 \cdot 19$	${ }_{3} \cdot 36$	501
280	300	$10 \cdot 72$	$1 \cdot 57$	$5 \cdot 60$	680	$4 \cdot 80$	$7 \cdot 07$	3．37	4.95
290	$3 \cdot 11$	$10 \cdot 72$	1．62	$5 \cdot 60$	690	4＇79	6.94	$3 \cdot 35$	$4 \cdot 86$
300	$3 \cdot 23$	$10 \cdot 75$	1．68	$5 \cdot 60$	700	$4 \cdot 78$	6.82	3.32	4.75
310	3.39	10.93	$1 \cdot 75$	$5 \cdot 66$	710			3．28	$4 \cdot 62$
320	$3 \cdot 63$	$10 \cdot 35$	2.12	6.64	720			3.23	449
330	3.84	11.63	$2 \cdot 59$	$7 \cdot 83$	730			3．18	4.36
340	4＊1	11．79	$2 \cdot 79$	8.21	740			${ }^{3} 14$	$4 \cdot 24$
350	4.15	11.86	2.91	$8 \cdot 34$	750			$3 \cdot 10$	4．13
360	$4 \cdot 27$	11.87	3.00	8.34	760			3.07	4.04
370	4.36	11.79	3.9	S．34	770			3.07 308	3.99
350	4.42	11.64	3.17 3	8.34	780			3.08	3.95
390	4×47	11.45	$3 \cdot 25$	$8 \cdot 34$	790			$3 \cdot 10$	392
400	4.50	11.24	3.32	$8 \cdot 30$	800			$3 \cdot 13$	3.91
410	4.54	11.08	3.37	8	810			3.17	3.91
420	4.59	10.92	3.40	$8 \cdot 10$	820			3.20	3.91
430	4.63	10.76	3.42	7.96	830			3.24	$3 \cdot 9$
440	$4 \cdot 66$	10.59	3.43	$7 \cdot 80$	840			$3 \cdot 28$	3.90

Approximate Laws of the Resistance of the Air to the Motion of Projectiles（French Measures）．

$$
\Pi=1 \cdot 206 \text { kil.; } \omega=527 \text { grains ; } g=9.809 \mathrm{~m} . \mathrm{s} .
$$

XXVIII．Spherical Projectiles．

$$
\begin{aligned}
& \text { v }>396 \mathrm{~mm} . \mathrm{s.}, \quad \rho \propto \mathfrak{b}^{2}, \quad \frac{\mathrm{k}}{\mathrm{E}}=4.76 \mathrm{r}, \quad \log \frac{\mathrm{~K}}{\mathrm{~g}}=0.677 / 4,
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{b}<335>305 \mathrm{~m} . \mathrm{s} ., \quad \rho<\mathrm{b}^{4}, \quad \frac{\mathfrak{b}}{\mathrm{~g}}=35^{\circ} \cdot 35^{\circ}, \quad \log \frac{\mathfrak{b}}{\mathrm{g}}=1 \cdot 54839, \\
& \mathfrak{b}<305>256 \mathrm{~m} . \mathrm{s} ., \quad \rho \propto b^{3}, \quad \frac{\text { 等 }}{\mathrm{g}}=10 \% 706, \quad \log \frac{\mathrm{~m}}{\mathrm{~g}}=1.02963, \\
& b<256 \mathrm{~m} . \mathrm{s} . \quad, \quad \rho \subset b^{2}, \quad \frac{k}{g}=2 \cdot 7 \cdot 4, \quad \log _{\frac{2}{g}}^{\frac{k}{g}}=0 \cdot 43 S_{33} .
\end{aligned}
$$

XXIX．Ogival－headed Projectiles．

$$
\begin{aligned}
& b \quad>396 \mathrm{~m} . \mathrm{s} ., \quad \rho \propto \mathfrak{b}^{2}, \quad \frac{\mathrm{k}}{\mathrm{~g}}=3.275, \quad \log \frac{\mathrm{k}}{\mathrm{~g}}=0.5151 \mathrm{~S}, \\
& \mathfrak{b}<396>335 \mathrm{~m} . \mathrm{s} ., \quad \rho \propto \mathfrak{b}^{3}, \quad \frac{\text { 皆 }}{g}=8.302, \quad \log \frac{\text { dit }}{b}=0.91916, \\
& \mathfrak{b}<335>303 \mathrm{~m} . \text { s. }, \quad \rho \propto \mathfrak{b}^{6}, \quad \frac{\mathfrak{z}}{g}=206.92, \quad \log _{6}^{\frac{3 L}{g}}=2.315 \text { So, }
\end{aligned}
$$

XXX. \AA_{5} for Spherical Projectiles ($\Pi=1 \cdot 206$ kil. or $\omega=527$ grains $)$.

1	\bigcirc	1	2	3	4	5	6	7	8	9	Diff.
$m . s$. 12	$\begin{gathered} \text { Meures } \\ 68 \end{gathered}$	Metres 376	$\begin{array}{\|c} \text { Metres } \\ 682 \end{array}$	$\begin{gathered} \text { Metres } \\ 986 \end{gathered}$	$\begin{aligned} & \text { Metres } \\ & 12 S 8 \end{aligned}$	$\begin{gathered} \text { Metres } \\ 1586 \end{gathered}$	$\begin{gathered} \text { Metres } \\ 18 S_{I} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Metres } \\ 2175 \end{gathered}\right.$	$\begin{aligned} & \text { Metres } \\ & 2466 \end{aligned}$	$\begin{aligned} & \text { Metres } \\ & 2755 \end{aligned}$	299
13	3042	3327	3610	3891	4170	4447	4721	4993	5263	5531	277
14	5798	6062	6325	6586	6845	7102	7358	7612	7864	${ }_{8114}$	257
15	8363	8610	8556	9100	$934{ }^{2}$	9582	9821	*0058	*0294	*0528	241
16	10761	0993	1223	1452	16 So	1906	2131	2355	2577	2799	226
17	3018	3237	3454	3670	3884	4097	4309	4519	4728	4936	213
18	5142	5348	5552	5755	5957	${ }^{6158}$	6357	6556	6753	6951	201
19	7149	7343	7537	7730	7922	8113	8304	8494	8683	8571	191
20	9059	9245	9430	9613	9795	9976	*o156	*0336	*0514	*0692	182
21	20868	1044	1219	1393	1567	1740	1913	2085	2257	2427	173
22	2597	2766	2934	3101	3267	3433	3598	3762	3926	4088	166
23	4250	4411	4571	4731	4890	5048	5206	5363	5519	5675	158
24	5830	5985	6139	6293	6446	6598	6750	6900	7050	7199	152
25	7348	7497	7645	7792	7939	Sos5	S231	8376	S521	8665	146
26	28508	S948	9087	9224	9361	9496	9631	9764	9897	*0029	136
27	30161	0291	0420	0547	0674	0799	0926	1049	1171	1293	126
28	1414	15.35	1655	1774	1893	2011	2128	2244	2359	2473	118
29	2587	2700	2812	2923	3034	3144	3253	3361	3469	3576	110
30	3682	3757	3892	3995	4098	4200	4301	4401	4500	4598	102
31	34695	4791	4887	4982	5076	5168	5260	5350	5439	5528	93
32	5616	5703	5790	5876	5961	6046	6131	6215	6298	6377	85
33	6456	6536	6615	6694	6772	6850	6927	7004	7080	7155	78
34	7230	7305	7379	7453	7526	7599	7671	7743	7814	7885	73
35	7955	8025	8094	8163	8232	8300	8368	8436	8503	8570	68
36	38636	8702	8768	8834	8899	8964	9028	9092	9156	9220	65
37	9283	9347	9410	*473	. 9535	9598	*9660	. 9722	9784	9845	62
38	9906	9966	*0026	*0086	*O145	*0204	${ }^{*} 0263$	*0323	${ }^{\circ} \mathrm{O} 3 \mathrm{~S} 2$	O+41	59
39	40500	0559	0617	0675	0733	0791	OS48	0905	0962	1019	58
40	1076	1133	1190	1246	1302	1358	1413	1468	1523	1578	56
41	41632	1686	1740	1794	1848	1902	1955	2009	2063	2117	54
42	2171	2224	2277	2330	2382	2434	2485	2537	2588	2640	52
43	2691	2743	2794	${ }^{2} \mathrm{~S}_{45}$	2896	2947	2997	3047	3096	3146	51
44	3195	3245	3294	3344	3393	3443	3492	3542	3591	3640	49
45	3688	3736	3784	${ }_{3} \mathrm{~S}_{3} 2$	3879	3926	3973	4021	4068	4115	47
46	44162	4210	4257	4304	4351	4398	4444	4490	4536	45S2	46
47	4628	4674	4719	4764	4809	4854	4899	4944	4989	5034	45
48	5079	5124	5169	5214	5258	5302	5346	5390	5434	5478	44
49	5521	5565	5609	5653	5696	5739	5782	5825	5868	5911	43
50	5954	5997	6039	6082	6125	6168	6210	6252	6294	6336	42
51	46378	6420	6462	6504	6545	6586	6627	6668	6708	6749	41
52	6789	6830	6870	6911	6952	6993	7033	7074	7114	7155	41
53	7195	7236	7276	7316	7356	7396	7436	7476	7516	7556	40
54	7595	7635	7674	7713		7792	7831	${ }^{7870}$	7909	7948	39
55	79 S7	8026	8064	8103	8141	SiSo	8218	8257	S295	8333	38
56	48371	8409	8447	8485	8523	8561	8599	8637	8674	S712	3 S
57	8749	8756	8823	8861	8598	8935	8972	9009	9046	9083	37
58	9119	9156	9192	9229	9265	9301	9337	9373	9409	9445	36
59	9481	9517	9552	9588	9623	9659	. 9694	9730	9765	9Soo	35
60	9835	9870	9905	9940	9975	10	*0045	*00'0	OII4	*o148	35
61	50182	0217	0251	O2S5	0319	0353	0387	0421	0455	04§9	34
62	0523	0557	0590	0624	0657	0690	0723	0757	0790	OS23	33
63	0856	-889	0922	0955	0988	1021	1054	1087	1120	1153	33
64	1156	1219	1252	12 S 5	1317	1350	1382	1415	1447	14\%9	33
65	1511	1544	1576	1605	1640	1673	1705	1737	1;69	1 SOI	32
66	51833	1865	1897	1929	1961	1993	202.4	2056	2088	2120	32
67	2151	2183	2214	2246	2277	2309	2340	2371	2402	2434	31
68	2465	2496	2527	2558	2589	2620	2651	2682	2713	2744	3^{1}
69	2775	2806	2837	2868	2899	2930	2960	2991	3021	3052	31

XXXI. τ_{v} fur Spherical Projectiles ($\Pi=1.205$ kil. or $\omega=527$ grains $)$.

\mathfrak{b}	\bigcirc	I	2	3	4	5	6	7	8	9	Di
m.	con	Seconds	S	S	Seconds		Seco	Secunds	Seconds	Seconds	
12	5.9	58.5	${ }^{61 \cdot 1}$		$66 \cdot 1$		70•8	73.	75.4	77.6	2.4
13		82.0	84.2	86.4	88.5	906	$92 \cdot 6$	$4^{*} 6$	$96 \cdot 6$	98.5	$2 \cdot 1$
14	1004	102.3	1041	105.9	1077	109.5	1112	113°	114.7	116.4	1.8
15	118.0	119%	121.3	122.9	124.5	126.1	1276	$129^{\circ} 1$	$130 \cdot 6$	$132 \cdot 1$	$1 \cdot 6$
16	133.5	13	136.4	1378	139.2	$140 \cdot 6$	14	143.4	7	-	1.4
17	147.2	$14{ }^{\circ} \cdot 5$	149.7	151°	152.2	153.4	154.6	155.8	156.9	158.1	$1 \cdot 2$
18	159°	160.4	1615	162.6	163.7	164.9	166.0	167.1	168.2	169.2	1.1
19	$170 \cdot 2$	171.2	172.2	173.2	174*2	175.2	176.2	177.1	178.1	$179{ }^{\circ}$	1%
20	$180{ }^{\circ}$	$180 \cdot 9$	18	182.7	183.6	184.5	$185{ }^{\circ} 4$	186.3	187*1	188.0	9
21	188.83	89.66	$90 \cdot 49$	91.31	92.13	92.94	93.75	94.54	95.33	$96 \cdot 10$	81
22	$96 \cdot 87$	$97 \cdot 63$	98.39	99.14	99.88	*00'62	*OI 35	*02.08	*02.81	${ }^{\circ} \mathrm{O} \cdot 52$	74
23	204.23	04.92	05.61	06.29	06.97	07.65	08.32	08.99	09.65	10.31	68
24	10.96	11.61	12.25	12.88	13.51	14.13	14.75	15.36	15.96	16.56	62
25	17.15	17.74	18.33	18.91	19.49	20.07	20.64	21.21	21.77	22.31	57
26	222.84	23.38	23.92	24	24.97	25.48	25.99	26.49	26.99	27.48	52
27	27.96	28.44	28.91	29.38	29.85	30.31	30.77	31.22	$3{ }^{1} \cdot 67$	$32 \cdot 11$	46
28	$32 \cdot 55$	32.98	33.40	$33 \cdot 82$	34.24	34.65	$35^{\circ} \mathrm{O6}$	35.46	35.86	36.26	41
29	36.65	37.04	37.43	$37 \cdot 81$	38.19	38.56	38.93	$39^{\circ} 29$	$39^{\circ} 6$	40.01	37
30	40.36	40.71	$41^{\circ} 05$	41.39	$4{ }^{1} 73$	42.07	42.41	$42^{\prime} 74$	43°	$43 \cdot 37$	33
31	243.68	43.99	44.29	44.60	44.90	$45^{\circ} 20$	45.49	45.78	46.06	$46 \cdot 34$	30
32	$46 \cdot 62$	$46 \cdot 89$	$47 \cdot 15$	47.42	47	47.94			48.71	48.96	26
33	49.20	49.44	$49 \cdot 68$	49.92	50.15	50.38	50.6	50.84	51.07	51.29	23
34	51.51	51.73	$51^{\circ} 95$	$52^{\prime 1} 17$	52.38	52.59	52.80	53.01	53.21	53.41	21
35	$53 \cdot 61$	$53 \cdot 81$	5	54.21	54.40	54.60	54.7	54.98	55^{17}	55.36	19
36	255.54	$55^{\circ} 72$	55.90	56.08	56.26	56.44	56.61	$56 \cdot 79$	56.96	57.13	18
37	57.30	57.47	57.64	$57 \% 81$	57\%98	$58 \cdot 15$	58.31		58.64 60.20		-17
38	58.96 60.50	$59 \cdot 12$ $60 \cdot 65$	59.28 60.80	59.44	59 61.59	59.75 61.25	591.90	60.05 61.53	$60 \cdot 20$ 61.67	$60 \cdot 35$ 61.32	-15
49	66.96	-	62.24	$62 \cdot 38$	62.52	62.66	62.80	62.94	63.07	63.21	14
41	263	63.48	63.61	63.74	$63 \cdot 87$	64.00	64.12	64.25	64.38	$64 \cdot 51$	13
42	64.6	64.76	64.88	65.01	65.13	65.26	65.38	65.50		65.74	12
43	65.86	65.98	$66 \cdot 10$	$66 \cdot 22$	66.33	66.45	$66^{\circ} 56$	66.68	66.79	66.91	12
44	67.02	67.14	67.25	67.36	67.47 68.55	67.58 68.66	67.69 68.76	67.80 68.87	67.91 68.97	65.02 69.07	11
45	68	68.24	68.34	68.45	68.55	68.66	68.	68.87	68.97	70.08	10
46	269.17	69.28	69.38	69.48	69.58	$69^{\circ} 68$	69.78	69.88	69.98	70.08	10
47	$70 \cdot 17$	$7{ }^{7} 27$	$70 \cdot 36$	70\%46	70.56	70.65	$70 \cdot 75$ 1. 674	$70 \cdot 84$ 1.765	70.94	71.03 I.945	-10
49	271.123	1.216 2.123	$1 \cdot 308$ 2.211	1.400 2.299	1.492 2.387	1.583 2.474	1.674 2.561	1.765 2.648	1.855 2.734	1. 945 2.820	ost
49	2.034	2123	$2 \cdot 211$	$2 \cdot 299$ 3.160	2.387 3.244	2.474 3.328	2.561	2.648 3495	3.578	3.661	S_{4}
51	273.743	$3 \cdot 825$		3.988	4.069	4.150	4.230	$4 \cdot 310$	$4 \cdot 389$	4.468	OSI
5	$4 \cdot 547$	4.625	4.703	$4 \cdot 781$	$4 \cdot 859$	4.936	$5 \cdot 13$	5.090	5.167	5.243	077
53	$5 \cdot 319$	5395	$5 \cdot 471$	5.546	5.621	5.696	5.770 6.498	5.844 6.570	5.917	5991	75
54	$6 \cdot 064$	$6 \cdot 137$	$6 \cdot 209$	6.282	$6 \cdot 354$	$6 \cdot 426$	6.498	6.570	7.640	77409	2
55	6.783	6.854	6.924	6.994	7.063	$7{ }^{1133}$	$7 \cdot 202$	7.271	7340	S. C ¢ 0	
56	277.477	7.545	$7 \cdot 613$	$7 \cdot 681$	7.748 8.405	7.815	7.882 8.534	7.948 8.598	8.014 8.662	8.726	065
57	8.145 8.789	8.210 8.852	8.275 8.915		S.405 9.040	8:471 $9 \cdot 102$		8. 5225	9.286	9.347	062
	8.789 9.408	8.852 9.469	8.915 9.529	8.978 9.589	9.648	9.708	9.767	${ }^{9} \cdot{ }^{\text {- }}$-26 26	9.885	9.944	O50
60	280.003	0.061	- 0119	-177	0.234	O'292	\bigcirc	$0 \cdot 406$	$0 \cdot 463$	- 520	$5{ }^{\text {S }}$
61	280.577	0.633	0.689	0.745	-. 800	$0 \cdot 855$	0.910	- $0 \cdot 96$	1.020	1075	055
62	I•129	$1 \cdot 184$	1.238	1.292	1.346	1.400	$1 \cdot 453$	1.506 2.029	1.559 2.030	I.612 2.132 2	5 0 0 0 0
63	I.665	1.718	1.770	I.822	1.874 2.386	1.926 $\mathbf{2} 437$	1.977 2.487	2.029 2.537	2.000 2.587	2.132 2.637	050
64 65	2.183 2.68 1	2.234 2.737	2.285 2.786		2.386 2.885	2.437 2.934	2.487 2.983	2.537 3.032	${ }^{2} .051$	3.130	-49
65	2.687 28.178	2.737 3.226	2.786 3.274	2.836 3.322	2.885 3.370	2.934 3.418	2.953 3.466	3.514	3.561	3.609	048
	283.178 3.656	3.226 3	3.274 3.751	$\begin{aligned} & 3.322 \\ & 3.798 \end{aligned}$	3.845	3.892	3.938	3.984	4.030	4.076	047
68	4.122	4.168	4.213	4.259	4.304	$4 \cdot 349$	4.394	4.439	4.484	4.529	4
69	4.574	4.619	$4 \cdot 663$	$4 \cdot 708$	4752	4.796	4.840	$4 \cdot 8$	$4 \cdot 92$	4.972	a4.

XXXII. こぁ for Ogival-headed Projectiles ($\mathrm{II}=1 \cdot 206$ kil., or $\omega=527$ grains).

$\mathfrak{6}$	\bigcirc	1	2	3	$\stackrel{+}{ }$	5	6	7	S	9	Diff.
\%. s.	Metres	Met	Met	Met	Metres	M	Metres	Metres	Metres	Metres	+
5	$4 \mathrm{cos}_{3}$	1516	2923	4307	5666	7002	8312	. 9596	-oS57	2101	1335
6	53323	4524	5706	6571	8018	9148	*0260	${ }^{*} 1355$	* 242	3491	1130
	64529	5558	6573	7575	8564	9536	*0499	${ }^{1} 1448$	* 2385	*312	966
S	74226	5128	6020	$6 \$ 99$	7770	8631	9484	*0328	* 1159	* 1977	851
9	82785	3586	4381	5168	5946	6715	7476	822 S	S975	9714	770
10	90443	1169	1885	2593	3292	3986	4677	535 S	6035	6703	696
11	97363	So22	8673	9319	9961	*0594	* 1222	"1S47	* 2466	7	35
12	103688	4291	4859	5482	6071	6651	7232	7S08	8379	8946	584
13	109504	*005S	*0612	${ }^{1} 162$	* 1707	*2243	*2779	3311	*3843	*4366	540
14	114859	. 5403	${ }_{*} 5918$	6424	*929	7430	7931	842 S	8921	. 9409	502
15	119897	*0384	*os64	${ }^{1} 1338$	*iSo9	*2279	* 2745	3211	-3673	4130	470
16	124587	5040	54SS	5937	6381	6S25	7264	7699	SI35	S565	442
17	128996	9423	98.45	*0267	*0689	${ }^{1} 1102$	${ }^{1} 1515$	*1928	*2337	*2742	416
18	133146	3550	3951	4351	4746	5142	5533	5924	${ }^{6} 311$	6694	394
19	137076	7459	7837	8215	8593	8966	9340	9709	*0279	*0443	374
20	140508	1169	1529	1890	2246	2602	2958	3310	3657	4004	355
21	144351	4694	5037	53 So	5723	6061	6396	6734	7068	7398	339
22	147728	So57	$8_{3} 8_{3}$	8712	9038	9358	9679	*0000	O321	${ }^{06} 38$	323
23	150959	1275	1592	1904	2212	2524	2831	3139	3442	3750	310
24	154053	4357	4660	4959	5254	5552	5847	61.42	6436	6726	297
25	157016	7306	7597	7882	8168	8449	8726	9003	9276	9548	28 I
26	159821	*oos9	*0357	*0621	*oSSo	* 1140	1399	* 1654	*1909	* 2160	260
27	162410	2661	2911	3156	3400	3644	3 SS6	4124	4358	4591	242
28	164 S19	5052	5281	5509	5738	5962	6184	6406	6626	${ }^{6546}$	225
29	167066	7281	7492	7707	7918	8129	8336	$\delta 543$	S749	8956	210
30	169158	9360	9563	9760	9956	*or 5^{2}	*O345	*053S	*0732	-0921	196
3	171110	1299	148_{4}	1664	18.40	2015	2187	2354	2521	2679	174
32	172833	2975	3123	3260	3396	3528	3655	3783	3906	4029	133
33	174148	4267	$43^{8} 4$	4499	4613	4725	4836	4947	5057	5164	113
34	175271	5377	5482	5586	5690	5793	5895	5996	6098	6199	103
35	176299	6399	6498	6595	6693	6790	6888	6984	7079	7175	97
36	177269	7363	7457	7550	7642	7734	7825	7916	Soo 7	Sog 8	
37	17 SISS	8277	8365	8453	S540	8627	S714	8800	SSS6	S972	S7
38	179057	9141	9225	9309	9392	9475	9557	9639	9721	9801	S3
39	179882	9962	${ }^{\circ} \mathrm{OO}_{4} 1$	*0120	*0200	*0278	*0356	*0434	0512	*0589	79
40	180666	0743	OS 19	$\bigcirc{ }^{0} 95$	0971	1047	1122	1197	1271	1 346	76
41	181419	1493	1566	1640	1713	1786	${ }_{1} \mathrm{~S}_{5} 8$	1931	2003	2074	73
42	182146	2217	2288	2359	2429	2500	2570	2640	2710	2779	70
43	182849	2918	2987	3055	3124	3192	3260	332 S	3396	3464	68
44	183532	3599	3666	3733	3800	${ }_{3} 867$	3934	4001	4067	4133	67
45	184199	4265	$433{ }^{1}$	4397	4463	4528	4593	4658	4723	4788	65

XXXII. 末̄ for Ogival-headed Projectiles (continued).

\mathfrak{b}	0	1	2	3	t	5	\bigcirc	7	8	9	Dif
	etr	Metres	M	Metres	Metres	Metres	Metres	es	es	Metres	+
46	184853	49	49	504	5112						64
47	5495	5559	5623	5687	5751	5815	5878	5941	6004		64
48	6130	6193	6255	6318	6380	6443	6505	6568	6630	6692	62
49	6754	6816	6878	6940	7001	7063	7124	7185	7246	7308	62
50	7369	7430	7491	7552	7613	7674	7734	7795	7855	7916	61
51	187976	8037	8097	8157	8217	8277	8337	8397	8457	8517	60
52	8576	8636	8695	8755	8814	8874	8933	8992	9051	9110	59
53	9169	9228	9287	9346	9404	9463	9521	9580	9638	9697	59
54	9755	9813	9871	9929	9986	-0044	*0102	*0160	*0217	*0275	58
55	190332	0390	0447	0504	0561	0618	0675	0732	0789	0846	57
56	19090	0960	1016	1073	1129	118	1242	1298	1354	1410	56
57	146	1522	1578	1634	1689	1745	1800	1856	1911	1967	56
58	2022	2077	2132	2187	2242	2297	2352	2407	2462	2517	55
59	2571	2626	2680	2734	2788	2843	2897	2951	3005	3059	
60	3113	3167	3220	3273	3326	3379	3432	3485	3538	3591	53
61	193643	36	3748	38	38	39	3957	40	4061	4113	
62	4164	4216	4267	4318	436	4420	4470	4521	4571	4622	
63	4672	4722	4772	4822	4872	4922	4971	5020	5069	5118	50
64	5167	5215	5264	5312	5361	5409	5458	5506	5554	5601	48
65	5648	5696	5743	5791	5838	5885	5932	5979	6026	6072	47
66	196119	6165	6211	6257	6303	634	6395	6440	6486		46
67	6576	6622	6667	6712	6757	680	6847	6892	6937	6982	45
68	7026	7071	7115	7160	7204	724	7292	7336	7380	7424	44
69	7468	7512	7555	7599	7643	7687	7731	7775	7819	7863	44
70	7907	7951	7995	8039	8082	8126	8170	8214	S257		
71	198345	83	8432	8476		8564		86	695		44
72	8782	8826	8870	8914	895	9002	9046	9090	9134	9178	44
73	9222	9266	9309	9353	939	944	9485	9529	. 9573	${ }^{9617}$	
74	9661	9705	9749	9793	9836	9880	9924	9968	*0012	*0056	
75	200100	0144	018	0232	0275	0319		04	04	0495	
76	200539	0583	0626	0670	071		080	0844	0887	0930	43
77	0973	1016	1059	1102	1145	1188	1230	1273	1315	1358	43
78	1400	1443	1485	1527	1569	1611	1653	1695	1737	1779	42
79	1820	1862	1904	1946	1987	202	2069	2110	2151	2192	41
80	2233	2274	2314	2355	2395	2435	2475	2515	2555	2595	
81	202635	2675	2714	2754	2793	2833	2872	2911	2950	29 S9	
82	3028	3067	3105	3144	3182	3231	3259	3298	3336	3374 3750	${ }_{38}$
83	3412	3450	3487	3525	3563	3601	3638	3676	3713	3750	37
84	3787	3824	3861	3898	3935	3972 4334	4008 4369	4045	4081 4440	4117 4476	37 36
85	4153	4190	4226	4262	4298	4334	4369	4405	4440	4476	
86	2045		4581			4687		4757	4792		35
87	4861	4896	4930	4965	4999	5033	5067	5101	5135	5169	34
88	5203	5237	5270	5304	5337	5370	540.	5437	5470	5503	33

XXXIII. \mathbb{U}_{b} for Ogival-headed Projectiles ($\Pi=1206$ kil. or $\omega=527$ grains).

\mathfrak{G}	\bigcirc	1	2	3	4	5	6	7	8	9	Diff.
s.	Seconds	+									
5	1074	1102	1129	1156	181	1206	1230	1252	1274	1296	24
6	1316	1336	1355	1374	1392	1409	1426	1443	1459	1474	IS
7	1489	1504	1518	1532	1545	1558	1571	$15^{8} 4$	1596	1608	13
8	1619	1630	1641	1652	1662	1672	1682	1692	1701	1711	10
9	1720	1729	1737	1746	1754	1762	1770	1778	1786	1793	8
10	1800	$180 S$	1815	1822	1828	1835	1842	1848	$1 S_{54}$	1860	7
II	I $866 \cdot 6$	872.7	$878 \cdot 5$	$S^{4} 1$ I	8S9.6	S95*1	900'5	906*0	911.4	$916 \cdot 5$	$5 \cdot 5$
12	921.7	926.6	931.4	$936 \cdot 3$	941*1	945*7	$950 \cdot 3$	954*9	959.4	$963 \cdot 8$	$4 \cdot 7$
13	968.1	972.4	$976 \cdot 7$	$980 \cdot 8$	$984 \cdot 8$	$988 \cdot 8$	992.8	$996 \cdot 7$	*000 5	*OO4*3	4.0
14	$2008 \cdot 1$	O117	O15.3	$018 \cdot 9$	022.4	025.9	029.3	$032 \cdot 7$	036.1	039.4	$3 \cdot 5$
15	042.6	$045 \cdot 9$	$049^{\circ} 1$	$05^{\circ} 2$	$055 \cdot 2$	$058 \cdot 2$	$061 \cdot 2$	064.2	067* I	070.0	$3^{\circ} \mathrm{O}$
16	2072.9	$075 \cdot 7$	078.5	081.3	084.0	$086 \cdot 7$	$089 \cdot 3$	091.9	094.5	0971	2.7
17	$099 \cdot 6$	102.1	104.6	1070	109.4	111.8	114.1	116.5	118.8	121.1	2.4
18	123.4	125.6	127.8	130°	132.1	134.2	$136 \cdot 3$	$138 \cdot 4$	$140 \cdot 5$	142.6	$2 \cdot 1$
19	144.6	146.6	148.6	150.6	152.5	154.4	156.3	158.2	160°	161.9	I'9
20	163.7	$165 \cdot 5$	1673	169.1	$170 \cdot 5$	172.6	174.3	$176{ }^{\circ}$	177×7	$179{ }^{\circ} 4$	17
21	2 ISI.O	182.6	184.2	$15_{5} \cdot \mathrm{~S}$	187.4	189*0	190.6	192.2	193.7	195.2	$1 \cdot 6$
22	196.7	198.2	199.6	201'1	$202 \cdot 5$	204*0	205.4	206.S	$208 \cdot 2$	209.6	$1 \cdot 4$
23	2110	212.4	213.8	215.2	216.5	217.8	219*1	$220 \cdot 4$	221.7	223.0	13
24	$224^{\circ} 3$	$225 \cdot 6$	$226 \cdot 8$	228.1	229*3	$230 \cdot 5$	231.7	232.9	234 ${ }^{1}$	$235 \cdot 3$	$1 \cdot 2$
25	$236 \cdot 4$	$237 \cdot 6$	$238 \cdot 7$	2398	$240 \% 9$	$24^{\circ} \mathrm{O}$	$243{ }^{1}$	244°	$245^{\circ} 2$	$246 \cdot 3$	$1 \cdot 1$
26	224733	$48 \cdot 36$	$49 \cdot 38$	50.39	$51 \cdot 38$	$52 \cdot 36$	53.34	54.30	$55 \cdot 25$	56.20	97
27	5713	58.04	58.95	$59 \cdot 85$	60.74	61.62	62.49	63.36	64.21	6505	SS
28	$65 \cdot 88$	66.71	67.53	$68 \cdot 33$	69'13	69.92	$70 \cdot 70$	71.47	$72 \cdot 24$	$73^{\circ} 00$	79
29	73.76	74.50	75.24	75.97	76.69	$77 \cdot 40$	$78 \cdot 11$	$78 \cdot 81$	79.50	80.18	71
30	So. 85	81.52	82.19	S2. 8_{4}	83.49	$84^{1} 14$	S $4 \cdot 78$	85.41	86.03	$86 \cdot 65$	$\cdot 64$
31	2287.26	87.86	SS. 45	89.04	89.61	90.16	$90 \cdot 69$	91.22	91.73	92.22	. 55
32	92\%1	$93 \cdot 18$	$93 \cdot 63$	$94^{\circ} 07$	94.50	94.90	$95 \cdot 29$	$95 \cdot 67$	96.04	96.42	41
33	96.79	97^{15}	97.50	$97 \cdot 85$	98.19	$98 \cdot 52$	$98 \cdot 85$	99*18	99.50	99.81	34
34	$2300 \cdot 12$	$00 \cdot 43$	00'74	Or'05	O1•35	OI. 65	OI'95	0224	02.53	02.82	'30
35	$03 \cdot 11$	03.39	$03 \cdot 67$	03.95	0.423	04.51	0477	O5.05	05.31	05.58	$\cdot 27$
36	$2305 \cdot 84$	$06 \cdot 10$	06.36	06.62	06.87	07-13	07:38	07.63	07-S7	OS. 12	$\cdot 25$
37	03.36	08.60	os.84	09.08	09*31	09.54	09.77	10.00	10.23	$10 \cdot 46$	$\cdot 23$
38	10.68	10.90	11.12	I 1 34	11.56	11.78	II•99	12.20	12.41	12.62	$\cdot 22$
39	12.83	13.03	13.23	13.43	13.63	$13 \cdot 83$	14.03	14.23	14.42	14.62	20
40	14.81	15.00	15'19	15.38	15.57	15.75	15.94	16.12	16.30	16.49	-19
41	2316.67	16.85	17.03	17.21	17.38	17.56	1773	17.91	IS.08	$18 \cdot 25$	-18
42	18.42	18.59	15•76	18.93	19.09	19.26	19.42	19.59	19.75	19.92	'17
43	20.08	20.25	20.41	20.57	20.72	20.87	21.02	21-18	$21 \cdot 33$	$21 \cdot 49$	$\cdot 16$
44	$21 \cdot 64$	21.80	21.95	22.10	22.25	22.40	22.55	22.70	$22 \cdot 55$	23.00	-15
45	$23 \cdot 14$	23.29	23.43	23.58	$23 \cdot 72$	$23 \cdot 87$	$24^{\circ} \mathrm{OI}$	24•16	24.30	2444	'14

XXXIII. \mathbb{T}_{b} for Ogival-headed Projectiles (continued).

$\mathfrak{6}$	0	1	.	3	4	5	6	7	8	9	Dif.
	Second	Se	Se	Seconds	Seconds	Se	Seconds	Seconds	Seconds		
46	2324.58	24.72							$25^{\circ} 69$		14
47	25.96	26.10	26.23	26.37	26.50	26.64	26.77	26.90	27.03	$27 \cdot 17$	$\cdot 13$
48	27.30	27.43	27.56	27.69	27.82	27.95	28.07	28.20	28.33	28.46	-13
49	28.58	28.71	$28 \cdot 5$	28.97	29.09	29.22	29.34	29.46	29.58	$29^{\prime 7} 1$	-13
50	29.83	29.95	30.07	30'19	$30 \cdot 31$	$30^{\circ} 43$	30.55	30.67	$30 \cdot 79$	30×91	$\cdot 12$
51	2331.03	$31 \cdot 15$	31.27	31.39	31.50	$31 \cdot 62$	31.74	31.86	31.97	32.09	$\cdot 12$
52	32.20	$32 \cdot 31$	32.42	32.54	32.65	32.77	$32 \cdot 88$	32.99	$33^{\prime 1}$	33.21	11
53	33.32	33.44	33.55	33.66	33.77	$33 \cdot 88$	33.99	$34^{\text {'IO }}$	$34 \cdot 20$	34.31	'11
54	34.42	34.53	34.63	34.74	34.85	34.95	$35^{\circ} \mathrm{O}$	$35^{1} 16$	$35^{\circ} 27$	35.37	11
55	35.48	35.58	35.69	35.79	35.89	36.00	36.10	36.20	$36 \cdot 30$	36.41	$\cdot 10$
56	2336.508	6.609	6.709	6.So9	6.909	$7 \cdot 009$	7•109	7.208	$7 \cdot 307$	$7 \cdot 405$	100
57	$7 \cdot 503$	$7 \cdot 601$	$7 \cdot 693$	7796	$7 \cdot 893$	7×990	8.096	8.182	8.277	8.373	-097
58	$8 \cdot 468$	$8 \cdot 564$	$8 \cdot 659$	8.754	8.849	8.943	9.036	9.129	9.222	9.315	-094
59	$9 \cdot 408$	9.501	9.593	9.685	9.776	9.867	9.958	*0.048	*0.138	*0'228	-091
60	2340317	$0 \cdot 407$	0.496	$\bigcirc \cdot 585$	$0 \cdot 673$	0.761	$\bigcirc .849$	$0 \cdot 937$	1.024	$1 \cdot 10$	-058
61	$2341 \cdot 195$	1.282	$1 \cdot 368$	1.454	1-539	1.624	$1 \cdot 708$	$1 \cdot 792$	1.876	1.959	- 085
62	2.042	$2 \cdot 125$	2.207	$2 \cdot 289$	$2 \cdot 371$	2453	$2 \cdot 534$	$2 \cdot 615$	$2 \cdot 695$	$2 \cdot 775$	-05i
63	$2 \cdot 855$	2.935	3.014	3.093	3171	$3 \cdot 249$	3.327	$3 \cdot 405$	$3 \cdot 4$ S2	3.559	078
64	$3 \cdot 635$	3711	3.786	3.862	3.937	4.012	4.086	4.161	4.235	4.309	-075
65	$4 \cdot 382$	4455	4.528	$4 \cdot 601$	$4 \cdot 673$	$4 \cdot 745$	$4 \cdot 816$	$4 \cdot 887$	4.958	$5{ }^{\circ} 028$	-072
66	2345 ¢098	5.168	$5 \cdot 238$	5.308	$5 \cdot 377$	$5 \cdot 446$	5.515	$5 \cdot 584$	$5 \cdot 652$	5720	-069
67	5.788	$5 \cdot 856$	5.923	5.990	6.057	6•124	$6 \cdot 190$	$6 \cdot 256$	$6 \cdot 322$	6.358	$\cdot 067$
65	6.454	6.519	$6 \cdot 584$	6.649	6.713	6.778	6.842	6.906	6.970	$7{ }^{7} \mathrm{O}+$	-65
69	$7 \cdot 098$	$7 \cdot 162$	7.225	$7 \cdot 289$	7352	7.416	7.479	7.542	$7 \cdot 605$	7.668	-063
70	7.730	7793	$7 \cdot 855$	7.917	7.979	8.041	8-103	8.165	$8 \cdot 227$	$8 \cdot 2 S 9$	-062
71	2348.351	8.413	8.474	8.536	8.598	8.660	8.721	$8 \cdot 782$	8. S_{43}	$8 \cdot 004$	-062
72	$8 \cdot 965$	9.026	9.086	9.147	$9 \cdot 207$	9.268	9.328	$9 \cdot 389$	9449	. $9 \cdot 510$	-61
73	9.570	$9 \cdot 630$	9.690	$9 \cdot 750$	9.810	9.870	9.929	9.989	*0.043	-0.108	-060
74	$2350 \cdot 167$	$0 \cdot 227$	- 288	$\bigcirc \cdot 345$	- 404	$0 \cdot 463$	0. 522	$\bigcirc \cdot 581$	0.639	- 6.698	-059
75	$0 \cdot 756$	0.815	- ${ }^{\text {¢ }} 83$	- 0932	0.990	$1 \cdot 048$	1-106	1•164	$1 \cdot 222$	$1 \cdot 250$	00^{8}
76	2351 1337	1-394	1451	1.508	1.565	1.622	1.679	1.736	1792	1.849	$\bullet 057$
77	1.905	$1 \cdot 961$	2.016	$2 \cdot 072$	2.127	$2 \cdot 182$ 2.726	2.237	2.292	2.347 2.55	2.403 2.038	-055
78	2.456	2.510	$2 \cdot 564$	2.618	2.672	$2 \cdot 726$	2.779				
79	2.991	3.044	3.096	3.148	3.200	3.252	3.304 3.812	3.356 3.862	3.408 3.911	3.459 3.960	-052
80	3.510	$3 \cdot 561$	$3 \cdot 612$	$3 \cdot 662$	3'712	3.762	$3 \cdot 812$	3.862	3.911	3.960	-50
81	2354.009	4.058	4.107	$4 \cdot 156$	4.204	4.253	4.301	4.349	4.397	4.444	-04S
82	4.491	4.539	4.5 ¢6	$4 \cdot 633$	4.6So	4727	$4 \cdot 773$	4.820	4.866	4.912	. 047
83	4.958	5.004	5.049	5.094	5.139	$5 \cdot 184$	5.229	5.274	5.318	${ }_{5} 5.363$	-045
84	5407	5.451	5.495	5.539	5.582	5.625	${ }^{5.668}$	59711 6.134	5.754 6.176	5.797 6.218	- 0
ε_{5}	$5 \cdot 839$	5.882	5.924	5*966	6.008	6.050	$6 \cdot 092$	6.134	$6 \cdot 176$	6.218	\square_{0}
86	2356.259	$6 \cdot 300$	6.341	$6 \cdot 382$	6.422				${ }^{6.554}$	$6 \cdot 624$	-a, 1
87	$6 \cdot 663$	$6 \cdot 703$	$6 \cdot 742$	$6 \cdot 782$	6.821	6.860	6.899	6.938	6.976	7.015	$0 \cdot 39$
88	7×053	7.091	7-129	7•167	$7 \cdot 205$	$7 \cdot 243$	$7{ }^{281}$	7319	7×356	7-393	$0^{\circ} \mathrm{S}$

CAMBRIDGE

PRINTED BY C. J. CLAY M.A. AND SONS
at the university press

CAMBRIDGE UNIVERSITY PRESS.

MATHEMATICAL AND PHYSICAL PAPERS. By Sir W. Thomson, LL.D., D.C.L., F.R.S., Professor of Natural Philosophy in the University of Glasgow. Collected from different Scientific Periodicals from May, 1841, to the present time. Vol. I. Demy 8 vo . 18s. Vol. II. 15 s.
[Vol. III. In the Press.
MATHEMATICAL AND PHYSICAL PAPERS, by Sir G. G. Stokes, Sc.D., LL.D., F.R.S., Lucasian Professor of Mathematics in the University of Cambridge. Replinted from the Original Journals and Transactions, with Additional Notes by the Author. Vol. I. Demy 8vo. 15s. Vol. II. 15 s. [Vol. III. In the Press.
CATALOGUE OF SCIENTIFIC PAPERS COMPILED BY THE ROYAL SOCIETY OF LONDON: Vols. $1-6$ for the years $1800-1863$, Royal 4 to. cloth (vol. 1 in half morocco) $£ 4$ (net); half morocco 6.5. 5s. (net). Vols. 7-8 for the years $1864-1873$, cloth £1. 11 s .6 d . (net); half morocco $£ 2.5$ s. (net). Single volumes cloth 20s. or half-morocco 28s. (net). New series for the years 1874-1883 in the press.

THE COLLECTED MATHEMATICAL PAPERS OF ARTHUR CAYLEY, Sc.D., F.R.S., Sadlerian Professor of Pure Mathematics in the University of Cambridge. Demy 4to. 10 vols. Vol. I. 25 s. Vol. II. 25 s.
[Vol. III. Nearly ready.
THE SCIENTIFIC PAPERS OF THE LATE PROF. J. CLERK MAXWELL. Edited by W. D. Niven, M.A., formerly Fellow of Trinity College. In 2 vols. Royal 4to. £3. 3s. (net).
A HISTORY OF THE STUDY OF MATHEMATICS at Cambridge. By W. W. Rouse ball, M.A., Fellow and Lecturer on Mathematics of Trinity College, Cambridge. Crown 8vo. 6s.

THE THEORY OF DIFFERENTIAL EQUATIONS. Part I. Exact Equations and Pfaff's Problem. By A. R. Forsyrth, M.A., F.R.S., Fellow of Trinity College, Cambridge. [In the Press.

A HISTORY OF THE THEORY OF ELASTICITY AND OF THE STRENGTH OF MATERIALS, from Galilei to the present time. Vol. I. Galilei to Saint-Venant, 1639-1850. By the late I. Todhunter, Sc.D., F.R.S., edited and completed by Professor Karl Pearson, M.A. Demy 8vo. 25 s.
Vol. II. By the same Editor.
[In the Press.
THE ELASTICAL RESEARCHES OF BARRÉ DE
SAINT-VENANT (Extract from Vol. II. of Todhunter's History of the Theory of Elasticity), edited by Professor Karl Pearson, M.A. Demy 8vo. gs.

CAMBRIDGE UNIVERSITY PRESS.

THE ELECTRICAL RESEARCHES OF TIIE Hon. II. Cavendish, F.R.S. Written between 1771 and 1781. Edited from the original MSS. in the possession of the Duke of Devonshire, K.G., by the late J. Clerk Maxiwell, F.R.S. Demy 8 vo . i8s.

A TREATISE ON GEOMETRICAL OPTICS. By R. S. Heath, M.A., Professor of Mathematics in Mason Science College, Birmingham. Demy 8vo. 12s. 6 d .

AN ELEMENTARY TREATISE ON GEOMETRICAL Optics. By R. S. Heath, M.A. Crown 8 vo. 5 s.

A TREATISE ON ELEMENTARY DYNAMICS. By S. L. Loney, M.A., Fellow of Sidney Sussex College. Crown 8vo. 7s. 6 d .

A TREATISE ON NATURAL PHILOSOPHY. By Sir W. Thomson, LL.D., D.C.L., F.R.S., and P. G. Tait, M.A., Professor of Natural Philosophy in the University of Edinburgh. Part I. Demy 8vo. 16s. Part II. Demy 8vo. i8s.

ELEMENTS OF NATURAL PHILOSOPHY. By Professors Sir W. Thomson and P. G. Tart. Demy 8vo. gs.

AN ELEMENTARY TREATISE ON QUATERNIONS. By P. G. Tait, M.A. 3rd Edition. Enlarged. Demy 8vo. i8s.

AN ATTEMPT TO TEST THE THEORIES OF CAPILlary action, by Francis Bashforth, B.D., and J. C. Adams, M.A., F.R.S. Demy 4to. £i. is.

A TREATISE ON THE THEORY OF DETERMINANTS and their applications in Analysis and Geometry, by R. F. Scott, M.A., Fellow of St John's College. Demy 8vo. 12 s .

IIYDRODYNAMICS, a Treatise on the Mathematical Theory of the Motion of Fluids, by H. Lamb, M.A. Demy 8 vo . i2s.

THE ANALYTICAL THEORY OF HEAT, by Joserit Fourier. Translated, with Notes, by A. Freeman, M.A., formerly Fellow of St John's College, Cambridge. Demy 8vo. 12 s.

A TREATISE ON THE GENERAL PRINCIPLES OF Chemistry, by M. M. Pattison Mulr, M.A. Second Edition. Demy 8ro. 155
COUNTERPOINT. A Practical Course of Study, by the late Professor Sir G. A. Macfarren, M.A., Mus. Doc. New Edition, revised. Crown 4to. 7s. 6 d .

GIOHDOI: C. J. CLAY AND SONS, CAMERIDGE UNIVERSITY PRESS WAREHOUSE, AVE MARIA LANE.

[^0]: ${ }^{1}$ J. Bernoulli, Opera, II. 396.
 ${ }^{2}$ Ib. p. 339.

[^1]: ${ }^{1}$ Translated by Rieffel, 1845.
 ${ }^{2}$ Translation of Fuler.
 3 Tafeln fïr den Bombenwurf. Translated by Rieffel, as Tables de Balistiques Crénérales pour le tir élevé, 1845.

 - Balistique, pp. 215, 216.

 B Neue Bal. Tafeln, 1857.

[^2]: ${ }^{1}$ New Principles of Gunnery, p. 83.
 ${ }^{2}$ IRobins's Gunnery, 1. 180-183, aud Hutton's ed., 180-183, 180 J.

[^3]: ${ }^{1}$ Note by Hutton, "These suppositions are not nearly correct," 181.
 ${ }^{2}$ New Principles, x. 182, Hutton's ed., pp. 180-182.
 ${ }^{3}$ New Principles, I. p. xxx. 4 Ib. p. xxxi.

[^4]: ${ }^{1}$ New Principles, p. xl.
 2 Tracts, Vol. 11. p. 307.

[^5]: 1 Tracts, 111. pp. 216. $217 . \quad=$ Ib. p. 232.
 ${ }^{3}$ Ann. de Ch. et de Ph.. v. p. 380. + Ib. $1 \times$.
 s Mem. de l'Acad., 1836; and Didion, Lois, p. 22.

[^6]: ${ }^{1}$ Lois, \&c., p. 78.

[^7]: ${ }^{1}$ Hutton's edition of Kobins, p. 181.

[^8]: ${ }^{1}$ Moigno, Télégraphic, 1819, p. 95.
 ${ }^{3}$ Applications, 11. p. 337, 1856.
 *Télégraphic, $\mathrm{Tp} .88-113$.
 = Ib. p. 96.

 - Comptes-Rendus, 1815.
 ${ }^{6}$ Applications, ur. p. 337.

[^9]: ${ }^{1}$ Practical Mechanic's Journal, Oct. 1867, p. 195.
 ${ }^{2}$ Electro-Ballistic Machines, 1866. ${ }^{3}$ Ballistic Machines, 1885, p. 29.

[^10]: ${ }^{1}$ Reports, \&c. 1865-1870, p. 56.

[^11]: 1 Ib. p. 30.

[^12]: ${ }^{1}$ Reports, \&c. 1865-1870, p. 10, and Transactions of the Royal Society, 1868, p. 417.

[^13]: ${ }^{1}$ Reports, \&c. 1865-1870, pp. 18-54, and pp. 123-152.
 ${ }^{2}$ Report, \&c., Part'ir., $1879 . \quad{ }^{3}$ Final Report, 1880.
 ${ }^{4}$ Reports, \&c. 1865-1870, pp. 55-122.

[^14]: 1 Reports, \&c. 1870, p. 26.
 ${ }^{3}$ Ib. pp. 155-161, and Captain Ingalls's Ballistic Machines, 1. 25.

[^15]: ${ }^{1}$ Reports, \&c. 1865-1870, p. 15. ${ }^{2}$ Ib. pp. 49, $50 . \quad{ }^{3}$ Ib. p. 116.
 ${ }^{4}$ Remaining velocities, \&cc. 1871, and Proceedings of the R. A. Inst. vir. p. 337.
 5 Remaining velocitics, pp. 47, 48, and Proceedings of the R. A. Inst. v11. pp. 391, 392.
 ${ }^{6}$ Ib. virr. p. 4.

[^16]: ${ }^{1}$ Proceedings of the R. A. Inst. xill. p. 348.

[^17]: ${ }^{2}$ Reports, \&c. 1865-1870, p. 15.
 ${ }^{2}$ Ib. p. 49.
 ${ }^{3}$ Notes, 1868, p. 69.
 +1871 , p. 430.

[^18]: ${ }^{1}$ Reports, \&e., 1865-1870, p. 65.
 ${ }^{3}$ Ib. p. 116.

 - 1871, p. 432.
 Ib. pp. 123-152.
 1871, p. 35.
 (1871, p. 379.

[^19]: ${ }^{1}$ Remaining Velocity, \&c. 1871, p. 47; and Proceedings of the R. A. Inst. vir. p. 391.
 ${ }^{2}$ Remaining Velocity, \&c. 1871, p. 48; and Proceedings of the R. A. Inst. vir. p. 392.

[^20]: ${ }^{1}$ Rewaining Velocity, dc., p. 31; and Proceedings of the R. A. Inst. vir. p. 375, 1871.
 ${ }^{2}$ Proceedings of the 18. A. Inst. vint. p. $4 . \quad{ }^{3}$ Ib. p. 6.

[^21]: ' Beport, \&c. l'urt in. 1879, 1p. 51-58.
 ${ }^{2}$ I'roccedings of the R. A. Inst. xir. p. 569.

[^22]: 1 Procredings of the R. A. Inst. x1. pp. 113, 589; xir. p. 17.
 $=$ Ih. xiv. p. 373 Ib. x. p. $589 . \quad$ Ib. xı. p. 12. 4.

[^23]: ${ }^{1}$ Proceedings of the R. A. Inst. 1886, p. 356.

[^24]: Proceedings of the R. A. Inst. vill. p. 343.

[^25]: ${ }^{1}$ Proceedings of the R. A. Inst. xvr. p. 491.

[^26]: ${ }^{1}$ Proceedings of the R. A. Inst. xvi. p. 491.
 ${ }^{2}$ From experiments on the velocity of the wind on the Eiffel Tower 994 feet above the ground and at the Paris Meteorological Office 66 feet above the ground, the average velocity on the tower was found to be 16 miles an hour and that at the Office only 5 miles an hour. Nature, Vol. 41, p. 67.
 ${ }^{3}$ Proceedings of the R. A. Inst. xvi. p. 491.

[^27]: ${ }^{1}$ Proceedings of the I. A. Inst. xvi. p. 492.

[^28]: ' Scientific Memoirs r. 1853, p. 228, and Abweichung der Geschosse, 1860, p. 35.
 ${ }^{2}$ Journal des Armes spéciales, 1860, and Mémoires Scientifiques, I. pp. 179-312.
 ${ }^{3}$ lb. p. 228.
 ${ }^{4}$ Revue Technologie Militaire, 1866, pp. 1-176.
 ${ }^{5}$ Traité de Balist:que, p. x.

[^29]: ${ }^{1}$ Traité de Balistique, p. 236.

[^30]: ${ }^{1}$ Traité de Balistique, 1860, p. 441.

[^31]: ${ }^{1}$ Proceedings of the R. A. Inst. xiv. p. 369.
 $=$ Ib. p. 364.

[^32]: ${ }^{1}$ Proceedings of the R. A. Inst. xif. p. $369 . \quad$ I Ib. p. 356.

[^33]: ${ }^{1}$ Reports, \&c. 1865-1870, p. 8. ${ }^{2}$ Proceedings of the R. A. Inst. xiv. p. 18.

[^34]: ${ }^{1}$ 1Remaining Velocities, 1871, p. 48, and Proceedings of the R. A. Inst. vir. p. 392.
 ${ }^{2}$ Traité de Balistique, p. 42.

 - lleport, \&c. Part II. 1879.

[^35]: ${ }^{1}$ Exterior Ballistics, p. 30.
 ${ }^{3}$ Nature, xxxiif. j. 605.

[^36]: 2 Traité de Balistique extérieure, 1872, p. vi.

[^37]: ${ }^{1}$ Balistica, 1884, p. 63.
 ${ }^{2}$ Proceedings of the Roval Society, 1877.

[^38]: ${ }^{1}$ Exterior Ballistics, p. 115.
 ${ }^{2}$ Proceedings of the R. A. Inst. xvir. p. 86.
 ${ }^{3}$ Giornale d' Artiglieria, Pt 2, 1881.

[^39]: ${ }^{1}$ Proceedings of the R. A. Inst. xitr. p. 350.

[^40]: ${ }^{2}$ Proceedings of the R. A. Inst. xiri. p. 62. ${ }^{2}$ Ib. xvir. p. 87.

[^41]: ${ }^{1}$ Exterior Ballistics, p. 36.
 ${ }^{3}$ Final Report.

[^42]: ${ }^{2}$ Fallistio Machines, p. 13.

[^43]: ${ }^{1}$ Proceedings of the R. A. Inst. xiv. p. 3556.

